Figure 1: Primal (dashed) and Dual (solid) Simplex Algaritford = 2

Lecture May, 13th

0.1 Primal and Dual Simplex

In the previous sections we have seen an algorithm to daterthe highest feasible point
x* for a collection of constraints?” = {aiTx < Bi} by approaching<* from the infeasible
region and jumping to v-shapes of decreasjng height. Thrdhm was calleqPrimal)
Simplexalgorithm. In the following we will briefly present the soHea (Dual) Simplex
algorithm, which approaches via vertices of the feasible region defined.k.

Dual (v-shape) Simplex

Primal Simplex

ldea jump to lower and lower vertices | jump to higher and higher
of v-shapes feasible vertices
BasisB d lin.indep. constraints d lin.indep. constraints
(vertex
repr.)
Invariant || always have v-shape, i.eis conic | always corner of feasible region, i.e.
combination ofg;’s def. v-shape Ai s.t.al x, > B
Non-Opt.|| v-shape not feasible, i.e. staying ond — 1 constraints oB one
Jdi s.t. a,-TxV > B can move away from, and
improve without becoming infeasible
Pivot determine new v-shape includilag | determine which constraint blocks this
and drop one of the old constraints movement, include that in basis, remave
constraint which we moved away from
Degen. constraints orthogonal to vertices determined by more thdn
(can be fixed by perturbing) constraints (fixed by perturbing constr})
Start some v-shape; if not given considersome corner of the feasible region; if
auxiliary problerra,-Tx < 0 with add.| not given— Exercise !
constraintsg < 1 forc > 0,
—x<1forg<O...

Basically both variants are equivalent and some peoplecalié@rimal simplex what
we call dual simplex and vice versa.

Exercise 1.Fill in the details of the dual simplex algorithm.

Pivot Step

Let us first try to figure out which of the— 1 halflines to follow to improve our objective
function value. Our current solution is given ldyconstraintsa}x < Bl...agx < Bg-
We can write this system of inequalities as equalities byoohicing slack variables=

(s1,-.-50) € RYy:

S1

ail ayd

B1

X+ =1 :
Bd

We will write this asAgx+ s = Bg in short. The coordinateg of the current vertex are

determined as

ad1 add S

x=Ag'Bs —Agls

8 0.1 ARRIMAL AND DUAL SIMPLEX 3

with s= (0,...,0), i.e. alld constraints are tight. Moving away from one constraint
corresponds to increasing its slack variable from zero toespositive value. We want to
figure out which slack variable we can increase to get a highgactive function value.
For the objective function we have:

c'x=c'(Ag'Bs —Ag's) =c'X — a8 — - — Oy

that means expressed in dependencs ttie objective function value is a constant (the
value at our current vertex position) and a suns;ofariables with respective coefficients.
If we have for one a; < 0, then increasing this slack variable — i.e. moving awaynfro
the corresponding constraint and sliding along the haH-tietermined by the remaining
constraints — improves the objective function. If no suekists, we are optimal !

Now assume we have found a constrafix < B; which is going to leave the basis
(as we can increase the objective function value thereblyjenhains to find the con-
straint which blocks this movement (if no such constrainstsx the problem is clearly
unbounded).

X = Ag'Bg is the current vertex, choosing = Ag*Bg — (Ag1).i (this is a point moved
one unit in the direction we have just determined), we canevamv the improving ray
(A=0)

T=xX+A(X'-X) =X -AAgY),

and ask by which other constraipnthis movement is blocked first. We can plug in a point
r(A) on the ray in every constraifit

al (X —A(Agh).) < By
& afxX -\ (Agh).) < By

If af (Agh).i) >= 0 this constraint will never block our movement, otherwise ebtain
the following bound orA:
BI - alTX/
-4l (Agh))
If no constraint gives a bound on our movement, the problamé®nstrained, otherwise
the constrainf which determines the smallest upper bound\as the first constraint hit
when moving alongr’. This constraint enters the basis in exchange for consirain

Perturbation
One needs to show that one can perturb all constraints bypgddime small constant to

the right such that nd + 1 constraints intersect in one point.

Starting Solution

Consider the auxiliary problem mik s.t. a,-Tx—)\ < Bi, A > 0. Take anyd lin.indep.
constraints. Either they already form a feasible solutioatberwise compute their line

of intersection (parametrized k). The smallesh > 0 that is necessary to make a point
on| feasible is determined by some constraint. Take this anditierd constraints and
use them as first feasible basis of the auxiliary problemhéfduxiliary problem has a
solution withA = 0, original problem is feasible and we can also read off afe@sible
basis, 0.w. original problem was infeasible.

0.2 Linear Programming by Prune and Search

0.2.1 Prune and Search i®?

In the following we will first restrict to the two-dimensiohease. Higher dimensions
will be treated at the end of this part.

We are given a se#” of n constraintsaiTx < Bi, xe R? and want to determine the
highest poink* (x;,x5) (i.e. maximizingc"x with c¢™ = (0, 1)) which is feasible or certify
that the set” is infeasible. The optimal solution is determineddsy: 2 constraints, so
in some sense all other constraints are not really impartaritlea: drop more and more
of the constraints of which we can be sure that they do not e¢fie optimum until only
d constraints are left.

Remark 0.1. This strategy is different from the simplex approach, wha&ked out con-
straints can reenter the basis lateron (easy for the prinmalpdex, even in &= 2, for the
dual simplex only for @ 3).

Exercise 2. Give an example fod = 2 and a sequence of valid pivot steps where one of
the two simplex algorithms presented has a constraintriigaamd then reentering into the
basis.

Before we can describe the algorithm let us partitiéh= 7" 1) 77~ where#+ =
{alx < Bi,a2 <0}, and. 7"~ = {&]x < Bj,a2 > 0}. For the further description of the

algorithm it will be useful to define a function

X1) = mMin {Xo:aj1xXy +ai>xo = Bi} — max{xs : aj1Xy + aixxo = Bi
g(X1) jeff{z j1X1 +aj2%2 = Bj} ie,;f+{2 ai1Xy + aiox2 = Bi}

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 5

Clearly if 3x; with g(x1) > 0, the problem is feasible, if suohh does not exist, the
problem is infeasible. The algorithm we present in the feifgy will

e compute the highest (x;,x;) if the problem is feasible and bounded
¢ report if the problem is feasible and unbounded
e compute somg; with g(x;) maximal inR if the problem is infeasible.

Throughout the algorithm we will maintain an intervak (I,r) wherex; of the po-
tential optimal solution or the "least violated” positios contained. At the beginning
| = (—o0,400) or set according to potential vertical constraints (they ignored in the
following).

Pruning Pair all the constraints arbitrarily withiZ ™ and.>#~. Look at one of the
resulting|n/2] intersection points. If some oracle could tell us where thignoum/least
violating solution lies w.r.t. the vertical line throughetintersection point, we could drop
one of the two constraints!

Searching Given some vertical lingé inside our current range, we are interested in the
guestion whether the optimum/least violating solutioroithie left or to the right of. To
determine this, consider the order of all constraintk, amparticular the highest constraint
h* € " and the lowest constraiht € 7. In the following we assume that they are
uniquely defined. We look at the intersection poipts=h™ Nl andp™ = h~nl. We
have several cases to consider:

1. p)f > py i then our problem is infeasible at this position. If thereandh ™ are par-
allel there is clearly no feasible region anywhere and tbh&ation cannot decrease.
Otherwise, the region of feasibility or the region where ¥i@ation is less than at
the current position has to be on the same sideasf the intersection point &ff
andh™.

2. p;,r < py @ our problem is feasible at this position but we have not ssaely found
an optimum solution. But looking at the environment of thersection poinh™ Nl
we can deduce, on which side we might get higher.

The Algorithm Clearly we could call the search step for each of the pairedtcaints,
but as one search step costsime, we will not end up with anything better th@{n?).
So the idea is to use one search step to perform many prurge step

PruneAndSearch (77, (1,r))

1. if || constant, solve trivially

2. partition.Z into 7" \+)

3. pair constraints withiZZ™ and.>Z~ to obtain set of intersection poins

4. for all intersection point® ¢ (l,r), drop one of the defining constraints frog#’
and deletep from P

5. for the remaining intersection points compute tikgimedianm; use the search step
to determine on which side of the vertical medmn= m line the optimum/least
violating solution lies

6. replacel,r) by (m,r) or (I,m) depending on the outcome of the search step
7. prune intersection points which are outside the new range

8. recurse on remaining constraints and new rafgeneAndSearch(z#",(I’,r"))

Analysis Starting withn = |.7#| constraints, the algorithm spendsnp{ime and one
recursive call om’ constraints to solve the problem. How large camb®

Ignoring floors and ceilings, we havg/2 intersection points, at least half of which
fall outside the new rang@’,r’) of the recursive call. That means at leag4 constraints
can be removed fron#”. Thereforen’ < %n and hence we get an overall running time of
O(n).

Exercise 3. Assume that excluding the recursive call the algorithm dpen n work

in one call, and exactly Mth of the constraints is pruned in each step. Give an upper
bound for the running time of the algorithm (no O-notationl¢. solve the recursion
T(n) =c-n+T(3n) with T(1) = 1.

Lecture May, 15th
Recap: Primal/Dual picture, P’'n S in 2 dim.; treatment of degracies

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 7

0.2.2 Prune and Search iR® and higher dimensions

The same approach presented for the two-dimensional gé&isically also works in
3 and higher dimensions. In the following we will briefly s&leta solution of a simplified
version of the problem in 3 dimensions.

We are given a se#”” of n constraintsa,-Tx < Bi, x € R® and want to determine the
highest pointx* (x;,x5,%3) (i.e. maximizingc™x with c™ = (0,0,1)) which is feasible
or certify that the setZ’ is unbounded. The optimal solution is determineddoy: 3
constraints, so all other constraints not defining the optnrare not really important.
Again the idea will be to drop more and more of the constrahighich we can be sure
that they do not define the optimum until ordy= 3 constraints are left.

As a simplification we assume that all constraints are of thmfax < Bj,ai3 > 0,
i.e. all constraints are halfplanes with the feasible negi®low”. Clearly for this special
case, the linear program is definitely feasible (we just hia\go down far enough). The
core idea of prune and search in three dimensions is alreddiited in this simplified
formulation. The general case where all types of conssan¢ allowed can also be
solved but involves some technicalities.

Our algorithm will compute a highest poixit or report that the problem is unbounded.

Pruning Pair all the constraints arbitrarily as we have done in treetimensional case.
Look at one of the resultingn/2] lines of intersection, let’s call it If some oracle could
tell us where the optimum lies w.r.t. to the vertical planetlghl, we could clearly drop
one of the two constraints.

Searching Given some vertical plane, we are interested in the question whether the
optimum solution is to the left or to the right of

To answer this, consider the intersection of all constsamith this vertical planev.
In w these intersections form a feasible two-dimensional tsgpeint problem. Using
the algorithm presented fat = 2 we can solve this problem in @)time and either
determine a optimal point* or certify that the problem is unbounded. In the latter case
we are finished as then our problem in three dimensions isuallsounded. In the former
case, consider the two halfplanies h, that together wittw intersect inx*. Looking at
the slope of the intersection lirg N hy we can easily determine on which sidevothe
optimum lies.

The Algorithm Again, as in the two-dimensional case, we could call thecbestep for
each of the paired constraints, but as one search step c@gtsr@e, we will not end up

with anything better tha®(n?). So the idea is to use a constant number of search steps
to perform linearly many prune steps.

PruneAndSearch (7¢)
1. if |.7| constant, solve trivially
2. pair all the constraints to obtain set of intersectiorsin

3. project all lines irL into thex;Xz-plane and transform them such that half of them
have slope> 0 (these are the linds"), half of them slope< 0 (these are the lines
L™).

4. pair all the lines, always one froia™, one fromL~ and consider the sé® of
resultingn/4 intersection points in the x-plane

5. Query the search oracle with the vertical plape- my wheremy is thex; median
of P

6. W.l.o.g. assume that the first query reports that the aptirfies inx; > m, con-
sider all the intersection poinB with x; < m;. Query the search oracle with the
vertical planex; = np, wheremy is thexo median of all intersection points frof
with x; < m.

7. W.l.o.g. assume the second query returnsxhées in x2 > mp, then for alin/16
intersection points with; < mp, X < My, one constraint can be dropped

8. recurse on remaining constraints and new raRgeneAndSearch(z#")

Exercise 4. Given a set oh lines in the plane by their line equations (all have différen
slopesn = 2k for somek). Describe a procedure to rotate the whole arrangemenes |i
such that half of the lines have slope0, half of the lines slope: 0.

Analysis Starting withn = |.#| constraints, the algorithm spendsnp{ime and one
recursive call om’ constraints to solve the problem. How large camb®

Ignoring floors and ceilings, we havg/2 lines of intersection, and/4 intersection
points. For a quarter of them one of the four defining constsatan be dropped. That
means at least/16 constraints can be removed fro#f. Thereforen’ < %—gn and hence
we get an overall running time of @

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 9

Higher Dimensions Basically the same approach also works in higher dimengshars
the fraction of constraints that can be dropped in one recicsll drops drastically, in
fact doubly exponentially idl. Remember, ird = 2 using one oracle query, we could
decidef} sideness problems, ih= 3, using two oracle queries, we could decidegn
sideness problems. In general, usirfg2oracle queries,zz% sideness tests can be
decided. So for the running time we get

1 d-1
Ta(n) = Gan+Ta(1—) < c-22 'n

10

0.2.3 Seidel's LP algorithm for fixed dimension

In the presentation of the v-shape-Simplex algorithm gheas some ambiguity in the
formulation (which did not affect its correctness, thougBjven some v-shape there
might be many constraints which are violated by the vextexve did not specify which
of these constraints to select into our basis. Roghly spgal€eidel’s LP algorithm can
be regarded as a refinement of the v-shape-Simplex algowithich gives more precise
rules for which violating constraint to choose. His algaomit will also run in Of) time
for fixed dimensiord, but with a better dependence dpnamely Od!n).

For the following presentation we assume:

e the feasible region is non-empty and is contained in thetipesarthant § > 0)

¢ and we are looking for the lowest point in the feasible redibis implies that the
origin is already a v-shape).

e non-degeneracy

The intuition behind the algorithm is that if the dimensienvery small compared
to the number of constraints, most of the constraints arenmportant for the optimum
solution, so when dropping one random constraint, chan@ega@od that the optimum
solution does not change.

A call SeidLPH) to Seidel's LP algorithm returns the optimal solution te #et of
constraintd. It can be stated as follows:

SeidLP(H)

=

. if [H|=1or|d =1 return OPTH)

2. chooséh € H uniformly at random

3. v+ SeidLPH — {h})

4. if ve¢ hthenv«+ SeidLP{H — {h}} |n)

5. returnv

OPT(H) is the optimal solution of the constraintskhand thex; > 0 constraints.
To show correctness, we only need the following small Pritioos

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 11

Proposition 0.2. Let H be a set of constraints,écnH. Denote by OP_y,, the optimal
solution for the set H- {h}, and OPT, the optimal solution of the set H with basig B

Then we havey 1, ¢ h< he By.

Exercise 5.How could infeasibility be detected in the course of the atgm ?

Analysis For the analysis observe that step one can be performechino®Q(d) time
respectively. Picking a random constraint can be don®(ib) time, the violation test
takes O@) time. If the violation test failsO(dn) time and the one recursive call in one
dimension lower is required.

For a call SeidLA{) let d denote the dimension of the constraintddin The crucial
step in the analysis is Nr.4. We are interested how likelythat this second recursive call
occurs. Assuming non-degeneracy, the optimum solutidt isfdetermined by a unique
set ofd constraints. According to our proposition, the violatiesttfails if and only if
the picked constrairt is in the optimum solution oH. As h was chosen uniformly at
random, the probability for that is at mastn. So The following recursion describes the
running time of the algorithm for a call anconstraints in dimensiod:

T(n,d) < T(n—1,d)+0O(d) +%(O(dn) +T(n-1,f-1))
Theorem 0.3. The running time of SeidLP for n constraints in d dimensien3(d!n).

Proof. Invariant:T(n,d) < 2-dIny? , & “ for n+d < x.
Base Casest(1,d) =d andT(n,1) =n.
Induction Step:

T(n,d) gT(n—l,d)-|-d-|-%(n-d+T(n—1,d—1))

d i2 d (d—l)iZ
<2-d!(n—1)z +d+d®+—-2.(d-1!(n-1) ¥ -
i=1! i=1

n—-1)d*

=2.d!I(n— 12\ +d+d2+2 d'(nnl)

i;.. Zd'(n d

: - d ;2
< 2dn '.—+d+d2—2-d!(n 1)d—<2-d!n r
& ! n d! & !

12

Lecture May 20th

Recap SeidLP
We have changed notation, now always optimizing downwagtsming feasible region

is in positive orthant x> 0.
Important Ideas:

1. Given set of constraints H, optimum is determined by dtcainss, i.e. if removing
one random constraint h from H, an#l| large, it is very likely, that the optimal
solution of H— {h} is the optimum solution of H (lucky case). We have bad luck

only with probabilityd.

2. If we have bad luck, still we know that the "unlucky” corasiit h has to be part of
the optimum solution of H; so we are not that unlucky after all

Figure 2: An example for Seidel’s algorithm

Example for SeidLP in R? We consider the example in Figu®® and assume that
always the constraint with the highest index is chosen "oamig”.

SLPh1, hp, hz, ha)

(a) SLPQL,h2,ha)

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 13

i. SLP(y,hp)
A. SLP(h1) = Base Case: returi®
B. P € ho = returnP;
ii. Py¢hs= SLP({hy,ho} |n, = Base Case: returi®
iii. returnP;
(b) P> ¢ hg = SLP({hy1,h2,h3} |n,) = Base Case: retuiifs

(c) returnP;

Exercise 6. Take the same set of constraints in Fig@fgut now assume that the order
of the constraints ik, < hs < h; < hg and always the "largest” constraint in this order is
chosen "randomly”. Follow the SeidLP algorithm step by step

In the "unlucky” case, Seidel’s algorithm uses the fact that optimum solution to
H — {h} is violated byh, to conclude thah is in the optimum solution oH. All other
information, in particular, all other constraints in theiogal basis oH — {h} are thrown
away. Maybe many of the constraints®®T,_,, are also in the optimum solution k.
In fact, this is the basic idea of the algorithm by Matousdiar8, Welzl. By making use
of this additional information, they obtain even subexpdra running time ind.

0.2.4 The LP algorithm by Matousek, Sharir, WelzI
MSW(H, B)
1. if H=BreturnB
2. choosé € H — B uniformly at random
3. B« MSW(H — {h},B)
4. if vg ¢ hthenB' +— MSW(H, pivot(B', h))

5. returnB’

MSW((H,B)) computes the optimal basis for the set of constraih&tarting from a
tentative basis (v-shapB) Correctness and termination holds for the same reasows as f
the v-shape algorithm: the tentative basis improves with gavot step and only finishes
when the current tentative basis is not violated by any caimgt In fact, MSW is also a
variant of the v-shape simplex algorithm.

14

Analysis Similar to the analysis of the SeidLP algorithm, first we arerested in the
probability of a "bad luck” choice for the constraint As we choosén from H — B, this
probability is at mosfﬂ—d. But in contrast to Seidel’s algorithm we can be even a bitemor
precise. Ifd — j constraints of the optimal basis Hf are in the current tentative bafs
the probability of bad luck is bounded %.

So it seems somewhat straightforward to measure progressking into account
the constraints of the current tentative bdibhat are also part of the optimal basis-of
This means in particular hoping thatfitonstraints of the optimal basis are in the b&sis
after the return of the first recursive call and the pivot steere are> f constraints of the
optimal basis in pivdB’, h), i.e. progress has been made in that respect. Unfortunately
that is not true ! In fact it may well be that i there ardessconstraints of the optimal
basis than there were B So counting the constraints that are also in the optimash&s
not a good measure of progress.

Exercise 7. Show an example ilR? where no progress in terms of constraints of the
optimal basis can be measured when executing the MSW digaiie. an example where
B contains one constraint of the optimal solution Blihone. As in the pivot step one
constraint of the optimum basis enters again, we can only $ho progress” inR?, but

no real regression; this is only possible in higher dimemsio

Fortunately, if we measure progress by only counting thossttaints that will never
leave the basis again, we can be sure that progress will be ameve will see in the
following.

Definition 0.4. The hidden dimension kf a basisB w.r.t. to a set of constraintd is
defined as kH,B) =d — [{h e H : vy_gy < VB}|.

Intuitively the hidden dimension denotes the number of tran#s in the optimal
basis that still need to be discovered during the courseeodltorithm.

Lemma 0.5. For any basis BZ H we have{h e H VH_{h) < vg} C B.

Proof. Assume one of thé is not inB. Then we have8 C VH_{h} and therefore/g <
VH_{n} Which is a contradiction. O

Corollary 0.6. All constraints counted ifih € H : viy_g,y < vg} will never leave the basis
again as in the course of the algorithm only higher bases amoantered..

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 15

Let us now consider a call of MSW(B) with hidden dimensiork, i.e. d —k con-
straints inB will never leave the basis again during the course of therdlgn. The
algorithm first picks somé € H — B and solves the remaining problem recursively. If
h is not in the optimal basis dfi, we are done (lucky case). Furthermore none of the
constraints ifh e H : VH_{h} < vg} can be picked (as they are B), so the probability
of "bad luck” is at mostX;.

It remains to argue about the hidden dimensikfH , pivot(H U {h})) that will be
passed to the second recursive call in case of "bad luck”. caum is that the hidden
dimensiork(H, pivot(H U {h})) is randomly distributed between Ok — 1, which means
that basically on the average, the hidden dimension is Halve

We order thel constraints that define the optimum basisiah the following manner:

VG—{hi} S Ve-{hp} S -+ SVG—{hy_i} <VB S Vo—{hg_i1} S -+ S Ve—{hg_1} < VG—{ha}

This order might not be unique, the paramétetetermined by this ordering is unique,
though. As we have sedn...hy are inB and will never leave the basis again. Hence
in our setH — B whereh is drawn from, there might be at mdstonstraints whose choice
yield the "unlucky” case. Ik = d, B has made no measurable progress yet, and all
definining constraints might be 4 — B, if k=0, B is already the optimal basis.

So assuming that we’re unlucHKy,s a random constraint amondgt k. 1. ..hq. As-
sumeh = h; was the bad constraint picked, i.eis random ind —k+1,...,d, then the
first recursive call MSWKl — {h}, B) returns withvyy_g,3. So in particularhy,...,hi_3
are now part of the returndgl. The pivot step bringh; into the basi®’ and throws out
some other constraint (but nonetf,...,h;_1!). Therefore the hidden dimension Bf
after the pivot step isl — i or in other words, the new hidden dimension is random in
0,...k—1.

The only fact we need to consider before we can write downeharsion is that the
hidden dimension is monotone, i.e. BrC F C H the hidden dimension d w.r.t. F
does not exceed the hidden dimensiomaf.r.t. H, ashy,...hy_x € B (and so inF) and
VE—{h} S VH-{n for F CH.

Denote byb(n,k) the expected number of basis calls when calling MSW on a set
H with n constraints and a tentative basisof hidden dimensiork. According to our
discussion above we obtain the following recursion:

1 min{k,n—d}

< _ -
b(n,k) < b(n 1,k)+n_d

(1+b(n,k—i))
i=1

16

For the base case we habv@, k) = 0.
Exercise 8.Show thato(n,k) < 2(n—d).

As any tentative basis has hidden dimension of at rdpgte MSW algorithm gives
an expected running time of G, which is already better than the prune and search as
well as Seidel’s approach. A more elaborate analysis yeelasund of:

1+ b(n, k) = P(vkin(n=d))

Regarding the number of violation tests, observe that fgramputed tentative basis,
we check each constraint at most once with this basis, héeceumber of basis compu-
tations is bounded bgn — d)b(n, k).

In the following we will see another LP algorithm which demses the number of
constraints such which together with the subexponentiahtiqust seen, yields the best
subexponential combinatorial algorithm to solve the Im@agramming problem known
so far.

Example for MSW in R We consider the same problem as in FigeP@assuming that
always the constraint with highest index is chosen "rangtml

MSW({x1 > 0,x2 > 0,hy,hz,h3, hg}, {x1 > 0,x> > 0})

(@) MSW({x1 > 0,%2 > 0,hy,hp,h3}, {x1 > 0,%z > 0})
i. MSW({x1 > 0,x2 > 0,h1,ho}, {x1 > 0,x2 > 0})
A. MSW({x1 > 0,x2 > 0,h1},{x1 > 0,x2 > 0})
e MSW({x1 > 0,x2 > 0},{x1 > 0,x2 > 0})
= base Case: returfx; > 0,x2 > 0}
e (0,0) ¢ hy = MSW({x1 > 0,%2 > 0,h1},{x1 > 0,h1})
= after unrolling return{x; > 0,hs}
B. {x1 >0,h1} € hp = return{x; > 0,hs}
ii. {x1>0,h1}¢hsz=
ii. ...
Exercise 9. Take the set of constraints in FiguP& but now assume that the order of the

constraints ity < hs < h; < hy and always the "largest” constraint in this order is chosen
"randomly”. Follow the MSW algorithm step by step.

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 17

0.2.5 Clarkson’s Algorithms for Linear Programming

The basic idea of Clarkson’s algorithms is to reduce the rarmol constraints that
have to be considered by a random sampling procedure. Wherdblem size has been
reduced far enough, the MSW algorithm is used to solve thall§instances.

Clarkson 1

We start with his first algorithm which repeatedly takes slE®mpf sized,/n until the
optimum has been found.

CL1(H)
1. if |[H| < 9d? return CL2(H)
2. r<dy/n;G«+0

3. repeat

choose randorR € (™)
v+ CL2(GUR)
V«{heH:vé¢h}

if V| < 2y/A G+ GUV

untilV =0

4. returnv

Clearly this procedure computes the optimum solution gledithe subroutine CL2(H)
works as intended. But why is this procedure efficient ? Fastwe will show, the ex-
pected size ofV| is v/n and hence it takes only two rounds in expectation until some
progress is made. Furthermore, in each round at least orst¢raon of the optimal basis
Bopt Of H is added td5 . So the expected number of rounds of the repeat-loop is walind
by 2d.

Exercise 10.Why is there at least one constraint of the optimal basis@¢mé& in each
round ?

Solution: Otherwisevy = Vg, < VB,UGUR = VGUR < VH.

18

Corollary 0.7. For n= |H| > 9d?, CL1 computesywith an expected number of Ga)
arithmetic operations, and an expected number of at rAdstalls to CL2 with at most
3dy/n constraints.

In the following we prove the required Lemma on the expecieel afV of violated
constraints. It will be formulated more general for lateg.us

Lemma 0.8. Let G be a set of constraints in d-space, H a multiset of n caims
in d-space andL < r < n. Then for random R (Fr') the expected size oR\= {h €
H|vGUr violates 1} is bounded by f7.

Proof. Consider the characteristic functiga (R, h), which is 1 ifvgr violatesh, O oth-

erwise. Then .
(7)Eve - 3,3 JelRn

n
~ Y 3 xe(Q@-{hhh)< d:d()
r+1
QE(Zr-:l) heQ Qe%:l)
E(|VR|) < d77 follows immediately. O

Exercise 11.Alternative Proof of the Sampling Lemma (restate lemmaenoese):

Consider the following bipartite graptA, B), where there is a node € A for eachr-
subseR, of H and a nodé € B for each(r + 1)-subseR, in H. There is an edgéa, b) if

and only if, Ry = RaUh andh violatesvg r,. Task 1: What is the meaning of the degree

of a nodea € A in this bipartite graph ? What is the meaning of the averaggegeof

a nodea € A in this bipartite graph ? To determine the average degreei®fitaph, we
count the total number of edges by looking at the nodds ifask 2: What is the degree

of a nodeb € B ? Task 3: Use the results of Task 1 and Task 2 to make a statement about
the average degree of a ver@x A. Why does this prove the sampling Lemma ?

In the algorithm above, we apply this Lemma wits dy/nand therefore ge (|VR|) <
VN
Clarkson 2

This algorithm proceeds very similar to the first one. It chemsamples of sized6 and
computes/r by the MSW algorithm. The expected number of violatggss bounded by
én according to the above Lemma.

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 19

Exercise 12.Proof that in Clarkson’s second algorithm CL2, the expectechber of
violators is bounded b)élan by applying the sampling Lemmadint: ConsiderH as a
multiset ofn elements where a random sample of sidé i taken from.

Instead of forcing these violators for the next iteratioas lpefore) we just increase
their probability to be chosen by assigning a multipliggyto each violatoh. We start
with p, = 1 for all h € H and double it each timleis a violator. The analysis shows that
for the constraints of the optimal basis, their multipiestincrease so rapidly that after a
logarithmic number of rounds they are chosen with high podldg In the following we
view H as a multiset, each with multiplicity pn. H(H) = Shen Hh. The random sample
Re () is also a multiset.

CL2(H)

1. if |H| < 6d? return MSWH)
2. 1 + 602

3. repeat

choose randorR € (™)

v+ MSW(R)

V< {heH:v¢h}

if V| < z5M(H) thenVh €V : py < 24,

untilV =0

4. returnv

From the above Lemma and Markov's inequality it follows ttied expected number
of attempts to get a small enoughis at most 2. We will now bound the number of
successful iterations wheké gets reweighted.

Lemma 0.9. Let k be some positive integer. After kd successful itematwe have
2 < u(B) < ne/®

for the optimal basis B of H.

20

Proof. Every successful iteration adds a weight of at r@%q;t(H) to H, therefore we get

(B) < H(H) < (L4 3k < nd”?

For the lower bound observe that in each round, at least ot @folators is a constraint

in B. That means there is a constraint that has been doubledstk laes hencey(B) >

2%, As 2> e!/3, for large enouglk the lower bound exceeds the upper bound, hence the
solution must be found before. O

Lemma 0.10.For n= |[H| > 6d?, CL2 computesyywith an expected number of Gfdogn)
arithmetic operations, and an expected number of at ridstn calls to MSW with at
most6d? constraints.

Proof. Fork = 3Inn we get ¥ = n3/109¢ > n2 — ng’/3, Therefore there are at most 2
3dInniterations in expectation. Each iteration costsl@)(@rithemtic operations and one
call to MSW. O

0.2.6 Plugging together CL1, CL2, and MSW

We got a running time of @@2 + nd)e®VdInMy for MSW. Plugging this into the
running time of CL2 (for= O(6d?)), we obtain O¢2nlogn+ €°(d"%|ogn). Plugging
this into CL1, we get finally

Theorem 0.11.The optimal nonnegative vertex v of a linear program with nstoaints
H in d-space can be computed by a randomized algorithm witbx@ected number of
O(d?n+e°Vdind)) steps.

0.2.7 Summary

We have seen several algorithms for solving linear prograinise form max'x s.t.
Ax< b,

Exercise 13.All of the algorithms assumed that the linear programmingiidations are
of the form maxc'x s.t. Ax< b, some of them even that > 0. What can we do if we
are only able to solve problems of the form n&Ex s.t. ATx < b, x; > 0 but our given
problem instance looks as follows:

1. minc'™xs.t. ATx<b,x >0

2. maxc'xs.t.ATx>b,x >0

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 21

3. maxc'xs.t.ATx=h,x >0
4. maxc'xs.t. ATx< b, x €R

Let us briefly the different algorithms that we used to solMaear program of the
form maxc' x s.t. Ax< b.

Primal Simplex
The main ideas of the primal simplex are:

e current solution is maintained as a setldin.indep. constraints and their intersec-
tion point

e the current solution is always feasible

e as long as we can improve locally, we gowe improve in each step ! if we can't
improve, we are optimal

The primal simplex algorithm starts at a a corner of the tdasegion.

V-shape orDual Simplex

For the same set of constraints the Dual or V-Shape simplewfe a different strategy.
The core ideas are:

e current solution is maintained as a setidin.indep. constraints and their intersec-
tion point

e the current solution is always optimal for a subset of cansts< current basis is a
v-shapes ¢ can be represented as as conic combination of the constoagfihing
the current basis

e as long as there is a violated constraint, we update therdusdution=- we get
worse solution in each step ! if there are no violations, veecgtimal

The dual simplex starts with a locally optimal solution fvape).

In fact, the structure of the dual simplex algorithm couldoabe stated as a linear
program — the so-calleDual Program

minb'ys.t.Aly=c,y>0

22

The constraintd"y = ¢, y > 0 correspond to the invariant of the dual simplex that we
always have a v-shape as current solutibhy expresses the height of the current v-
shape, sincg = (AL)~1c and thereford"y = bT (AL) ~1c = (Ag'h)Tc = XTc, whereAg

is the submatrix corresponding to the constraints that ééfia current v-shape antithe
intersection point of those constraints. We have seen tiratmzing the height of the v-
shape yields the same solution as aiming for the highesblegsoint, and hence our dual
program directly formalizes the invariants and the goahefdual simplex algorithm.

Then, the primal simplex on this program is the dual simptstlie original program.
In general, one can easily derive the dual program from timegbi(and vice versa as the
dual of the dual is the primal). If the primal is of the form malx, the dual is of the form
min b"y and the following relationship between variables and gaitsts of primal and
dual hold:

H Primal: maxc' x ‘ Dual: minb'y

i-th Variable in (Px= i-th Constraint in (D) Xi >0 Aiy > G
X €R Aiy=Ci

X <0 Aiy< G

j-th Constraint in (P} j-th Variable in (D) Aj X > bj yj <0
Aj X =Dbj yi R

Aj X < b yj =0

Furthermore unboundedness of one of the problems implieasibility for its dual.

Exercise 14.We have seen the equivalence for a primal program of the ateifidrm (PS)
maxc'x s.t. Ax< b and its dual program of the standard form (DS) rolly s.t. ATy =
b,y > 0 via the primal and dual simplex algorithm.

Show that the dual of (DS) is again (P8int: First transform (DS) such that it is
of the same form as (PS) and apply the equivalence that wedware Transform the
outcome such that the original problem (PS) is obtained cKinether you would have
obtained the same result when applying the rules of the tdizge.

For both, primal and dual simplex, no polynomial time bouni@&nown. An obvious
bound is exponential, as no basis is revisited (can be exddiar both primal and dual
simplex).

An Example for Duality (put on exercise sheet)

In the following we will give a small example for duality arid i'real-world” interpre-
tation. The goal of our problem will be on one hand to miningest of healthy nutrition

8 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 23

(primal/consumer’s viewpoint) and on the other hand to mméeze profit when selling
artificial nutrition products (dual/producer’s viewpagint

In our simplified model a human being needs per day at leastiid af carbohydrates,
7 units of proteins and 5 units of fat to keep a healthy dietesehingredients can be
acquired by eatingneat(one unit of which contains 1 unit of carbohydrates, 3 units o
proteins and 5 units of fatfofu (2:2:0), bread (4:1:0) orcheesg(1:4:2). These food
items can be bought in the local supermarket for 7 EUR perainiteat, 3 EUR/Tofu, 2
EUR/Bread, 4 EUR/Cheese. The goal is to minimize the daiy oba healthy nutrition.
So we can set up the following linear program to solve thid@m:

min - m + 3% + 2% + 4%

st. Xm + 2¢ + 4% + Ix > 11
Hm + 2% + D + X = 7
5mn + O + Oxp + 2% > 5
Xi >0

On the other hand consider a producer of artificial nutrifgpoducts who produces
pure carbohydrate/protein/fat pills and wants to deteeriire maximum price he can
ask for such that people who are only aiming for a minimal cbst still buy his pills
instead of "ordinary” food. Letc,yp,Yr be the respective prices per unit of carbohy-
drates/proteins/fat. As constraints, the producer cannasghat the prices should be
determined such that for any "natural” food item, like meiaits cheaper to buy his pills
to get the same amount of nutrition. Furthermore he wantsatxinmze the profit he gets
from one customer who wants to keep his healthy diet (andctisgomer needs 11 units
of carbohydrates, etc.) . So he will set up the followingéinprogram:

max 1k + 7yp + Syr

st. M + 3y + 5y <7
2yce + 2% + Oy <3
dyc + 1yp + Oy <2
yj =20

which happens to be the dual of the linear progrm for the eneto By strong duality,
we know that the maximum profit the producer can achive isvademt to the most cost-
effective diet-plan for the customer.

Prune and Search

The main ideas of the Prune and Search approach are:

24

e as the optimum solution is determined Byconstraints only, most of the con-
straints are redundant

e remove a constant fraction of constraints in each roundt{bra depends on dimen-
sion, though)

The running time of the prune and search approach is lingdwreimumber of constraints
but doubly exponential id.

SeidLP / MSW

The main ideas of the SeidLP/MSW are:

e if n>> d dropping one constraint at random and solving remainin@lpro most
of the time gives optimal solution

e in case of "bad luck”, we can use some information from the fiedl to get to
optimum

e SeidLP: only use fact that violating constraint has to beptial basis
MSW: same as SeidLP, but also make use of other constraattard also in opti-
mal basis

e MSW is a specific instance of the dual simplex

The running time of the SeidLP and MSW is linear in the numideramstraints. The
dependence od is exponential for SeidLP, but subexponential for MSW whembined
with Clarkson’s algorithms.

Clarkson’s algorithms

The main ideas of the Clarkson’s algorithms:

e reduces the size of the linear program by random sampling@ndnstraint set

¢ if one takes a random subset of the constraints, the expeatater of violators is
not too high and dependent on the size of the subset

The running time of Clarkson’s algorithms together with M$Ainear inn and subex-
ponential ind; the so far best known bound for simplex-type algorithms.

Give Overview; Primal/Dual Simplex, Prune and Search, SeidMSW, Clarkson,
running times, primal/dual LP

8 0.3 APPROXIMATION ALGORITHMS 25

0.3 Approximation Algorithms

0.3.1 Cardinality Vertex Cover

A simple Example Consider a number of cities connected by a system of roadshwhi
are are to be used by cars which only have enough fuel to traeebad segments before
requiring a refuel.

Koblenz

Frankfurt
uernberg
KarsI

Stuttgart
Ulm

Muenchen

Figure 3: The Gas Station problem

Problem: How to make this network accessible by car, i.e. how to plasesgations
such at some cities such that a car driving around never runefduel, irrespectively
which tour it takes. the goal is tminimizethe number of gas stations.

Vertex Cover Problem: Given a graplG = (V, E) with a weight functiorc: V — R
on the vertices, determine a £€ V of minimum weight such that for any edge at least
one of its endpoints is i®. If c(v) =1 Vv eV we call this theCardinality Vertex Cover
problem.

The Cardinality Vertex cover expresses our Gas stationl@noln an abstract way.
Unfortunately the CVC is NP-complete, and even worse, omestew that under the
assumption thaP # NP, no polynomial time algorithm can approximate the problem
better than 11666.

Algorithm Proposal
1.C«+0

2. whileE #0do

26

(a) choosee= (v,w) € E

(b) C+CuU{u,v}

(c) remove all edges adjacentupv
3. od

4. returnC

Lemma 0.12. The above algorithm yields Z-approximation to the cardinality vertex
cover problem, i.e|C| < 2|Copt|, where @pt denotes the optimal, i.e. smallest set that is
a vertex cover for G.

Proof. The algorithm picks a set of non-adjacent edges — a so-caidhing This
matching ismaximal i.e. no further edge can be added. Consiefgit; clearlyCopt must
contain at least one vertex for each edge of the matching|Gegt| > |C|/2 or in other
words|C| < Copt- 2.]

Can we improve ?

Maybe the algorithm is a lot better than its analysis, anfopers much better in reality.
Unfortunately that is not true. Consider the complete hifgagraphB,,. A maximal
matchingM always has size, C computed by our algorithm therefore.Zppt consists
of the vertices on one side only, and therefore hasrsize our approximation guarantee
is tight for this example.

In our algorithm we used the size of a maximal matching as &idwound for the
optimal solution; so maybe we can design a different algoritvhich computes a cover
C which is closer to the size d¥l and therefore improve the approximation ratio. e.g.
IC| = %’|M |; unfortunately this does not work either.

Consider the complete grapd, n, n odd. A maximal matching can have size at most
-1, an optimal cover has size- 1, though. So using matching as a lower bound we will
never be able to show a better bound than 2.

Exercise 15.Consider the following factor 2 approximation algorithn fbe cardinality
vertex cover problem: Find a depth first search tree in therggraphG and output the
set, sayS of of all the non-leaf vertices of this tree. Show tl&as indeed a vertex cover
for G and|S < 2|Copy. Hint: Show thatG has a matching of siZ&|.

8 0.3 APPROXIMATION ALGORITHMS 27

0.3.2 Some Notation

‘ Notion H In our example
Optimization Problenfi "min. vertex cover in graphs”
Instance<n "all graphs”

feasible solution§(1) of an instancé € {n || "for a graph & instance) all vertex covers

objective functiorp: (1) —» R "I(1)| = |V| cardinality of vertex cover”

optimization criterion: MIN/MAX "MIN”

Goal VI €&n, findse (1) called OPTI) s.t.
(MAX) @(s) > @(s)vs € (1)

(MIN) @(s) < @(s)vs € (1)

Typically this is hard for most problems (in particular reabrld!); so we are also
happy withd-approximations; i.e. an Algorithm such théte &n, we get ar§(1) with:

(MAX) @(s) > d-@(s)vs € §1),5€0,...,1]
(MIN) @(s) < 3-@(s)vs € (1),5> 1

We call such an algorithrd-approximation algorithm.

0.3.3 Precedence Constraint Scheduling

Example Assume you want to assemble a car from its numerous partskn@w where
each part belongs to, but still you cannot just start assaglls some parts have to be
put together before others. These dependenciekke for example you do not want to
mount the engine into the car before the engine itself has hesembled from its sub-
parts. Furthermore you haweengineers whose job is it to put together the whole car, so
at any given point in time, at most tasks can be worked on simultaneously. For reasons
of simplicity we assume that each task takes one timeunie gdal is to complete the
assembly of the car as soon as possible.

More formally the problem can be expressed as a directediagraphG = (V,E)
where each nodec V corresponds to a task, and there is an directed édge if task v
has to be completed before task We are looking for a function (schedul8) V — N,
which assigns each task a time at which this task is workedwatnunder the condition
that:

28

e Vk: [{v:S(v) =k}| < m("at no point in time no more tham jobs are currently
being worked on”)

e V(v,w) € E, S(v) < S(w) ("precedence constraint is fulfilled”)

The goal is to minimize m&S(v) : v € V}, i.e. the last point in time when tasks are
being worked on.

For simplicity we assume that there is a unique source sodeich has precedence
before all other tasks that have no incoming edge.

An Algorithm

1. Vv €V compute the longest path frogto v, call this distance the label of

2. letd; be the number of vertices labelled withuse the first(%} time units for
vertices at level 1, the ne*%} time units for level 2, and so on ..

Lemma 0.13. Let L be the length of the constructed schedule of our algorjt.e. L=
max S(v) : ve V}, then we have K 2- Lopt.

Proof. Lett be the max. level of a node, then we have

dy 0ot
2. Lopt>%: 1+ 2$ +0d;

di+dpt--- 40
3. L <A 4t
And therefore clearly < 2-Lopt. O

So this simple algorithm yields a 2-approximation. One chowsthat under the
assumption tha® #= NPt is not possible to get a polynomial time algorithm thatigsea
better approximation guarantee that84

The 4/3 Lower Bound We will use the following NP-hard problem to show that no bet-
ter approximation guarantee thay34for the Precedence Constraint Scheduling problem
can be obtained unlegs= NP.

k-Clique: Given a graplG(V, E) and an integek, decide whether there exists a clique of
sizekin G.

8 0.3 APPROXIMATION ALGORITHMS 29

The idea will be as follows: For a given Instan@&V, E), k) of thek-Clique problem
we construct an instance of the precedence constraint siohggroblem which

e can always be solved in 4 time units
e can be solved in 3 time units if and only® contains &-clique

Therefore, if a (polynomial-time) approximation algontHor the PCS problem had an
approximation guarantee better that84it would have to report the 3 time units schedule
for graphs containing k-clique=- we would have found a polynomial-time algorithm for
a NP-hard problem.

The set of tasks will consist & UE UF, U UFs, whereF, are filler tasts for step
The precedence constraints are:

e v— eif vis one of the endpoints @& (there will be only's in the first round)
e all tasks inF; before all tasks i1, i € {1,2}
Furthermore we choose the number of machmesd|F as follows:

1. m=k+ |F| (= infirst round, onlyk 'real’ things fromV can be processed)
k(k—1

2. m= R+ (n— k) + &b

3. m=|E|— KD 4Ry

4. |F|>1

Lemma 0.14. The constructed precedence constraint scheduling probsemalways be
processed i@ rounds.

Proof. First round:F; andk nodes olV. Second roundk, and(n— k) nodes of. Third
round: F3 and some of the edges. Fourth round: remaining edges. O

Lemma 0.15. If there exists a clique of size k in G, we can process the pmobh 3
rounds.

Proof. First round: Thek nodes of the clique anB;. Second round: The edges of the
clique and the remaining nodes aRd Third round: The remaining edges aRs O

Lemma 0.16. If we can process the problem3rounds, there exists a clique of size k in
G.

30

Proof. A 3-round solution has to processthings in each round. In the first round, only
vertices andr; can be processed. M be the set of processed vertices in rounfi/i], =

k. In round 2 one has to proceBg the remaining nodes amd— || + (n—k) = k(k—z’l)
edges. But that many edges are only allowed to be proces$dhdyiare all between the
vertices|V’|, i.e.V’ has to be a clique. O

0.3.4 Independent/Stable Set

Example Consider the following problem. Given a collection of caslin the plane —
possibly intersecting — select a subSeif these circles such that none of the circleSin
intersect. Choos8as large as possible.

Figure 4: A collection of circles, some of them selected)red

We can formalize this problem as a graph problem by assogiativertex with each
circle and putting an edde,w) if the corresponding circles intersect. The goal is then to
find a large subset of vertices such that none of them is coethéy an edge.

Independent/Stable Set ProblemGiven a graptG = (V,E), determine a s C V
of maximum cardinality such thav,w € S (v,w) ¢ E.

Unfortunately this problem is not only NP-hard but basicalhapproximable, so no
polynomial time approximation algorithm with= nl~¢ for any e > 0 is known unless
some complexity classes coincide which are believed ndttie.problem is equivalent to
the maximum clique problem on the complementary graph (whight be better known
as a hard problem).

Still this does not mean that for practical purposes thermibope to get good solu-
tions for independent set problems. If the underlying griagé some special properties,

8 0.3 APPROXIMATION ALGORITHMS 31

one can even show some theoretical guarantees.

The most obvious idea for a heuristic for the stable set prabh a graph — especially
if it is a graph of bounded maximum degree — is to use the faligwreedy approach:

1. S« 0

2. v+ some vertex irG with minimum degree

3. SU{V}; G+ G—{V} —Umy)ceW

4. if G#0goto 2.

The algorithm always takes the vertex with smallest degneéleadds it to the stable set
Sdetermined so far, then removes this vertex and all its t@gts and repeats. Clearly,

the output of this algorithm is a stable seGn Furthermore if there is an upper bound on
the degree of the vertices &, we obtain:

Lemma 0.17. Let G= (V,E) be a graph with maximum degree Then the greedy
algorithm computes a independent set of size at least OPT.

Proof. Exercise ! O

For example, it sometimes helps to consider the ILP formanaif the problem:

max YA (0.1)

{uvicE: ywu+w <1
ueV: vy, €401}

Of course, solving this ILP is still NP-hard for most graplasges, but the linear
relaxation can be solved in polynomial time and possiblylusebtain good solutions in
practice.

Lecture July, 3rd
Recap: Cardinality Vertex Cover, Precedence Constraine@ding, Indep./Stable Set,
APX-Algs.; non-approx proof for PCS

0.3.5 The Metric Travelling Salesperson Problem

Given a complete undirected gragh= (V,E), V = {v1,Vo,...,Vn} with costsc; for
each edgdi, j} andaj + Cjk > ck, determine a closed path= VioVi, . .. Vi,_, Vi, Such that
Uvi; =V andy j—o..n-1Ciji;, 10 IS Minimized.

32

This problem is a classical NP-complete problem, and evesayainless # NP,
there is no polynomial-time approximation scheme for thabpem.

In the following we will first describe a 2-approximation atigen improve this to a
1.5-approximation algorithm.
A 2-approximation
1. Compute a minimum spanning treeGn
2. Double all edges of the tree and construct a closed tourdapth-first search
3. Eliminate reoccurrences of nodes
Elimination of reoccurrences of nodes Letvi;,Vi,,...Vi;,..., Vi, ... be the current tour,
k minimal with vi; = v;,, j <k (the first repeated node). Then repeat the subsequence

Vi 1VigVig,, DY Vi, 1Vie,,- We still have a tour through all nodes and the cost cannot in-
crease since the triangle inequality holds.

Clearly the minimum spanning tree is a lower bound on the eban optimal tour.
The first initial tour constructed therefore has at mostétie weight of the optimal tour
and is only decreased during the elimination step&-Approximation.

Lecture July, 8rd
Recap: 2-APX for TSP
A 1.5-approximation

One can improve the above approach as follows:

1. Compute a minimum spanning tréan G
2. LetVyqq be the set of vertices with odd degré¥é,q| is even!)

3. Construct a matchinil of the vertices in/,qq of minimal weight, add them to the
tree edges

4. Construct a closed path on the tree and matching edges
5. Eliminate reoccurrences of nodes

Lemma 0.18. The weight of M is at most half the weight of the optimal TSP ito(.

8 0.3 APPROXIMATION ALGORITHMS 33

Proof. Consider the optimal TSP tour i and cut it at the nodes Myqq into several
sequences. AB/yqd| even, we have an even number of sequences. Consider the set
consisting of the 1st,3rd, 5th, ...sequence and th®& semnsisting of the 2nd, 4th, 6th,
...sequence. Eithe& or B must have weight at most half the weight of the optimal TSP
tour in G. Assume this isA. Then replace each chosen sequence by one direct edge
connecting its endpoints. This edge is not longer than theesgce due to the triangle
inequality. The set of all these edges form a matching fovréices inVyqq Of weight

no more than half the weight of the optimal TSP touGn O

Other Variations of the problem

e Gisageometric graph, i.e. the vertices correspond to a getiofs in the plane and
the edge weights to their respective distances. For thes ed$+€) approximation
scheme exists.

e Gis adirected graph, possibly with asymmetric edge costsdiisfying the trian-
gle inequality. For this case, ad®9logn approximation exists.

e For arbitrary graphs, no approximation is possible unfegsNP.

e One can also consider tiaximizationversion of the problem.

Exercise 16.Show that the TSP problem on graphs with symmetric edge bast®t sat-
isfying the triangle ingequality cannot be approximatethum any factorHint: Assume
there is a polynomial-time approximation algorithm whiangutes a solution within a
factor of a of the optimal solution (wheret does not need to be a constant). Use this
approximation algorithm to solve the Hamiltonian Cyclelgem.

0.3.6 Scheduling of independent tasks

Given a set of jobs with associated processing timgsvs, ...w, and m machines,
assign each job to a machine such that the makespan is maamie. determiné&:
{1,...n} — {1,...m} with max 3 .gi)—kWi is minimal.

Consider the following simple approximation algorithm:

1. Sort the jobs in decreasing size, vWg.> W> > ... > Wy

2. Schedule the jobs one after another, asgigio the machine which is least used at
that moment.

34

LetL be the length of the computed schediigy the length of the optimal schedule.
We claim:

Lemma 0.19.L < (5 — 5=)Lopt

Proof. We will use induction oven, the number of jobs. Clearly, the claim holds for
n=1.

n— n+ 1. Look at the schedule and in particular the job 1. If it finishes before
timeL, consider the problem of the firsttasks. Here we have

4 1 4 1

L(W].: .. :Wn) < (é - 3_rn)LOpt(W17 ce :Wn) < (é - 3_rn)L0pt(W17 .. 7Wn7Wn+1)

Now assume that job+ 1 is completed at timég, i.e. jobn+ 1 determines (maybe
with others) the makespan of the computed schedule. Ob#eatep to timeL —wy,_1,
all machines are fully loaded, thereforg +w, + ...wn > m- (L —wyy1). Furthermore
we havel g > M2t thil Hence

Wi +Wo ... W, W, +Wo ... W, 1 1 m—1
L<— 2m T Wyq = ! 2m n+(1+a—ﬁ)wn+1<Lopt+ o Wnt

Now consider two cases:

m-1 11 .
Case 1 ""==Wn; 1 < (3 — 35)Lopt: OK

_ . L .
Case 2 "=tw, 1 > (3 — 3h)Lope This meansns1 > -3 < Lopteaw,,,, SO the optimal

schedule processes 2 jobs on each machine. Assume w.l.o.g. thatl = 2m
(otherwise add jobs of length 0). Our algorithm pairs jolith job woy_j+1 On
machinei, 1 <i < m. We claim that this schedule is optimal. Assume otherwise
and letig be the machine that maximizes+won—i+1. The optimal schedule has to
process 2 jobs on each machine, so let us ask with which ahelges the optimal
schedule pair jobs,2,...,ig ? Clearly it cannot pair them amongst each other; in
fact if the optimal schedule is shorter, it has to schedulthakeig jobs with some
jobs after job 2n—igp+ 1. But there are onlyp — 1 of them. Hence one of the first
io jobs has to be paired with a longer job and hence yields a ewgarlmakespan.

O

So we have essentially g 3-approximation algorithm. But maybe we can do even
better ...

8 0.3 APPROXIMATION ALGORITHMS 35

An approximation Scheme

Basic idea: schedulen,...,w, optimally using a brute-force approach (@), then
complete with the above approximation algorithm. We claiefollowing lemma:

Lemma 0.20.L < (1+ T)Lopt

Proof. Let L’ be the length of the optimal schedule fai,...,w¢. If L' =L we are
done, otherwise lef > k be a job that determinds Then we havé = L —wj +w; <
Lopt+Wit+1 < (1+ %‘)Lopt. The last inequality holds becausg< Wi, 1 and at time. — w;

all machines are used and hence also at fimew,1. So we getlgpt > Wil*r'ﬁ""k“ >

k+1)w
(r11k+1_ O

Using this scheme, we can get as good an approximation as we \War a given
€ > 0, we choosé such thaty < . Hence fork = [m/e] we obtain an algorithm with
L < (14 ¢€)Lopt and a running time of ®10n§ +nlogm). This is called arapproximation
scheme

0.3.7 The Knapsack problem

Imagine you are a thief and on a burglary trip. You have edtarkouse with a lot of
valuable things, but unfortunately more than you can cargour knapsack. So there are
n items each of which has a valgeand a weighty;. Clearly your goal is to steal a set
| C {1,...,n} of things which maximizes your profit, i.e. mBKl) = max3Jic ¢ under
the constraint that all the items fit in your knapsack of $iziee. w(l) = ¢, w; < k. We
assumes;,wi, k e R.

We will first describe an algorithm which solves the problexactly. Conceptually
we fill a table of sizen x copt, Where at positionv(l, c) we store the minimal weight (and
the content) of a knapsack of casising only a subset of items frofd, ..., | }. So clearly
w(1,c) =ws for c = cl, w(1,0) = 0 andw(1,c) = « otherwise. The value of(l,c) can
then be determined agl,c) = min{w(l — 1,c),w(l —1,c—¢) +w }.

After filling the table it remains to find the maximalwvith w(n, c) < k. This is in fact
the optimal solution. The running time of this algorithm g tsize of the tabla) - copt.
Note that this is only gseudo-polynomiahlgorithm as it depends on the size of the
input/the optimal solution.

This approach is calledynamic programmingnd is a very useful paradigm that can
be applied to many other optimization problems (at leastagaoutine).

36

Exercise 17.In the lecture you have seen a dynamic programming appreathd knap-
sack problem which one by one computed the 'lightest’ subsgéms{1,...,I} whose
value was exactlg. Another approach would be to compute one by one the mostkdu
subset of itemg1,...,1} whose weight is exactly. Describe such a scheme in detail and
analyse its running time.

An approximation Scheme

In the follwing we will describe a approximation scheme tdk run in polynomial time
and can achieve an arbitrary good approximation to the atirsolution.

1. Choose a scaling fact&ec N
2. Determine the optimal solutidhfor the modified problem with profit CSiJ

3. Returnl’

We now want to bound the obtained solution in terms of thenagitsolution set for the
original problem.

L:Zci:S-Z(LSJ+s. :SZ +S-Zsi

icl’ icl’ icl’ icl’

Z SZ = Zg' SZE,/LOpt—Sn

So if we choos&such thatl_i <g i.e.S= LSL""‘J we getl > (1—¢€)Lopt With a running
time of O(N- Copikal) = O(N- “L) = O(n?/¢).

This is called &ull approximation schemas the dependency orfelis polynomial
(compare to the approximation scheme for the schedulingd&Ependent tasks problem;
there,)¢ appeared in the exponent !). Still, there is a slight problgth the choice of
S, aslgptis not known in advance, of course.

Exercise 18.Consider the following greedy algorithm for the knapsaaipem:

1. Sort the items according to their profit-to-weight ragiow;.

2. Pick the items one-by-one starting with the highest ptofiveight ratio, until the
knapsack is full

8 0.3 APPROXIMATION ALGORITHMS 37

Can you prove a constant approximation guarantee for tgarigthm ? If so, what is it ?
If no, why not ?

Exercise 19.Consider the following modified greedy algorithm for the gsack prob-
lem:

1. Sort the items according to their profit-to-weight ragiow;.

2. Pick the items one-by-one starting with the highest ptofiveight ratio, until the
knapsack is full

3. Return the current knapsack or the most profitable sirlglaent that fits into the
knapsack, whichever is more profitable.

Prove that this algorithm is a®-approximationHint: Consider the fractional version of
the knapsack problem where items might be selected fradtjon

The Nemhauser/Ullman algorithm (Presentation due to Beigi/6cking)

In the following we present a different method to solve thagsack problem exactly due
to Nemhauser/Ullman. Their algorithm is based on the naifgrareto-optimakolutions.

A solutionl’ C {1,...,n} is calledpareto-optimabr adominating setif Al” C {1,...,n}
with w(1”) < w(l") and p(1”) > p(l’) ("there is no more profitable solution of no more
weight”). A setl’ that is not a dominating set cannot be optimal for the kndpgaablem,
regardless of the specified knapsack capacity.

The following algorithm computes the sequence of domimggdits. Fore {1,...,n},
let S(i) denote the sequence of dominating subsefd.of ., n} in increasing order of their
weights. GiverS(i), S(i + 1) can be computed in the following way. First duplicate all
subsets ir5(i) and then add item+ 1 to each of the duplicated sets. So we obtain two
ordered sequences of sets. We merge the two sequences (asg@a sort) and remove
dominated subsets on the way. The result is the ordered seg8g + 1) of dominating
sets of{1,...,i+1}.

For the purpose of illustration and a better understandatgis take a different view
on this algorithm. For € {1,...,n}, let f; : R — R be a mapping from weights to profits
such thatfi(t) is the maximum profit over all subsets i, ...,i} with weight at most.
Clearly fj is a non-decreasing step function changing at weights thraéspond to dom-
inating subsets. In particular, the number of step§ equals the number of dominating

38

sets over the items ifi1,...,i}. In the algorithm by Nemhauser/Ullmaf,,; is then
determined by the upper envelop fpfand f; shifted by the vectofwi, p;).

So what is the running time of the Nemhauser/Ullman algorith S(i + 1) can be
computed in time linear ifS(i + 1)|, i.e. linear in the number of dominating subsets over
the items 1...,i. As the optimal knapsack is one of the subsets in th&{isf, generating
S(n) solves the knapsack problem exactly.

Theorem 0.21.For every i€ {1,...,n} let ¢(i) denote an upper bound on the number of
dominating sets over the items1n...,i. Then the Nemhauser/Ullman algorithm com-
putes an optimal knapsack filling in time(£i=" 1 q(i)). If we have @i + 1) > q(i) this

is O(n-q(n)).

In the worst-case, the number of dominating set(&") (the problem is NP-hard
after all). But one has observed that for random instancéseoproblem, the number of
dominating sets is rather low and therefore the NemhauBerdd algorithm runs very
fast. Only recently Beier/V6cking could actually provesthiehaviour theoretically. They
show that for arbitrarily chosen weights (by an adversanyg) profits drawn uniformly at
random from[0, 1], the expected length & is O(n®) and hence the Nemhauser/Uliman
algorithm runs ir0O(n%). In fact they prove an even stronger result for arbitranppility
distributions.

Theorem 0.22. For arbitrary weights and profits chosen uniformly at randem0, 1],
the knapsack problem can be solved exactly in expected t{nfg.O

Details of analysis left out

Lecture June, 15th: Recap: Knapsack, in particular Nemballiman; state result
by Beier/Voecking

0.3.8 Set Cover

Consider the following problem. Given a univetdeof n elements, a collection of
subsets ofJ, § = {S,...,}, and a cost functior : § — Q*, find a minimum cost
subcollection ofS that covers all elements of.

In the following we will see two algorithms for this problenhigh both rely (at least
in the analysis) on the integer linear programming (ILPpfafation of the problem and
its dual. How could we formulate the set cover problem as &L

8 0.3 APPROXIMATION ALGORITHMS 39

min g Xs* Cs (0.2)
K}

ueU: ZSXS >1
ue

Ses: Xs € {0,1}.

Solving ILPs in general is quite hard, so one often consittex4.P relaxation, where
the integrality constraints are dropped, here we get tHeviwhg fractional covering LP

min gxs-cS (0.3)
S
ueu: sz >1
UES
Ses: Xs >0

Of course, this relaxation might allow better (i.e. cheapautions) as the integral
problem, so this only yields lwer bound in terms of the cost of the solution. Consider
the following exampleU = {e, f,g} andS; = {e, f}, S = {f,g}, Ss = {e g}, each of
unit cost. An integral cover must pick two of the sets for at@d®. But picking each set
by an extent of 12 yields a feasible fractional cover of costz3

We have learned that every LP has its dual which in this caseslas follows:

max S (0.4)

Ses: u;yu

ueu: Yu >0

N

Cs

This LP describes a packing problem, where the goal is to ag&cknany elements
from the universe such that none of a certain number of ssis&iverpacked’. We have
seen a very similar LP before for the stable set problem, lwisi@lso a special instance
of a packing problem. In fact, set cover and packing probleendaal to each other.
Furthermore, we have learnét,cy Yu < 5 s XsCs for all feasible solutions,y of the
two LPs.

A greedy algorithm

The following greedy algorithm computes a cover (not neaelgsoptimal):

40

1.C«+0
2. whileC=#U do

¢ find the most cost-effective set in the current iteratioy,Sa

cos{S)
IS-Cl”

e pick S(xs= 1) and for eaclu € S—C, set pricgu) = a (yu =)
e C+—CuUS

o leta = i.e. the cost-effectiveness Gf

3. output the picked sets

Lemma 0.23. The greedy algorithm achieves an approximation ratio gf H

Proof. We show the approximation ratio by showing tlxaandy as set by the greedy
algorithm form feasible solutions to the set cover and paghkiP andHn - 5y Yu =
2 Sc.5 XsCs.

Feasibility ofx follows from the description of the algorithm. Equally dlesthat at
all timesHn - 3 ycu Yu = S s XsCs holds. So it remains to prove that for evedy S, the
respective packing constraint in the dual LP is satisfied.

Sort the elements d according to when they are covered during the course of the
algorithmus, ..., u.. Consider the iteration when our algorithm covers elenserit this
point, Scontains at leak—i + 1 uncovered elements. Theref@eould coverg at this
time at an average cost of at masf (k—i+ 1). As the algorithm always picks the most

cost effective set, we ggt < Hinﬁil So overall we get

! _Gs (1+ 1 +1)_H|C<C
2% sp G AT

O

In the greedy algorithm, the (I)LP formulation was only usedoroof a bound on
the approximation ratio, but not part of the algorithm. le flollowing we will see an
approach which actually computes the solution to this LPot@io a set cover solution.

Remark: In the lecture have seen an algorithm for solving LPs in spbegntial, but
not polynomial time. There are algorithms, though, which salve linear programming
problems in polynomial time (Ellipsoid and interior pointethods). So for all algo-
rithms that follow and make use of an LP solution, we assuratitltan be computed

8 0.3 APPROXIMATION ALGORITHMS 41

in polynomial time. In practice though, the Simplex metheds spite of the superpoly-
nomial worst-case running-time — perform very well and dterosuperior to the above
guaranteed-polynomial-time methods.

Simple LP rounding for the Set Cover problem

In the greedy algorithm, the LP relaxation was only used lierdnalysis, but given an
optimal solution to the LP relaxation, how could we turn th@b a feasible integral
solution to the set cover problem, possibly with an appr@tion guarantee ?

In the following denote byf the maximal number of occurrences of an elemeatJ
in the setsSy, ..., S, i.e. f =maxeu |{S:ue S}|. We consider the following simple
algorithm:

1. Find an optimal solution to the LP relaxation of the setexguoblem
2. Pick all setsSfor whichxs > 1/f

Lemma 0.24. The simplel/ f LP-rounding algorithm achieves an approximation factor
of f.

Proof. Let C be the collection of picked sets. Consider an arbitrary elgm Sinceu is
in at mostf sets, at least on of the respective sets must be picked to amdamf> 1/f.
Hence(is a valid cover. On the other hand, the value of eagls increased by at most a
factor of f, so the overall objective function value increases by attradactor off. [

Exercise 20.Consider the vertex cover problem that we have seen befonet ¥Wpprox-
imation guarantee does the above algorithm yield for theexerover problem ?

Randomized LP rounding for the Set Cover problem

A more sophisticated way to turn the LP solution into a felasibtegral solution is to
interpret the LP values as probabilities and flip coins adicgy.

Let x* = p be the optimal solution to the LP relaxation of the set covebfem,
OPT_p its objective function value. For each Sawe pick it with probabilityxs = psinto
C. What is the expected cost 0f?

E[cos(()] = g ps-Cs= OPT.p
5

42

The collectionC not necessarily covets, but let us look at the probability by which
an elemenu € U is covered. Assume appears if setsS;,...,§. Asuis fraction-
ally covered, we have; + p2+---+ p > 1. As the probability foru being covered is
minimized if p; = 1/, we get the following bound:

1 1
Pr(acovered byC) > 1— (1— l—)' >1--

The last inequality follows from{1+)" < e < (1+)™ sincee < (1ML o

n \n+1 n+1 1 \n+1 R ;
()" < 1/es (51— 7)™ < 1/e This means, each element frams covered

with a constant probability. To obtain a valid set cover,ependently piclclogn such
subcollections and compute their union, gdywherec is a constant such that

(:_L)Clogn < i
e ~4n
at this point we have Pa not covered by™) < édogn < 4—1n and summing over ali € U
we get:
1 1
Pr(C’ not a valid setcover< n- — ==
(€ ¢ 4n 4

For the cost of the obtained solution we get
E[cos{(()'] < c-logn-OPT.p
Applying Markov’s inequality (P{X >t) < @) with t = OPT_p - 4clogn we get
Pricos{(C)’ > 4-clogn-OPTip] < %
So the union of the two bad events happens with probabilityct 1/2, and therefore

. . 1
Pr(C’ a valid set cover with cosK 4-clogn-OPT.p) > >

We can verify in polynomial time whethef’ satisfies both conditions and repeat if
not. The expected number of repetitions needed until weesdtis at most 2.

0.4 Online Algorithms

So far we have looked only at algorithms which receive thdire inputs at the beginning.
We will now turn to algorithms that receive and process timguts in partial amounts.
These algorithms are calléanline Algorithms We will analyse them with respect to the
bestoffline algorithmwhich knows the whole input in advance.

8 0.4 ONLINE ALGORITHMS 43

0.4.1 The Online Paging Problem

Consider a computer memory organized in two levels: theaeacheor fast memory
that can storé&k memory items and a slower main memory, that can potentiallgt an
infinite number of items. Each item represents a page ofalirnemory (the cache can
storek of them). A paging algorithm decides whi&hitems to keep in the cache at each
point in time. We have a sequence of requests, each of whatifgs a memory item.
If the item requested is currently in the cache, we call thig @and no additional cost is
incurred. If the item is not present in the cache, it has toobdéd from main memory at
unit cost and — if necessary — one other item has to be eviobed the cache. The cost
measure for paging is the number of misses on a sequenceugistsq

The crucial action of an online algorithm is to decide whitdm to evict from the
cache. While an offline algorithm knows all future requestd aan make use of this
knowledge for the decision, the online algorithm cannot.

The following are some typical deterministic online algions that are used in com-
puter systems:

LRU Least-Recently-Used: evict the item whose most recentasicquccurred furthest
in the past

FIFO First-In-First-Out: evict the item that has been in the eafdr the longest period

LFU Least-Frequently-Used: evict the item in the cache thatbess requested least
often

Now consider a sequengeg, P2, ...,Pn Of requests. What is a good offline algorithm
which minimizes the number of misse®®N always evicts the item whose next request
occurs furthest in the futuréIN needs to know about the request sequence in advance
and in fact is optimal w.r.t. the number of misses. For an rilgm A to be examined,
let fa(p1,...,pn) be the number of misses which happen when using algovthorevict
items, fopT(P1,-..,Pn) the number of misses for algorithihIN .

Definition 0.25. A deterministic online paging algorithrA is called C-competitiveif
there exists a constahtsuch that on every sequence of requests. ., pn We have

fa(p1,-.-,oN) < C- fopT(P1,---,PN) +b

whereC andb must be independent of.

44

So the competitiveness measures the performance of areaigorithm in terms of
the worst-case ratio of its cost to that of the optimal onafgorithm on thesamerequest
sequence. This type of analysis is also cabednpetetive analysisAnother way of
analysing an online algorithm is to look at its expected nend§ misses that occur on a
request sequence generated according to a probabilitipdisvn. This is callecaverage
case analysisWe will focus oncompetetive analysiwst.

Lemma 0.26. The LRU algorithm is k-competetive.

Proof. Consider a request sequerge= p1,...,pn. Without loss of generality assume
that LRU and MIN start with the same cache contents.

We partitionp into phase®(0),P(1), ... such that LRU has at moktmisses orP(0)
and exactlyk misses orP(i) for i > 0. We start at the end gF and scan the request
sequence. Whenever we have skenisses made by LRU we switch to a new phase. It
remains to show that MIN has at least one miss per phase.

For phaseP(0) no argument is required as MIN gets a miss when LRU does (they
start with the same cache contents). Now look at a pRégei > 0. Letpy, be the first
andpy ,—1 the last request in that phase. Furthermore tetp;,_1. We claim that irP(i)
there are requests kodistinct items that are all different from If so, MIN clearly also
has a miss which finishes the proof.

If the k misses that LRU produces are all caused by distinct iterse (hfferent from
X), we are done. Otherwise, assume there is anytan(i) on which LRU misses twice:
so assume LRU has a miss pg =y andps, =y with tj < 51 < S < tjy1. After the
request at timey, y is in the cache. When it is thrown out at some tispec t < s, this
happens because it is the least recently requested iteratdirtte, i.e. between times
s+ 1 andt, at leask distinct items must have been requested, all of which weferdnt
fromy. So includingy, at leastk + 1 different items must have been requested during
phaseP(i) at leastk of which are different fronx.

If there is no itemy that is missed twice, but one of the misses of LRU ixaluring
phaseP(i), the same argumentation holds.

O

As it turns out, one cannot do (deterministically) than LRUtlae following lemma
proves.

Lemma 0.27.Let A be a deterministic online paging algorithm whichiompetetive.
ThenC > k.

8 0.4 ONLINE ALGORITHMS 45

Proof. Let S= {x1,...,X, %+1} be a set ok+ 1 items. W.l.0o.g. we assume thatand
MIN havexs, ..., X, in their cache at the beginning. Consider the request sequenere
the next request is always the one that is ndd'sicache.

Clearly A misses on each request. When MIN has a miss on reguestevicts an
item that is not requested in the ndxt 1 requests, so fdk consecutive requests MIN
produces only one miss. O

Still we have not shown that MIN is indeed an optimal alganitfor the paging prob-
lem.

Lemma 0.28. On every request sequence MIN produces the minimum numbessés.

Proof. The idea of the proof will be to consider any other algoritArwhich serves the
firstt requestst > 0 in the same way as MIN but produces less misses than MIN, and
modify it to an algorithmA’ which serves the firdt+ 1 the same way MIN does without
increasing the number of misses. Repeating this idea ddiraes shows thaf can be
transformed into MIN without increasing the number of mgsse

Let x be the item requested Ipft + 1). Assume MIN evictal for serving this request,
Aevictsy, v # u. DefineA’ as follows:A’ serve(t + 1) by evictingu and then works in
the same way a& until one of the two events happens:

e there is a miss at a request to pagg # v andA evictsu. In this caseA’ evictsv
andA' is in the same state @sand has incurred the same number of misses.

e there is a miss at a request to pagandA evictsz. In this case evictszand loads
u; now A’ is in the same state #sand has incurred the same number of misses

By definition of MIN, a request ta cannot occur earlier than a requestto 0

0.4.2 Randomized Paging

We have seen that LRU with itscompetetiveness is the best possible. But the proof
that no better competitiveness thiars possible only holds fodeterministicalgorithms.
So if we allows randomness in the decisions of the pagingriifign, we might achieve
better bounds.

We start with a formal definition what-competetiveness means for a randomized
algorithm.

46

Definition 0.29. A randomized online paging algorithAis calledC-competitivaf there
exists a constart such that on every sequence of requests. ., pn We have

E[fa(p1,---,PN)] < C- fopT(P1,---,PN) +b

where the expectation is taken over the random choicésasfd C andb must be inde-
pendent ofN.

Now consider the simplest randomized paging algorithmeddRANDOM which
always evicts aandompage from the cache when needed. Unfortunately this akgorit
will not help a lot as the following lemma by Raghavan/Sniosk.

Lemma 0.30. RANDOM is no better than k-competitive.

Proof. Consider the request sequemce: xyx2X3. .. Xk(Y1Xz. .. Xi)' (YaXz... %)

Clearly OPT has one miss in each subsequéypoe ... x,)'. Atthe beginning of each
subsequence, RANDOM has at mést 1 of the requested items in memory. So a miss
has to occur during that subsequence. We call such a nges@ missif the item not
requested in that subsequence is evicted. During tepetitions of the subsequence, at
least one miss occurs in each round until a good miss hapjpfeks: 1 of the requested
items are in cache, the probability for evicting the riglkenitwhen a miss occurs igi
The expected num_ber of rounds until this happens IS det_emﬁg El[ﬁrzoulndslﬂl good
missE> 5 _oi- (K1 = 1 il () = 1 Yol ¢ = g © _(ti))f =
O(k). O

So simple application of randomization does not help, bubeersophisticaed variant
performs better than any deterministic algorithm.

Algorithm MARKING: The algorithm processes a request sequence in phases. At
the beginning of each phase, all items in the cache are umtiaM/henever a page is
requested, it is marked. On a miss, a page is chosen unif@améypndom from among the
unmarked in the cache and evicted. A phase ends when all iteting cache are marked
and a miss occurs. Then all marks are erased and a new phéegead.s

Lemma 0.31. MARKING is 2Hy-competitive.

