
Figure 1: Primal (dashed) and Dual (solid) Simplex Algorithm for d = 2

Lecture May, 13th

0.1 Primal and Dual Simplex

In the previous sections we have seen an algorithm to determine the highest feasible point
x� for a collection of constraintsH = faT

i x6 βi} by approachingx� from the infeasible

region and jumping to v-shapes of decreasjng height. This algorithm was called(Primal)

Simplexalgorithm. In the following we will briefly present the so-called (Dual) Simplex

algorithm, which approachesx� via vertices of the feasible region defined byH .

2

Dual (v-shape) Simplex Primal Simplex

Idea jump to lower and lower vertices jump to higher and higher

of v-shapes feasible vertices

BasisB d lin.indep. constraints d lin.indep. constraints
(vertex

repr.)

Invariant always have v-shape, i.e.c is conic always corner of feasible region, i.e.

combination ofai ’s def. v-shape 6 9i s.t.aT
i xv > βi

Non-Opt. v-shape not feasible, i.e. staying ond�1 constraints ofB one9i s.t. aT
i xv > βi can move away fromxv and

improve without becoming infeasible

Pivot determine new v-shape includingai determine which constraint blocks this

and drop one of the old constraints movement, include that in basis, remove
constraint which we moved away from

Degen. constraints orthogonal toc vertices determined by more thand

(can be fixed by perturbingc) constraints (fixed by perturbing constr.)

Start some v-shape; if not given considersome corner of the feasible region; if
auxiliary problemaT

i x6 0 with add. not given! Exercise !

constraintsxi 6 1 for ci > 0,�xi 6 1 for ci < 0 . . .

Basically both variants are equivalent and some people alsocall primal simplex what

we call dual simplex and vice versa.

Exercise 1.Fill in the details of the dual simplex algorithm.
Pivot Step

Let us first try to figure out which of thed�1 halflines to follow to improve our objective

function value. Our current solution is given byd constraintsaT
1 x 6 β1 : : :aT

d x 6 βd.
We can write this system of inequalities as equalities by introducing slack variabless=(s1; : : :sd) 2 Rd>0: 0B�a11 : : : a1d: : : : : : : : :

ad1 : : : add

1CAx+0B�s1
...

sd

1CA=0B�β1
...

βd

1CA
We will write this asABx+ s= βB in short. The coordinatesx0 of the current vertex are
determined as

x= A�1
B βB�A�1

B s

§ 0.1 PRIMAL AND DUAL SIMPLEX 3

with s= (0; : : : ;0), i.e. all d constraints are tight. Moving away from one constraint
corresponds to increasing its slack variable from zero to some positive value. We want to
figure out which slack variable we can increase to get a higherobjective function value.

For the objective function we have:

cTx= cT(A�1
B βB�A�1

B s) = cTx0�α1s1��� ��αdsd

that means expressed in dependence ofs, the objective function value is a constant (the

value at our current vertex position) and a sum ofsi variables with respective coefficients.
If we have for onei αi < 0, then increasing this slack variable – i.e. moving away from

the corresponding constraint and sliding along the half-line determined by the remaining
constraints – improves the objective function. If no suchi exists, we are optimal !

Now assume we have found a constraintaT
i x6 βi which is going to leave the basis

(as we can increase the objective function value thereby). It remains to find the con-

straint which blocks this movement (if no such constraint exists, the problem is clearly
unbounded).

x0 = A�1
B βB is the current vertex, choosingx00 = A�1

B βB�(A�1
B)�i (this is a point moved

one unit in the direction we have just determined), we can move on the improving ray

(λ> 0) �!r = x0+λ � (x00�x0) = x0�λ(A�1
B)�i

and ask by which other constraintj this movement is blocked first. We can plug in a point

r(λ) on the ray in every constraintl :

aT
l (x0�λ(A�1

B)�i)6 βl, aT
l x0�λaT

l (A�1
B)�i)6 βl

If aT
l (A�1

B)�i) >= 0 this constraint will never block our movement, otherwise we obtain
the following bound onλ:

λ6 βl �aT
l x0�aT

l (A�1
B)�i)

If no constraint gives a bound on our movement, the problem isunconstrained, otherwise

the constraintj which determines the smallest upper bound onλ is the first constraint hit
when moving along�!r . This constraint enters the basis in exchange for constraint i.

Perturbation

One needs to show that one can perturb all constraints by adding some small constant to

4

the right such that nod+1 constraints intersect in one point.

Starting Solution

Consider the auxiliary problem minλ s.t. aT
i x� λ 6 βi , λ > 0. Take anyd lin.indep.

constraints. Either they already form a feasible solution or otherwise compute their linel

of intersection (parametrized inλ). The smallestλ > 0 that is necessary to make a point
on l feasible is determined by some constraint. Take this and theotherd constraints and

use them as first feasible basis of the auxiliary problem. If the auxiliary problem has a
solution withλ = 0, original problem is feasible and we can also read off a firstfeasible
basis, o.w. original problem was infeasible.

0.2 Linear Programming by Prune and Search

0.2.1 Prune and Search inR2

In the following we will first restrict to the two-dimensional case. Higher dimensions

will be treated at the end of this part.

We are given a setH of n constraintsaT
i x6 βi , x 2 R2 and want to determine the

highest pointx�(x�1;x�2) (i.e. maximizingcTx with cT = (0;1)) which is feasible or certify

that the setH is infeasible. The optimal solution is determined byd = 2 constraints, so
in some sense all other constraints are not really important.) Idea: drop more and more
of the constraints of which we can be sure that they do not define the optimum until only

d constraints are left.

Remark 0.1. This strategy is different from the simplex approach, wherekicked out con-

straints can reenter the basis lateron (easy for the primal simplex, even in d= 2, for the

dual simplex only for d> 3).

Exercise 2.Give an example ford = 2 and a sequence of valid pivot steps where one of

the two simplex algorithms presented has a constraint leaving and then reentering into the
basis.

Before we can describe the algorithm let us partitionH =H +UH � whereH + =faT
i x6 βi;ai2 < 0g, andH � = faT

j x6 β j ;a j2 > 0g. For the further description of the

algorithm it will be useful to define a function

g(x1) = min
j2H �fx2 : a j1x1+a j2x2 = β jg� max

i2H +fx2 : ai1x1+ai2x2 = βig

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 5

Clearly if 9x1 with g(x1) > 0, the problem is feasible, if suchx1 does not exist, the
problem is infeasible. The algorithm we present in the following will� compute the highestx�(x�1;x�2) if the problem is feasible and bounded� report if the problem is feasible and unbounded� compute somex�1 with g(x�1) maximal inR if the problem is infeasible.

Throughout the algorithm we will maintain an intervalI = (l ; r) wherex�1 of the po-

tential optimal solution or the ”least violated” position is contained. At the beginning
I = (�∞;+∞) or set according to potential vertical constraints (they are ignored in the
following).

Pruning Pair all the constraints arbitrarily withinH + andH �. Look at one of the

resultingbn=2 intersection points. If some oracle could tell us where the optimum/least
violating solution lies w.r.t. the vertical line through the intersection point, we could drop
one of the two constraints!

Searching Given some vertical linel inside our current range, we are interested in the
question whether the optimum/least violating solution is to the left or to the right ofl . To

determine this, consider the order of all constraints onl , in particular the highest constraint
h+ 2H + and the lowest constrainth� 2H �. In the following we assume that they are

uniquely defined. We look at the intersection pointsp+ = h+ \ l and p� = h� \ l . We
have several cases to consider:

1. p+y > p�y : then our problem is infeasible at this position. If thereh+ andh� are par-

allel there is clearly no feasible region anywhere and the violation cannot decrease.
Otherwise, the region of feasibility or the region where theviolation is less than at

the current position has to be on the same side ofl as the intersection point ofh+
andh�.

2. p+y 6 p�y : our problem is feasible at this position but we have not necessarily found

an optimum solution. But looking at the environment of the intersection pointh�\ l

we can deduce, on which side we might get higher.

6

The Algorithm Clearly we could call the search step for each of the paired constraints,
but as one search step costs O(n) time, we will not end up with anything better thanΩ(n2).
So the idea is to use one search step to perform many prune steps.

PruneAndSearch (H , (l ; r))
1. if jH j constant, solve trivially

2. partitionH intoH +UH �
3. pair constraints withinH + andH � to obtain set of intersection pointsP

4. for all intersection pointsp =2 (l ; r), drop one of the defining constraints fromH
and deletep from P

5. for the remaining intersection points compute theirx1-medianm; use the search step

to determine on which side of the vertical medianx1 = m line the optimum/least
violating solution lies

6. replace(l ; r) by (m; r) or (l ;m) depending on the outcome of the search step

7. prune intersection points which are outside the new range

8. recurse on remaining constraints and new range:PruneAndSearch(H 0,(l 0; r 0))
Analysis Starting withn = jH j constraints, the algorithm spends O(n) time and one

recursive call onn0 constraints to solve the problem. How large can ben0 ?

Ignoring floors and ceilings, we haven=2 intersection points, at least half of which
fall outside the new range(l 0; r 0) of the recursive call. That means at leastn=4 constraints

can be removed fromH . Thereforen0 6 3
4n and hence we get an overall running time of

O(n).

Exercise 3. Assume that excluding the recursive call the algorithm spends c � n work
in one call, and exactly 1=4th of the constraints is pruned in each step. Give an upper

bound for the running time of the algorithm (no O-notation!), i.e. solve the recursion
T(n) = c�n+T(3

4n) with T(1) = 1.

Lecture May, 15th

Recap: Primal/Dual picture, P’n S in 2 dim.; treatment of degeneracies

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 7

0.2.2 Prune and Search inR3 and higher dimensions

The same approach presented for the two-dimensional setting basically also works in
3 and higher dimensions. In the following we will briefly sketch a solution of a simplified

version of the problem in 3 dimensions.

We are given a setH of n constraintsaT
i x6 βi , x 2 R3 and want to determine the

highest pointx�(x�1;x�2;x�3) (i.e. maximizingcTx with cT = (0;0;1)) which is feasible

or certify that the setH is unbounded. The optimal solution is determined byd = 3
constraints, so all other constraints not defining the optimum are not really important.
Again the idea will be to drop more and more of the constraintsof which we can be sure

that they do not define the optimum until onlyd = 3 constraints are left.

As a simplification we assume that all constraints are of the form aT
i x6 βi;ai3 > 0,

i.e. all constraints are halfplanes with the feasible region ”below”. Clearly for this special

case, the linear program is definitely feasible (we just haveto go down far enough). The
core idea of prune and search in three dimensions is already exhibited in this simplified

formulation. The general case where all types of constraints are allowed can also be
solved but involves some technicalities.

Our algorithm will compute a highest pointx� or report that the problem is unbounded.

Pruning Pair all the constraints arbitrarily as we have done in the two-dimensional case.
Look at one of the resultingbn=2 lines of intersection, let’s call itl . If some oracle could

tell us where the optimum lies w.r.t. to the vertical plane throughl , we could clearly drop
one of the two constraints.

Searching Given some vertical planew, we are interested in the question whether the

optimum solution is to the left or to the right ofw.

To answer this, consider the intersection of all constraints with this vertical planew.

In w these intersections form a feasible two-dimensional highest point problem. Using
the algorithm presented ford = 2 we can solve this problem in O(n) time and either

determine a optimal pointx� or certify that the problem is unbounded. In the latter case
we are finished as then our problem in three dimensions is alsounbounded. In the former

case, consider the two halfplanesh1;h2 that together withw intersect inx�. Looking at
the slope of the intersection lineh1\h2 we can easily determine on which side ofw the

optimum lies.

8

The Algorithm Again, as in the two-dimensional case, we could call the search step for
each of the paired constraints, but as one search step costs O(n) time, we will not end up
with anything better thanΩ(n2). So the idea is to use a constant number of search steps

to perform linearly many prune steps.

PruneAndSearch (H)

1. if jH j constant, solve trivially

2. pair all the constraints to obtain set of intersection linesL

3. project all lines inL into thex1x2-plane and transform them such that half of them

have slope> 0 (these are the linesL+), half of them slope< 0 (these are the lines
L�).

4. pair all the lines, always one fromL+, one fromL� and consider the setP of

resultingn=4 intersection points in thex1x2-plane

5. Query the search oracle with the vertical planex1 = m1 wherem1 is thex1 median
of P

6. W.l.o.g. assume that the first query reports that the optimum lies inx1 > m1, con-

sider all the intersection pointsP with x1 < m1. Query the search oracle with the
vertical planex2 = m2, wherem2 is thex2 median of all intersection points fromP

with x1 < m1.

7. W.l.o.g. assume the second query returns thatx� lies in x2 > m2, then for alln=16
intersection points withx1 < m1;x2 < m2, one constraint can be dropped

8. recurse on remaining constraints and new range:PruneAndSearch(H 0)
Exercise 4.Given a set ofn lines in the plane by their line equations (all have different
slopes,n= 2k for somek). Describe a procedure to rotate the whole arrangement of lines

such that half of the lines have slope> 0, half of the lines slope< 0.

Analysis Starting withn = jH j constraints, the algorithm spends O(n) time and one
recursive call onn0 constraints to solve the problem. How large can ben0 ?

Ignoring floors and ceilings, we haven=2 lines of intersection, andn=4 intersection

points. For a quarter of them one of the four defining constraints can be dropped. That
means at leastn=16 constraints can be removed fromH . Thereforen0 6 15

16n and hence

we get an overall running time of O(n).

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 9

Higher Dimensions Basically the same approach also works in higher dimensions, but
the fraction of constraints that can be dropped in one recursive call drops drastically, in
fact doubly exponentially ind. Remember, ind = 2 using one oracle query, we could

deciden
4 sideness problems, ind = 3, using two oracle queries, we could decide onn

16
sideness problems. In general, using 2d�2 oracle queries, n

22d�1 sideness tests can be

decided. So for the running time we get

Td(n) = cdn+Td(1� 1

22d�1)6 cd �22d�1
n

10

0.2.3 Seidel’s LP algorithm for fixed dimension

In the presentation of the v-shape-Simplex algorithm, there was some ambiguity in the
formulation (which did not affect its correctness, though). Given some v-shapev, there

might be many constraints which are violated by the vertexxv; we did not specify which
of these constraints to select into our basis. Roghly speaking, Seidel’s LP algorithm can

be regarded as a refinement of the v-shape-Simplex algorithmwhich gives more precise
rules for which violating constraint to choose. His algorithm will also run in O(n) time

for fixed dimensiond, but with a better dependence ond, namely O(d!n).

For the following presentation we assume:� the feasible region is non-empty and is contained in the positive orthant (xi > 0)� and we are looking for the lowest point in the feasible region(this implies that the
origin is already a v-shape).� non-degeneracy

The intuition behind the algorithm is that if the dimension is very small compared
to the number of constraints, most of the constraints are notimportant for the optimum
solution, so when dropping one random constraint, chances are good that the optimum

solution does not change.

A call SeidLP(H) to Seidel’s LP algorithm returns the optimal solution to the set of
constraintsH. It can be stated as follows:

SeidLP(H)

1. if jHj= 1 or jd = 1 return OPT(H)

2. chooseh2 H uniformly at random

3. v SeidLP(H�fhg)
4. if v =2 h thenv SeidLP(fH�fhgg #h)

5. returnv

OPT(H) is the optimal solution of the constraints inH and thexi > 0 constraints.

To show correctness, we only need the following small Proposition:

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 11

Proposition 0.2. Let H be a set of constraints, h2 H. Denote by OPTH�fhg the optimal

solution for the set H�fhg, and OPTH the optimal solution of the set H with basis BH .

Then we have vH�fhg =2 h, h2 BH .

Exercise 5.How could infeasibility be detected in the course of the algorithm ?

Analysis For the analysis observe that step one can be performed in O(n) or O(d) time
respectively. Picking a random constraint can be done inO(1) time, the violation test

takes O(d) time. If the violation test fails,O(dn) time and the one recursive call in one
dimension lower is required.

For a call SeidLP(H) let d denote the dimension of the constraints inH. The crucial

step in the analysis is Nr.4. We are interested how likely it is that this second recursive call
occurs. Assuming non-degeneracy, the optimum solution ofH is determined by a unique

set ofd constraints. According to our proposition, the violation test fails if and only if
the picked constrainth is in the optimum solution ofH. As h was chosen uniformly at
random, the probability for that is at mostd=n. So The following recursion describes the

running time of the algorithm for a call onn constraints in dimensiond:

T(n;d)6 T(n�1;d)+O(d)+ d
n
(O(dn)+T(n�1; f �1))

Theorem 0.3.The running time of SeidLP for n constraints in d dimensions is O(d!n).
Proof. Invariant:T(n;d)6 2 �d!n∑d

i=1
i2
i! for n+d < x.

Base Cases:T(1;d) = d andT(n;1) = n.

Induction Step:

T(n;d)6 T(n�1;d)+d+ d
n
(n �d+T(n�1;d�1))6 2 �d!(n�1) d

∑
i=1

i2

i!
+d+d2+ d

n
�2 � (d�1)!(n�1) (d�1)

∑
i=1

i2

i!= 2 �d!(n�1) d

∑
i=1

i2

i!
+d+d2+2 �d!

(n�1)
n

d

∑
i=1

i2

i!
�2 �d!

(n�1)
n

d2

d!6 2d!n
d

∑
i=1

i2

i!
+d+d2�2 �d!

(n�1)
n

d2

d!
6 2 �d!n

d

∑
i=1

i2

i!

12

Lecture May 20th

Recap SeidLP

We have changed notation, now always optimizing downwards,assuming feasible region

is in positive orthant xi > 0.

Important Ideas:

1. Given set of constraints H, optimum is determined by d constraints, i.e. if removing

one random constraint h from H, andjHj large, it is very likely, that the optimal

solution of H�fhg is the optimum solution of H (lucky case). We have bad luck

only with probabilityd
n.

2. If we have bad luck, still we know that the ”unlucky” constraint h has to be part of

the optimum solution of H; so we are not that unlucky after all.

Figure 2: An example for Seidel’s algorithm

Example for SeidLP in R2 We consider the example in Figure?? and assume that
always the constraint with the highest index is chosen ”randomly”.

SLP(h1;h2;h3;h4)

(a) SLP(h1;h2;h3)

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 13

i. SLP(h1;h2)

A. SLP(h1)) Base Case: returnP1

B. P1 2 h2) returnP1

ii. P1 =2 h3) SLP(fh1;h2g #h3) Base Case: returnP2

iii. return P2

(b) P2 =2 h4) SLP(fh1;h2;h3g #h4)) Base Case: returnP3

(c) returnP3

Exercise 6.Take the same set of constraints in Figure?? but now assume that the order
of the constraints ish2 < h3 < h1 < h4 and always the ”largest” constraint in this order is

chosen ”randomly”. Follow the SeidLP algorithm step by step.

In the ”unlucky” case, Seidel’s algorithm uses the fact thatthe optimum solution to

H�fhg is violated byh, to conclude thath is in the optimum solution ofH. All other
information, in particular, all other constraints in the optimal basis ofH�fhg are thrown

away. Maybe many of the constraints inOPTH�fhg are also in the optimum solution toH.
In fact, this is the basic idea of the algorithm by Matousek, Sharir, Welzl. By making use
of this additional information, they obtain even subexponential running time ind.

0.2.4 The LP algorithm by Matousek, Sharir, Welzl

MSW(H;B)

1. if H = B returnB

2. chooseh2 H�B uniformly at random

3. B0 MSW(H�fhg;B)

4. if vB0 =2 h thenB0 MSW(H;pivot(B0;h))
5. returnB0
MSW((H;B)) computes the optimal basis for the set of constraintsH starting from a

tentative basis (v-shape)B. Correctness and termination holds for the same reasons as for

the v-shape algorithm: the tentative basis improves with each pivot step and only finishes
when the current tentative basis is not violated by any constraint. In fact, MSW is also a

variant of the v-shape simplex algorithm.

14

Analysis Similar to the analysis of the SeidLP algorithm, first we are interested in the
probability of a ”bad luck” choice for the constrainth. As we chooseh from H�B, this
probability is at most d

n�d . But in contrast to Seidel’s algorithm we can be even a bit more

precise. Ifd� j constraints of the optimal basis ofH are in the current tentative basisB,
the probability of bad luck is bounded byjn�d .

So it seems somewhat straightforward to measure progress bytaking into account

the constraints of the current tentative basisB that are also part of the optimal basis ofH.
This means in particular hoping that iff constraints of the optimal basis are in the basisB,
after the return of the first recursive call and the pivot step, there are> f constraints of the

optimal basis in pivot(B0;h), i.e. progress has been made in that respect. Unfortunately
that is not true ! In fact it may well be that inB0 there arelessconstraints of the optimal

basis than there were inB. So counting the constraints that are also in the optimal basis is
not a good measure of progress.

Exercise 7. Show an example inR2 where no progress in terms of constraints of the

optimal basis can be measured when executing the MSW algorithm,i.e. an example where
B contains one constraint of the optimal solution butB0 none. As in the pivot step one
constraint of the optimum basis enters again, we can only show ”no progress” inR2, but

no real regression; this is only possible in higher dimension.

Fortunately, if we measure progress by only counting those constraints that will never

leave the basis again, we can be sure that progress will be made as we will see in the
following.

Definition 0.4. The hidden dimension kof a basisB w.r.t. to a set of constraintsH is
defined as k(H;B) = d�jfh2 H : vH�fhg < vBgj.

Intuitively the hidden dimension denotes the number of constraints in the optimal
basis that still need to be discovered during the course of the algorithm.

Lemma 0.5. For any basis B� H we havefh2 H : vH�fhg < vBg � B.

Proof. Assume one of theh is not in B. Then we haveB� vH�fhg and thereforevB 6
vH�fhg which is a contradiction.

Corollary 0.6. All constraints counted infh2H : vH�fhg < vBgwill never leave the basis

again as in the course of the algorithm only higher bases are encountered..

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 15

Let us now consider a call of MSW(H;B) with hidden dimensionk, i.e. d� k con-
straints inB will never leave the basis again during the course of the algorithm. The
algorithm first picks someh 2 H �B and solves the remaining problem recursively. If

h is not in the optimal basis ofH, we are done (lucky case). Furthermore none of the
constraints infh2 H : vH�fhg < vBg can be picked (as they are inB), so the probability

of ”bad luck” is at most k
n�d .

It remains to argue about the hidden dimensionk(H;pivot(H [fhg)) that will be
passed to the second recursive call in case of ”bad luck”. Ourclaim is that the hidden
dimensionk(H;pivot(H[fhg)) is randomly distributed between 0: : :k�1, which means

that basically on the average, the hidden dimension is halved.

We order thed constraints that define the optimum basis ofH in the following manner:

vG�fh1g 6 vG�fh2g 6 : : :6 vG�fhd�kg < vB 6 vG�fhd�k+1g 6 : : :6 vG�fhd�1g 6 vG�fhdg
This order might not be unique, the parameterk determined by this ordering is unique,
though. As we have seenh1 : : :hd�k are inB and will never leave the basis again. Hence

in our setH�B whereh is drawn from, there might be at mostk constraints whose choice
yield the ”unlucky” case. Ifk = d, B has made no measurable progress yet, and alld

definining constraints might be inH�B, if k= 0, B is already the optimal basis.

So assuming that we’re unlucky,h is a random constraint amongsthd�k+1 : : :hd. As-
sumeh = hi was the bad constraint picked, i.e.i is random ind� k+1; : : : ;d, then the

first recursive call MSW(H�fhg;B) returns withvH�fhig. So in particular,h1; : : : ;hi�1

are now part of the returnedB0. The pivot step bringshi into the basisB0 and throws out
some other constraint (but none ofh1; : : : ;hi�1!). Therefore the hidden dimension ofB0
after the pivot step isd� i or in other words, the new hidden dimension is random in
0; : : :k�1.

The only fact we need to consider before we can write down the recursion is that the

hidden dimension is monotone, i.e. forB� F � H the hidden dimension ofB w.r.t. F

does not exceed the hidden dimension ofB w.r.t. H, ash1; : : :hd�k 2 B (and so inF) and

vF�fhg 6 vH�fhg for F � H.

Denote byb(n;k) the expected number of basis calls when calling MSW on a set

H with n constraints and a tentative basisB of hidden dimensionk. According to our
discussion above we obtain the following recursion:

b(n;k)6 b(n�1;k)+ 1
n�d

minfk;n�dg
∑
i=1

(1+b(n;k� i))

16

For the base case we haveb(d;k) = 0.

Exercise 8.Show thatb(n;k)6 2k(n�d).
As any tentative basis has hidden dimension of at mostd, the MSW algorithm gives

an expected running time of O(2kn), which is already better than the prune and search as

well as Seidel’s approach. A more elaborate analysis yieldsa bound of:

1+b(n;k) = eO(pk ln(n�d))
Regarding the number of violation tests, observe that for any computed tentative basis,

we check each constraint at most once with this basis, hence the number of basis compu-
tations is bounded by(n�d)b(n;k).

In the following we will see another LP algorithm which decreases the number of
constraints such which together with the subexponential bound just seen, yields the best

subexponential combinatorial algorithm to solve the linear programming problem known
so far.

Example for MSW in R2 We consider the same problem as in Figure??assuming that
always the constraint with highest index is chosen ”randomly”.

MSW(fx1> 0;x2> 0;h1;h2;h3;h4g;fx1> 0;x2> 0g)
(a) MSW(fx1> 0;x2> 0;h1;h2;h3g;fx1> 0;x2> 0g)

i. MSW(fx1> 0;x2> 0;h1;h2g;fx1> 0;x2> 0g)
A. MSW(fx1> 0;x2> 0;h1g;fx1> 0;x2> 0g)� MSW(fx1> 0;x2> 0g;fx1> 0;x2> 0g)) base Case: returnfx1> 0;x2> 0g� (0;0) =2 h1)MSW(fx1> 0;x2> 0;h1g;fx1> 0;h1g)) after unrolling returnfx1> 0;h1g
B. fx1> 0;h1g 2 h2) returnfx1> 0;h1g

ii. fx1> 0;h1g =2 h3)
iii. : : :

Exercise 9.Take the set of constraints in Figure?? but now assume that the order of the

constraints ish2 < h3 < h1 < h4 and always the ”largest” constraint in this order is chosen
”randomly”. Follow the MSW algorithm step by step.

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 17

0.2.5 Clarkson’s Algorithms for Linear Programming

The basic idea of Clarkson’s algorithms is to reduce the number of constraints that
have to be considered by a random sampling procedure. When the problem size has been

reduced far enough, the MSW algorithm is used to solve the ”small” instances.

Clarkson 1

We start with his first algorithm which repeatedly takes samples of sized
p

n until the
optimum has been found.

CL1(H)

1. if jHj6 9d2 return CL2(H)

2. r d
p

n; G /0

3. repeat� choose randomR2 �H
r

�� v CL2(G[R)� V fh2 H : v =2 hg� if jVj6 2
p

n G G[V

until V = /0

4. returnv

Clearly this procedure computes the optimum solution provided the subroutine CL2(H)

works as intended. But why is this procedure efficient ? First, as we will show, the ex-
pected size ofjVj is

p
n and hence it takes only two rounds in expectation until some

progress is made. Furthermore, in each round at least one constraint of the optimal basis
Bopt of H is added toG . So the expected number of rounds of the repeat-loop is bounded
by 2d.

Exercise 10.Why is there at least one constraint of the optimal basis added to G in each
round ?

Solution:OtherwisevH = vBopt 6 vBopt[G[R= vG[R6 vH .

18

Corollary 0.7. For n= jHj> 9d2, CL1 computes vH with an expected number of O(d2n)

arithmetic operations, and an expected number of at most2d calls to CL2 with at most

3d
p

n constraints.

In the following we prove the required Lemma on the expected size ofV of violated
constraints. It will be formulated more general for later use.

Lemma 0.8. Let G be a set of constraints in d-space, H a multiset of n constraints

in d-space and16 r 6 n. Then for random R2 �H
r

�
, the expected size of VR = fh 2

HjvG[R violates hg is bounded by dn�r
r+1.

Proof. Consider the characteristic functionχG(R;h), which is 1 ifvG[R violatesh, 0 oth-

erwise. Then �
n
r

�
E(jVRj) = ∑

R2(H
r) ∑

h2H�R

χG(R;h)= ∑
Q2(H

r+1) ∑
h2Q

χG(Q�fhg;h)6 ∑
Q2(H

r+1)d = d

�
n

r +1

�
E(jVRj)6 dn�r

r+1 follows immediately.

Exercise 11.Alternative Proof of the Sampling Lemma (restate lemma in exercise):

Consider the following bipartite graph(A;B), where there is a nodea 2 A for eachr-
subsetRa of H and a nodeb2 B for each(r +1)-subsetRb in H. There is an edge(a;b) if

and only if,Rb = Ra[h andh violatesvG[Ra. Task 1: What is the meaning of the degree
of a nodea 2 A in this bipartite graph ? What is the meaning of the average degree of

a nodea2 A in this bipartite graph ? To determine the average degree of this graph, we
count the total number of edges by looking at the nodes inB. Task 2: What is the degree
of a nodeb2 B ? Task 3: Use the results of Task 1 and Task 2 to make a statement about

the average degree of a vertexa2 A. Why does this prove the sampling Lemma ?

In the algorithm above, we apply this Lemma withr = d
p

nand therefore getE(jVRj)<p
n.

Clarkson 2

This algorithm proceeds very similar to the first one. It chooses samples of size 6d2 and
computesvR by the MSW algorithm. The expected number of violatorsVR is bounded by
1

6dn according to the above Lemma.

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 19

Exercise 12.Proof that in Clarkson’s second algorithm CL2, the expectednumber of
violators is bounded by1

6dn by applying the sampling Lemma.Hint: ConsiderH as a
multiset ofn elements where a random sample of size 6d2 is taken from.

Instead of forcing these violators for the next iterations (as before) we just increase
their probability to be chosen by assigning a multiplicityµh to each violatorh. We start
with µh = 1 for all h2 H and double it each timeh is a violator. The analysis shows that

for the constraints of the optimal basis, their multiplicities increase so rapidly that after a
logarithmic number of rounds they are chosen with high probability. In the following we

view H as a multiset, eachh with multiplicity µh. µ(H) = ∑h2H µh. The random sample
R2 �H

r

�
is also a multiset.

CL2(H)

1. if jHj6 6d2 return MSW(H)

2. r 6d2

3. repeat� choose randomR2 �H
r

�� v MSW(R)� V fh2 H : v =2 hg� if µjVj6 1
3dµ(H) then8h2V : µh 2µh

until V = /0

4. returnv

From the above Lemma and Markov’s inequality it follows thatthe expected number
of attempts to get a small enoughV is at most 2. We will now bound the number of

successful iterations whereH gets reweighted.

Lemma 0.9. Let k be some positive integer. After kd successful iterations we have

2k 6 µ(B)< nek=3

for the optimal basis B of H.

20

Proof. Every successful iteration adds a weight of at most1
3dµ(H) to H, therefore we get

µ(B)6 µ(H)6 n(1+ 1
3d

)kd < nek=3

For the lower bound observe that in each round, at least one ofthe violators is a constraint

in B. That means there is a constraint that has been doubled at leastk times henceµ(B)>
2k. As 2> e1=3, for large enoughk the lower bound exceeds the upper bound, hence the

solution must be found before.

Lemma 0.10.For n= jHj> 6d2, CL2 computes vH with an expected number of O(d2nlogn)

arithmetic operations, and an expected number of at most6d lnn calls to MSW with at

most6d2 constraints.

Proof. For k = 3lnn we get 2k = n3= loge > n2 = nek=3. Therefore there are at most 2�
3d lnn iterations in expectation. Each iteration costs O(dn) arithemtic operations and one

call to MSW.

0.2.6 Plugging together CL1, CL2, and MSW

We got a running time of O((d2 + nd)eO(pd lnn)) for MSW. Plugging this into the
running time of CL2 (for= O(6d2)), we obtain O(d2nlogn+ eO(d lnd) logn). Plugging

this into CL1, we get finally

Theorem 0.11.The optimal nonnegative vertex v of a linear program with n constraints

H in d-space can be computed by a randomized algorithm with anexpected number of

O(d2n+eO(pd lnd)) steps.

0.2.7 Summary

We have seen several algorithms for solving linear programsof the form maxcTx s.t.
Ax6 b.

Exercise 13.All of the algorithms assumed that the linear programming formulations are
of the form maxcTx s.t. Ax6 b, some of them even thatxi > 0. What can we do if we

are only able to solve problems of the form maxcTx s.t. ATx6 b, xi > 0 but our given
problem instance looks as follows:

1. mincTx s.t.ATx6 b, xi > 0

2. maxcTx s.t.ATx> b, xi > 0

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 21

3. maxcTx s.t.ATx= b, xi > 0

4. maxcTx s.t.ATx6 b, xi 2 R
Let us briefly the different algorithms that we used to solve alinear program of the

form maxcTx s.t.Ax6 b.

Primal Simplex

The main ideas of the primal simplex are:� current solution is maintained as a set ofd lin.indep. constraints and their intersec-
tion point� the current solution is always feasible� as long as we can improve locally, we do) we improve in each step ! if we can’t

improve, we are optimal

The primal simplex algorithm starts at a a corner of the feasible region.

V-shape orDual Simplex

For the same set of constraints the Dual or V-Shape simplex follows a different strategy.
The core ideas are:� current solution is maintained as a set ofd lin.indep. constraints and their intersec-

tion point� the current solution is always optimal for a subset of constraints, current basis is a

v-shape, c can be represented as as conic combination of the constraints defining
the current basis� as long as there is a violated constraint, we update the current solution) we get
worse solution in each step ! if there are no violations, we are optimal

The dual simplex starts with a locally optimal solution (v-shape).

In fact, the structure of the dual simplex algorithm could also be stated as a linear

program — the so-calledDual Program

min bTy s.t.ATy= c;y> 0

22

The constraintsATy = c, y> 0 correspond to the invariant of the dual simplex that we
always have a v-shape as current solution,bTy expresses the height of the current v-
shape, sincey= (AT

B)�1c and thereforebTy= bT(AT
B)�1c= (A�1

B b)Tc= x0Tc, whereAB

is the submatrix corresponding to the constraints that define the current v-shape andx0 the
intersection point of those constraints. We have seen that minimizing the height of the v-

shape yields the same solution as aiming for the highest feasible point, and hence our dual
program directly formalizes the invariants and the goal of the dual simplex algorithm.

Then, the primal simplex on this program is the dual simplex for the original program.
In general, one can easily derive the dual program from the primal (and vice versa as the

dual of the dual is the primal). If the primal is of the form maxcTx, the dual is of the form
min bTy and the following relationship between variables and constraints of primal and

dual hold:
Primal: maxcTx Dual: minbTy

i-th Variable in (P), i-th Constraint in (D) xi > 0 A:iy> ci

xi 2 R A:iy= ci

xi 6 0 A:iy6 ci

j-th Constraint in (P), j-th Variable in (D) A j :x> b j y j 6 0
A j :x= b j y j 2 R
A j :x6 b j y j > 0

Furthermore unboundedness of one of the problems implies infeasibility for its dual.

Exercise 14.We have seen the equivalence for a primal program of the standard form (PS)

maxcTx s.t. Ax6 b and its dual program of the standard form (DS) minbTy s.t.ATy =
b;y> 0 via the primal and dual simplex algorithm.

Show that the dual of (DS) is again (PS).Hint: First transform (DS) such that it is
of the same form as (PS) and apply the equivalence that we haveseen. Transform the

outcome such that the original problem (PS) is obtained. Check whether you would have
obtained the same result when applying the rules of the tableabove.

For both, primal and dual simplex, no polynomial time bound is known. An obvious
bound is exponential, as no basis is revisited (can be enforced for both primal and dual

simplex).

An Example for Duality (put on exercise sheet)

In the following we will give a small example for duality and its ”real-world” interpre-

tation. The goal of our problem will be on one hand to minimizecost of healthy nutrition

§ 0.2 LINEAR PROGRAMMING BY PRUNE AND SEARCH 23

(primal/consumer’s viewpoint) and on the other hand to maximize profit when selling
artificial nutrition products (dual/producer’s viewpoint).

In our simplified model a human being needs per day at least 11 units of carbohydrates,
7 units of proteins and 5 units of fat to keep a healthy diet. These ingredients can be

acquired by eatingmeat(one unit of which contains 1 unit of carbohydrates, 3 units of
proteins and 5 units of fat),tofu (2:2:0), bread (4:1:0) or cheese(1:4:2). These food

items can be bought in the local supermarket for 7 EUR per unitof meat, 3 EUR/Tofu, 2
EUR/Bread, 4 EUR/Cheese. The goal is to minimize the daily cost of a healthy nutrition.
So we can set up the following linear program to solve this problem:0BBBBB�min 7xm + 3xt + 2xb + 4xc

s.t. 1xm + 2xt + 4xb + 1xc > 11
3xm + 2xt + 1xb + 4xc > 7

5xm + 0xt + 0xb + 2xc > 5
xi > 0

1CCCCCA
On the other hand consider a producer of artificial nutritionproducts who produces

pure carbohydrate/protein/fat pills and wants to determine the maximum price he can
ask for such that people who are only aiming for a minimal costdiet still buy his pills

instead of ”ordinary” food. LetyC;yP;yF be the respective prices per unit of carbohy-
drates/proteins/fat. As constraints, the producer can assume that the prices should be

determined such that for any ”natural” food item, like meat,it is cheaper to buy his pills
to get the same amount of nutrition. Furthermore he wants to maximize the profit he gets
from one customer who wants to keep his healthy diet (and thiscustomer needs 11 units

of carbohydrates, etc.) . So he will set up the following linear program:0BBBBB�max 11yC + 7yP + 5yF

s.t. 1yC + 3yP + 5yF 6 7

2yC + 2yP + 0yF 6 3
4yC + 1yP + 0yF 6 2

y j > 0

1CCCCCA
which happens to be the dual of the linear progrm for the customer. By strong duality,

we know that the maximum profit the producer can achive is equivalent to the most cost-
effective diet-plan for the customer.

Prune and Search

The main ideas of the Prune and Search approach are:

24 � as the optimum solution is determined byd constraints only, most of then con-
straints are redundant� remove a constant fraction of constraints in each round (fraction depends on dimen-
sion, though)

The running time of the prune and search approach is linear inthe number of constraints
but doubly exponential ind.

SeidLP / MSW

The main ideas of the SeidLP/MSW are:� if n>> d dropping one constraint at random and solving remaining problem most
of the time gives optimal solution� in case of ”bad luck”, we can use some information from the first call to get to
optimum� SeidLP: only use fact that violating constraint has to be in optimal basis

MSW: same as SeidLP, but also make use of other constraints that are also in opti-
mal basis� MSW is a specific instance of the dual simplex

The running time of the SeidLP and MSW is linear in the number of constraints. The
dependence ond is exponential for SeidLP, but subexponential for MSW when combined

with Clarkson’s algorithms.

Clarkson’s algorithms

The main ideas of the Clarkson’s algorithms:� reduces the size of the linear program by random sampling on the constraint set� if one takes a random subset of the constraints, the expectednumber of violators is
not too high and dependent on the size of the subset

The running time of Clarkson’s algorithms together with MSWis linear inn and subex-
ponential ind; the so far best known bound for simplex-type algorithms.

Give Overview; Primal/Dual Simplex, Prune and Search, SeidLP, MSW, Clarkson,

running times, primal/dual LP

§ 0.3 APPROXIMATION ALGORITHMS 25

0.3 Approximation Algorithms

0.3.1 Cardinality Vertex Cover

A simple Example Consider a number of cities connected by a system of roads which
are are to be used by cars which only have enough fuel to traveltwo road segments before

requiring a refuel.

SB

Karlsruhe

Frankfurt

Nuernberg

Stuttgart
Ulm

Trier

Koblenz

Mannheim

Muenchen

Figure 3: The Gas Station problem

Problem: How to make this network accessible by car, i.e. how to place gas stations

such at some cities such that a car driving around never runs out of fuel, irrespectively
which tour it takes. the goal is tominimizethe number of gas stations.

Vertex Cover Problem: Given a graphG= (V;E) with a weight functionc : V! R+
on the vertices, determine a setS�V of minimum weight such that for any edge at least

one of its endpoints is inS. If c(v) = 1 8v2V we call this theCardinality Vertex Cover

problem.

The Cardinality Vertex cover expresses our Gas station problem in an abstract way.
Unfortunately the CVC is NP-complete, and even worse, one can show that under the

assumption thatP 6= NP, no polynomial time algorithm can approximate the problem
better than 1:1666.

Algorithm Proposal

1. C /0

2. whileE 6= /0 do

26

(a) choosee= (v;w) 2 E

(b) C C[fu;vg
(c) remove all edges adjacent tou;v

3. od

4. returnC

Lemma 0.12. The above algorithm yields a2-approximation to the cardinality vertex

cover problem, i.e.jCj6 2jCoptj, where Copt denotes the optimal, i.e. smallest set that is

a vertex cover for G.

Proof. The algorithm picks a set of non-adjacent edges – a so-calledmatching. This

matching ismaximal, i.e. no further edge can be added. ConsiderCopt; clearlyCopt must
contain at least one vertex for each edge of the matching, i.e. jCoptj > jCj=2 or in other

wordsjCj6Copt�2.

Can we improve ?

Maybe the algorithm is a lot better than its analysis, and performs much better in reality.
Unfortunately that is not true. Consider the complete bipartite graphBn;n. A maximal

matchingM always has sizen, C computed by our algorithm therefore 2n. Copt consists
of the vertices on one side only, and therefore has sizen, so our approximation guarantee
is tight for this example.

In our algorithm we used the size of a maximal matching as a lower bound for the

optimal solution; so maybe we can design a different algorithm which computes a cover
C which is closer to the size ofM and therefore improve the approximation ratio. e.g.jCj= 3

2jMj; unfortunately this does not work either.

Consider the complete graphKn;n, n odd. A maximal matching can have size at most
n�1

2 , an optimal cover has sizen�1, though. So using matching as a lower bound we will
never be able to show a better bound than 2.

Exercise 15.Consider the following factor 2 approximation algorithm for the cardinality

vertex cover problem: Find a depth first search tree in the given graphG and output the
set, saySof of all the non-leaf vertices of this tree. Show thatS is indeed a vertex cover

for G andjSj6 2jCoptj. Hint: Show thatG has a matching of sizejSj.

§ 0.3 APPROXIMATION ALGORITHMS 27

0.3.2 Some Notation

Notion In our example

Optimization ProblemΠ ”min. vertex cover in graphs”

InstancesξΠ ”all graphs”

feasible solutionsS(I) of an instanceI 2 ξΠ ”for a graph (� instance) all vertex covers”

objective functionφ : S(I)! R ” jS(I)j= jVj cardinality of vertex cover”

optimization criterion: MIN/MAX ”MIN”

Goal 8I 2 ξΠ, find s2 S(I) called OPT(I) s.t.

(MAX) φ(s)> φ(s0)8s0 2 S(I)
(MIN) φ(s)6 φ(s0)8s0 2 S(I)

Typically this is hard for most problems (in particular real-world!); so we are also

happy withδ-approximations; i.e. an Algorithm such that8I 2 ξΠ, we get anS(I) with:

(MAX) φ(s)> δ �φ(s0)8s0 2 S(I);δ 2 [0; : : : ;1℄
(MIN) φ(s)6 δ �φ(s0)8s0 2 S(I);δ> 1

We call such an algorithmδ-approximation algorithm.

0.3.3 Precedence Constraint Scheduling

Example Assume you want to assemble a car from its numerous parts. Youknow where
each part belongs to, but still you cannot just start assembling as some parts have to be

put together before others. These aredependencieslike for example you do not want to
mount the engine into the car before the engine itself has been assembled from its sub-

parts. Furthermore you havem engineers whose job is it to put together the whole car, so
at any given point in time, at mostm tasks can be worked on simultaneously. For reasons
of simplicity we assume that each task takes one timeunit. The goal is to complete the

assembly of the car as soon as possible.

More formally the problem can be expressed as a directed acyclic graphG = (V;E)
where each nodev2V corresponds to a task, and there is an directed edge(v;w) if taskv

has to be completed before taskw. We are looking for a function (schedule)S : V ! N ,
which assigns each task a time at which this task is worked on,but under the condition

that:

28 � 8k : jfv : S(v) = kgj 6 m (”at no point in time no more thanm jobs are currently
being worked on”)� 8(v;w) 2 E, S(v)< S(w) (”precedence constraint is fulfilled”)

The goal is to minimize maxfS(v) : v2Vg, i.e. the last point in time when tasks are
being worked on.

For simplicity we assume that there is a unique source nodes which has precedence

before all other tasks that have no incoming edge.

An Algorithm

1. 8v2V compute the longest path froms to v, call this distance the label ofv

2. let di be the number of vertices labelled withi; use the firstdd1
me time units for

vertices at level 1, the nextdd2
me time units for level 2, and so on ..

Lemma 0.13. Let L be the length of the constructed schedule of our algorithm, i.e. L=
maxfS(v) : v2Vg, then we have L6 2 �Lopt.

Proof. Let t be the max. level of a node, then we have

1. Lopt> t

2. Lopt> n
m = d1+d2+���+dt

m

3. L6 d1+d2+���+dt
m + t

And therefore clearlyL6 2 �Lopt.

So this simple algorithm yields a 2-approximation. One can show that under the
assumption thatP 6= NP it is not possible to get a polynomial time algorithm that yields a

better approximation guarantee than 4=3.

The 4=3 Lower Bound We will use the following NP-hard problem to show that no bet-

ter approximation guarantee than 4=3 for the Precedence Constraint Scheduling problem
can be obtained unlessP= NP.

k-Clique: Given a graphG(V;E) and an integerk, decide whether there exists a clique of

sizek in G.

§ 0.3 APPROXIMATION ALGORITHMS 29

The idea will be as follows: For a given Instance(G(V;E);k) of thek-Clique problem
we construct an instance of the precedence constraint scheduling problem which� can always be solved in 4 time units� can be solved in 3 time units if and only ifG contains ak-clique

Therefore, if a (polynomial-time) approximation algorithm for the PCS problem had an

approximation guarantee better than 4=3, it would have to report the 3 time units schedule
for graphs containing ak-clique) we would have found a polynomial-time algorithm for

a NP-hard problem.

The set of tasks will consist ofV [E[F1[F2[F3, whereFi are filler tasts for stepi.
The precedence constraints are:� v! e if v is one of the endpoints ofe (there will be onlyv’s in the first round)� all tasks inFi before all tasks inFi+1, i 2 f1;2g

Furthermore we choose the number of machinesm andjFi as follows:

1. m= k+ jF1j () in first round, onlyk ’real’ things fromV can be processed)

2. m= jF2j+(n�k)+ k(k�1)
2

3. m= jEj� k(k�1)
2 + jF3j

4. jFij> 1

Lemma 0.14.The constructed precedence constraint scheduling problemcan always be

processed in4 rounds.

Proof. First round:F1 andk nodes ofV. Second round:F2 and(n�k) nodes ofV. Third

round:F3 and some of the edges. Fourth round: remaining edges.

Lemma 0.15. If there exists a clique of size k in G, we can process the problem in 3
rounds.

Proof. First round: Thek nodes of the clique andF1. Second round: The edges of the
clique and the remaining nodes andF2. Third round: The remaining edges andF3.

Lemma 0.16. If we can process the problem in3 rounds, there exists a clique of size k in

G.

30

Proof. A 3-round solution has to processm things in each round. In the first round, only
vertices andF1 can be processed. LeV 0 be the set of processed vertices in round 1,jV 0j=
k. In round 2 one has to processF2, the remaining nodes andm�jF2j+(n� k) = k(k�1)

2
edges. But that many edges are only allowed to be processed, if they are all between the
verticesjV 0j, i.e.V 0 has to be a clique.

0.3.4 Independent/Stable Set

Example Consider the following problem. Given a collection of circles in the plane –

possibly intersecting – select a subsetSof these circles such that none of the circles inS

intersect. ChooseSas large as possible.

Figure 4: A collection of circles, some of them selected (red).

We can formalize this problem as a graph problem by associating a vertex with each

circle and putting an edge(v;w) if the corresponding circles intersect. The goal is then to
find a large subset of vertices such that none of them is connected by an edge.

Independent/Stable Set Problem:Given a graphG= (V;E), determine a setS�V

of maximum cardinality such that8v;w2 S, (v;w) =2 E.

Unfortunately this problem is not only NP-hard but basically unapproximable, so no

polynomial time approximation algorithm withδ = n1�ε for any ε > 0 is known unless
some complexity classes coincide which are believed not to.The problem is equivalent to

the maximum clique problem on the complementary graph (which might be better known
as a hard problem).

Still this does not mean that for practical purposes there isno hope to get good solu-

tions for independent set problems. If the underlying graphhas some special properties,

§ 0.3 APPROXIMATION ALGORITHMS 31

one can even show some theoretical guarantees.

The most obvious idea for a heuristic for the stable set problem in a graph — especially

if it is a graph of bounded maximum degree – is to use the following greedy approach:

1. S /0

2. v some vertex inG with minimum degree

3. S[fvg; G G�fvg�S(w;v)2E w

4. if G 6= /0 goto 2.

The algorithm always takes the vertex with smallest degree and adds it to the stable set
Sdetermined so far, then removes this vertex and all its neighbours and repeats. Clearly,

the output of this algorithm is a stable set inG. Furthermore if there is an upper bound on
the degree of the vertices inG, we obtain:

Lemma 0.17. Let G= (V;E) be a graph with maximum degree∆. Then the greedy

algorithm computes a independent set of size at least1=∆ �OPT.

Proof. Exercise !

For example, it sometimes helps to consider the ILP formulation of the problem:

max ∑
v2V

yv (0.1)fu;vg 2 E : yu+yv 6 1

u2V : yu 2 f0;1g:
Of course, solving this ILP is still NP-hard for most graph classes, but the linear

relaxation can be solved in polynomial time and possibly used to obtain good solutions in

practice.

Lecture July, 3rd

Recap: Cardinality Vertex Cover, Precedence Constraint Scheduling, Indep./Stable Set,
APX-Algs.; non-approx proof for PCS

0.3.5 The Metric Travelling Salesperson Problem

Given a complete undirected graphG= (V;E), V = fv1;v2; : : : ;vng with costsci j for
each edgefi; jg andci j +c jk > cik, determine a closed pathπ = vi0vi1 : : :vin�1vi0 such thatS

vi j =V and∑ j=0:::n�1ci j i(j+1)%n) is minimized.

32

This problem is a classical NP-complete problem, and even worse, unlessP 6= NP,
there is no polynomial-time approximation scheme for this problem.

In the following we will first describe a 2-approximation andthen improve this to a
1.5-approximation algorithm.

A 2-approximation

1. Compute a minimum spanning tree inG

2. Double all edges of the tree and construct a closed tour by adepth-first search

3. Eliminate reoccurrences of nodes

Elimination of reoccurrences of nodes Let vi1;vi2; : : :vi j ; : : : ;vik; : : : be the current tour,
k minimal with vi j = vik, j < k (the first repeated node). Then repeat the subsequence

vik�1vikvik+1 by vik�1vik+1. We still have a tour through all nodes and the cost cannot in-
crease since the triangle inequality holds.

Clearly the minimum spanning tree is a lower bound on the costof an optimal tour.

The first initial tour constructed therefore has at most twice the weight of the optimal tour
and is only decreased during the elimination steps) 2-Approximation.

Lecture July, 8rd

Recap: 2-APX for TSP

A 1.5-approximation

One can improve the above approach as follows:

1. Compute a minimum spanning treeT in G

2. LetVodd be the set of vertices with odd degree (jVoddj is even!)

3. Construct a matchingM of the vertices inVodd of minimal weight, add them to the

tree edges

4. Construct a closed path on the tree and matching edges

5. Eliminate reoccurrences of nodes

Lemma 0.18.The weight of M is at most half the weight of the optimal TSP tour in G.

§ 0.3 APPROXIMATION ALGORITHMS 33

Proof. Consider the optimal TSP tour inG and cut it at the nodes inVodd into several
sequences. AsjVoddj even, we have an even number of sequences. Consider the setA

consisting of the 1st,3rd, 5th, . . . sequence and the setB consisting of the 2nd, 4th, 6th,

. . . sequence. EitherA or B must have weight at most half the weight of the optimal TSP
tour in G. Assume this isA. Then replace each chosen sequence by one direct edge

connecting its endpoints. This edge is not longer than the sequence due to the triangle
inequality. The set of all these edges form a matching for thevertices inVodd of weight

no more than half the weight of the optimal TSP tour inG.

Other Variations of the problem� G is a geometric graph, i.e. the vertices correspond to a set ofpoints in the plane and

the edge weights to their respective distances. For this case, a(1+ε) approximation
scheme exists.� G is a directed graph, possibly with asymmetric edge costs, but satisfying the trian-

gle inequality. For this case, a 0:999logn approximation exists.� For arbitrary graphs, no approximation is possible unlessP 6= NP.� One can also consider theMaximizationversion of the problem.

Exercise 16.Show that the TSP problem on graphs with symmetric edge costsbut not sat-

isfying the triangle inqequality cannot be approximated within any factor.Hint: Assume
there is a polynomial-time approximation algorithm which computes a solution within a

factor of α of the optimal solution (whereα does not need to be a constant). Use this
approximation algorithm to solve the Hamiltonian Cycle problem.

0.3.6 Scheduling of independent tasks

Given a set of jobs with associated processing timesw1;w2; : : :wn andm machines,

assign each job to a machine such that the makespan is minimized, i.e. determineS :f1; : : :ng! f1; : : :mg with maxk ∑i;S(i)=kwi is minimal.

Consider the following simple approximation algorithm:

1. Sort the jobs in decreasing size, i.e.w1> w2> : : :> wn

2. Schedule the jobs one after another, assignwi to the machine which is least used at

that moment.

34

Let L be the length of the computed schedule,Lopt the length of the optimal schedule.
We claim:

Lemma 0.19.L6 (4
3� 1

3m)Lopt

Proof. We will use induction overn, the number of jobs. Clearly, the claim holds for
n= 1.

n! n+1: Look at the schedule and in particular the jobn+1. If it finishes before

timeL, consider the problem of the firstn tasks. Here we have

L(w1; : : : ;wn)6 (4
3
� 1

3m
)Lopt(w1; : : : ;wn)6 (4

3
� 1

3m
)Lopt(w1; : : : ;wn;wn+1)

Now assume that jobn+1 is completed at timeL, i.e. jobn+1 determines (maybe

with others) the makespan of the computed schedule. Observethat up to timeL�wn�1,
all machines are fully loaded, thereforew1+w2+ : : :wn > m� (L�wn+1). Furthermore

we haveLopt> w1+w2+:::wn+wn+1
m . Hence

L6 w1+w2+ : : :wn

m
+wn+1 = w1+w2+ : : :wn

m
+(1+ 1

m
� 1

m
)wn+16 Lopt+ m�1

m
wn+1

Now consider two cases:

Case 1 –m�1
m wn+1 6 (1

3� 1
3m)Lopt: ok

Case 2 –m�1
m wn+1 > (1

3� 1
3m)Lopt: This meanswn+1 > Lopt

3 , Lopt<3wn+1, so the optimal
schedule processes6 2 jobs on each machine. Assume w.l.o.g. thatn+ 1 = 2m

(otherwise add jobs of length 0). Our algorithm pairs jobi with job w2m�i+1 on
machinei, 16 i 6 m. We claim that this schedule is optimal. Assume otherwise
and leti0 be the machine that maximizeswi +w2m�i+1. The optimal schedule has to

process 2 jobs on each machine, so let us ask with which other job does the optimal
schedule pair jobs 1;2; : : : ; i0 ? Clearly it cannot pair them amongst each other; in

fact if the optimal schedule is shorter, it has to schedule all thesei0 jobs with some
jobs after job 2m� i0+1. But there are onlyi0�1 of them. Hence one of the first

i0 jobs has to be paired with a longer job and hence yields a even larger makespan.

So we have essentially a 4=3-approximation algorithm. But maybe we can do even

better . . .

§ 0.3 APPROXIMATION ALGORITHMS 35

An approximation Scheme

Basic idea: schedulew1; : : : ;wk optimally using a brute-force approach (O(mk)), then

complete with the above approximation algorithm. We claim the following lemma:

Lemma 0.20.L6 (1+ m
k)Lopt

Proof. Let L0 be the length of the optimal schedule forw1; : : : ;wk. If L0 = L we are

done, otherwise letj > k be a job that determinesL. Then we haveL = L�w j +w j 6
Lopt+wk+16 (1+ m

k)Lopt. The last inequality holds becausew j 6wk+1 and at timeL�w j

all machines are used and hence also at timeL�wk+1. So we getLopt > w1+:::wk+1
m >(k+1)wk+1

m .

Using this scheme, we can get as good an approximation as we want. For a given
ε > 0, we choosek such thatmk 6 ε. Hence fork = dm=εe we obtain an algorithm with

L 6 (1+ ε)Lopt and a running time of O(m
m
ε +nlogm). This is called anapproximation

scheme.

0.3.7 The Knapsack problem

Imagine you are a thief and on a burglary trip. You have entered a house with a lot of

valuable things, but unfortunately more than you can carry in your knapsack. So there are
n items each of which has a valueci and a weightwi . Clearly your goal is to steal a set

I � f1; : : : ;ng of things which maximizes your profit, i.e. maxP(I) = max∑i2I ci under
the constraint that all the items fit in your knapsack of sizek, i.e. w(I) = ∑i2I wi 6 k. We
assumeci ;wi ;k2 R.

We will first describe an algorithm which solves the problem exactly. Conceptually

we fill a table of sizen�copt, where at positionw(l ;c) we store the minimal weight (and
the content) of a knapsack of costc using only a subset of items fromf1; : : : ; lg. So clearly

w(1;c) = w1 for c= c1, w(1;0) = 0 andw(1;c) = ∞ otherwise. The value ofw(l ;c) can
then be determined asw(l ;c) = minfw(l �1;c);w(l �1;c�cl)+wlg.

After filling the table it remains to find the maximalc with w(n;c)6 k. This is in fact
the optimal solution. The running time of this algorithm is the size of the table,n � copt.

Note that this is only apseudo-polynomialalgorithm as it depends on the size of the
input/the optimal solution.

This approach is calleddynamic programmingand is a very useful paradigm that can

be applied to many other optimization problems (at least as asubroutine).

36

Exercise 17.In the lecture you have seen a dynamic programming approach for the knap-
sack problem which one by one computed the ’lightest’ subsetof itemsf1; : : : ; lg whose
value was exactlyc. Another approach would be to compute one by one the most valuable

subset of itemsf1; : : : ; lg whose weight is exactlys. Describe such a scheme in detail and
analyse its running time.

An approximation Scheme

In the follwing we will describe a approximation scheme thatwill run in polynomial time
and can achieve an arbitrary good approximation to the optimum solution.

1. Choose a scaling factorS2 N
2. Determine the optimal solutionI 0 for the modified problem with profitsbci

S
3. ReturnI 0

We now want to bound the obtained solution in terms of the optimal solution setI for the
original problem.

L = ∑
i2I 0ci = S�∑

i2I 0(bci

S
+ εi) = S�∑

i2I 0bci

S
+S�∑

i2I 0 εi> S�∑
i2I
bci

S
> S�∑

i2I
(ci

S
� εi) = S�∑

i2I

ci

S
�S�∑

i2I
εi > Lopt�S�n

So if we chooseSsuch that S
Lopt
6 ε, i.e. S= b εLopt

n , we getL> (1�ε)Lopt with a running

time ofO(n �coptskal) = O(n � copt
S) = O(n2=ε).

This is called afull approximation schemeas the dependency on 1=ε is polynomial

(compare to the approximation scheme for the scheduling of independent tasks problem;

there, 1=ε appeared in the exponent !). Still, there is a slight problemwith the choice of
S, asLopt is not known in advance, of course.

Exercise 18.Consider the following greedy algorithm for the knapsack problem:

1. Sort the items according to their profit-to-weight ratioci=wi .

2. Pick the items one-by-one starting with the highest profit-to-weight ratio, until the

knapsack is full

§ 0.3 APPROXIMATION ALGORITHMS 37

Can you prove a constant approximation guarantee for this algorithm ? If so, what is it ?
If no, why not ?

Exercise 19.Consider the following modified greedy algorithm for the knapsack prob-
lem:

1. Sort the items according to their profit-to-weight ratioci=wi .

2. Pick the items one-by-one starting with the highest profit-to-weight ratio, until the

knapsack is full

3. Return the current knapsack or the most profitable single element that fits into the
knapsack, whichever is more profitable.

Prove that this algorithm is a 0:5-approximation.Hint: Consider the fractional version of
the knapsack problem where items might be selected fractionally.

The Nemhauser/Ullman algorithm (Presentation due to Beier/Vöcking)

In the following we present a different method to solve the knapsack problem exactly due

to Nemhauser/Ullman. Their algorithm is based on the notionof pareto-optimalsolutions.
A solutionI 0� f1; : : : ;ng is calledpareto-optimalor adominating set, if 6 9I 00� f1; : : : ;ng
with w(I 00) 6 w(I 0) and p(I 00) > p(I 0) (”there is no more profitable solution of no more
weight”). A setI 0 that is not a dominating set cannot be optimal for the knapsack problem,
regardless of the specified knapsack capacity.

The following algorithm computes the sequence of dominating sets. Fori 2 f1; : : : ;ng,
letS(i) denote the sequence of dominating subsets off1; : : : ;ng in increasing order of their
weights. GivenS(i), S(i +1) can be computed in the following way. First duplicate all

subsets inS(i) and then add itemi +1 to each of the duplicated sets. So we obtain two
ordered sequences of sets. We merge the two sequences (as in merge sort) and remove
dominated subsets on the way. The result is the ordered sequenceS(i +1) of dominating

sets off1; : : : ; i +1g.
For the purpose of illustration and a better understanding,let us take a different view

on this algorithm. Fori 2 f1; : : : ;ng, let fi : R ! R be a mapping from weights to profits

such thatfi(t) is the maximum profit over all subsets off1; : : : ; ig with weight at mostt.
Clearly fi is a non-decreasing step function changing at weights that correspond to dom-

inating subsets. In particular, the number of steps infi equals the number of dominating

38

sets over the items inf1; : : : ; ig. In the algorithm by Nemhauser/Ullman,fi+1 is then
determined by the upper envelop offi and fi shifted by the vector(wi ; pi).

So what is the running time of the Nemhauser/Ullman algorithm ? S(i + 1) can be
computed in time linear injS(i +1)j, i.e. linear in the number of dominating subsets over

the items 1; : : : ; i. As the optimal knapsack is one of the subsets in the listS(n), generating
S(n) solves the knapsack problem exactly.

Theorem 0.21.For every i2 f1; : : : ;ng let q(i) denote an upper bound on the number of

dominating sets over the items in1; : : : ; i. Then the Nemhauser/Ullman algorithm com-

putes an optimal knapsack filling in time O(∑i=n�1
i=1 q(i)). If we have q(i +1) > q(i) this

is O(n �q(n)).
In the worst-case, the number of dominating sets isΩ(2n) (the problem is NP-hard

after all). But one has observed that for random instances ofthe problem, the number of

dominating sets is rather low and therefore the Nemhauser/Ullman algorithm runs very
fast. Only recently Beier/Vöcking could actually prove this behaviour theoretically. They
show that for arbitrarily chosen weights (by an adversary) and profits drawn uniformly at

random from[0;1℄, the expected length ofSi is O(n3) and hence the Nemhauser/Ullman
algorithm runs inO(n4). In fact they prove an even stronger result for arbitrary probability

distributions.

Theorem 0.22.For arbitrary weights and profits chosen uniformly at randomin [0;1℄,
the knapsack problem can be solved exactly in expected time O(n4).

Details of analysis left out

Lecture June, 15th: Recap: Knapsack, in particular Nemhauser/Ullman; state result

by Beier/Vöecking

0.3.8 Set Cover

Consider the following problem. Given a universeU of n elements, a collection of
subsets ofU , S = fS1; : : : ;Skg, and a cost functionc : S ! Q+ , find a minimum cost

subcollection ofS that covers all elements ofU .

In the following we will see two algorithms for this problem which both rely (at least
in the analysis) on the integer linear programming (ILP) formulation of the problem and

its dual. How could we formulate the set cover problem as an ILP ?

§ 0.3 APPROXIMATION ALGORITHMS 39

min ∑
S2S xS�cS (0.2)

u2U : ∑
u2S

xS > 1

S2 S : xS 2 f0;1g:
Solving ILPs in general is quite hard, so one often considersthe LP relaxation, where

the integrality constraints are dropped, here we get the following fractional covering LP:

min ∑
S2S xS�cS (0.3)

u2U : ∑
u2S

xS > 1

S2 S : xS > 0

Of course, this relaxation might allow better (i.e. cheapersolutions) as the integral

problem, so this only yields alower bound in terms of the cost of the solution. Consider
the following example:U = fe; f ;gg andS1 = fe; fg, S2 = f f ;gg, S3 = fe;gg, each of

unit cost. An integral cover must pick two of the sets for a cost of 2. But picking each set
by an extent of 1=2 yields a feasible fractional cover of cost 3=2.

We have learned that every LP has its dual which in this case looks as follows:

max ∑
u2U

yu (0.4)

S2 S : ∑
u2S

yu 6 cS

u2U : yu > 0

This LP describes a packing problem, where the goal is to pickas many elements
from the universe such that none of a certain number of subsets is ’overpacked’. We have

seen a very similar LP before for the stable set problem, which is also a special instance
of a packing problem. In fact, set cover and packing problem are dual to each other.

Furthermore, we have learned∑u2U yu 6 ∑S2S xScS for all feasible solutionsx;y of the
two LPs.

A greedy algorithm

The following greedy algorithm computes a cover (not necessarily optimal):

40

1. C /0

2. whileC 6=U do� find the most cost-effective set in the current iteration, say S� let α = cost(S)jS�Cj , i.e. the cost-effectiveness ofC� pick S(xS= 1) and for eachu2 S�C, set price(u) = α (yu = α
Hn

)� C C[S

3. output the picked sets

Lemma 0.23.The greedy algorithm achieves an approximation ratio of Hn.

Proof. We show the approximation ratio by showing thatx andy as set by the greedy
algorithm form feasible solutions to the set cover and packing LP andHn �∑u2U yu =
∑S2S xScS.

Feasibility ofx follows from the description of the algorithm. Equally clear is that at
all timesHn �∑u2U yu = ∑S2S xScS holds. So it remains to prove that for everyS2 S , the
respective packing constraint in the dual LP is satisfied.

Sort the elements ofS according to when they are covered during the course of the

algorithmu1; : : : ;ul . Consider the iteration when our algorithm covers elementei . At this
point,Scontains at leastk� i +1 uncovered elements. ThereforeScould coverei at this

time at an average cost of at mostcS=(k� i +1). As the algorithm always picks the most
cost effective set, we getyei 6 1

Hn

cS
k�i+1. So overall we get

l

∑
i=1

yei 6 cS

Hn
� (1

l
+ 1

l �1
+ � � �+ 1

1
) = Hl

Hn
cS6 cS

In the greedy algorithm, the (I)LP formulation was only usedto proof a bound on

the approximation ratio, but not part of the algorithm. In the following we will see an
approach which actually computes the solution to this LP to obtain a set cover solution.

Remark: In the lecture have seen an algorithm for solving LPs in subexponential, but

not polynomial time. There are algorithms, though, which can solve linear programming
problems in polynomial time (Ellipsoid and interior point methods). So for all algo-

rithms that follow and make use of an LP solution, we assume that it can be computed

§ 0.3 APPROXIMATION ALGORITHMS 41

in polynomial time. In practice though, the Simplex methods– in spite of the superpoly-
nomial worst-case running-time – perform very well and are often superior to the above
guaranteed-polynomial-time methods.

Simple LP rounding for the Set Cover problem

In the greedy algorithm, the LP relaxation was only used for the analysis, but given an
optimal solution to the LP relaxation, how could we turn thatinto a feasible integral

solution to the set cover problem, possibly with an approximation guarantee ?

In the following denote byf the maximal number of occurrences of an elementu2U

in the setsS1; : : : ;Sk, i.e. f = maxu2U jfSi : u2 Sigj. We consider the following simple
algorithm:

1. Find an optimal solution to the LP relaxation of the set cover problem

2. Pick all setsS for which xS> 1= f

Lemma 0.24. The simple1= f LP-rounding algorithm achieves an approximation factor

of f .

Proof. Let C be the collection of picked sets. Consider an arbitrary elementu. Sinceu is
in at mostf sets, at least on of the respective sets must be picked to an amount of> 1= f .

HenceC is a valid cover. On the other hand, the value of eachxS is increased by at most a
factor of f , so the overall objective function value increases by at most a factor of f .

Exercise 20.Consider the vertex cover problem that we have seen before. What approx-
imation guarantee does the above algorithm yield for the vertex cover problem ?

Randomized LP rounding for the Set Cover problem

A more sophisticated way to turn the LP solution into a feasible integral solution is to
interpret the LP values as probabilities and flip coins accordingly.

Let x� = p be the optimal solution to the LP relaxation of the set cover problem,

OPTLP its objective function value. For each setSwe pick it with probabilityx�S= pS into
C . What is the expected cost ofC ?

E[cost(C)℄ = ∑
S2S pS�cS= OPTLP

42

The collectionC not necessarily coversU , but let us look at the probability by which
an elementu 2 U is covered. Assumeu appears inl setsS1; : : : ;Sl . As u is fraction-
ally covered, we havep1+ p2 + � � �+ pl > 1. As the probability foru being covered is

minimized if pi = 1=l , we get the following bound:

Pr(a covered byC)> 1� (1� 1
l
)l > 1� 1

e

The last inequality follows from(1+ 1
n)n < e< (1+ 1

n)n+1 sincee< (n+1
n)n+1,(n

n+1)n+1 < 1=e, (n+1
n+1� 1

n+1)n+1 < 1=e. This means, each element fromu is covered

with a constant probability. To obtain a valid set cover, independently pickclogn such
subcollections and compute their union, sayC 0, wherec is a constant such that(1

e
)clogn6 1

4n

at this point we have Pr(a not covered byC 0)6 1
e

clogn 6 1
4n and summing over allu2U

we get:

Pr(C 0 not a valid set cover)6 n � 1
4n

= 1
4

For the cost of the obtained solution we get

E[cost(C)0℄6 c� logn �OPTLP

Applying Markov’s inequality (Pr(X > t)6 E(X)
t) with t = OPTLP �4clogn we get

Pr[cost(C)0 > 4 �clogn �OPTLP℄6 1
4

So the union of the two bad events happens with probability atmost 1=2, and therefore

Pr(C 0 a valid set cover with cost6 4 �clogn �OPTLP)> 1
2

We can verify in polynomial time whetherC 0 satisfies both conditions and repeat if

not. The expected number of repetitions needed until we succeed is at most 2.

0.4 Online Algorithms

So far we have looked only at algorithms which receive their entire inputs at the beginning.

We will now turn to algorithms that receive and process theirinputs in partial amounts.
These algorithms are calledOnline Algorithms. We will analyse them with respect to the

bestoffline algorithmwhich knows the whole input in advance.

§ 0.4 ONLINE ALGORITHMS 43

0.4.1 The Online Paging Problem

Consider a computer memory organized in two levels: there isacacheor fast memory
that can storek memory items and a slower main memory, that can potentially hold an

infinite number of items. Each item represents a page of virtual memory (the cache can
storek of them). A paging algorithm decides whichk items to keep in the cache at each

point in time. We have a sequence of requests, each of which specifies a memory item.
If the item requested is currently in the cache, we call this ahit and no additional cost is

incurred. If the item is not present in the cache, it has to be loaded from main memory at
unit cost and – if necessary – one other item has to be evicted from the cache. The cost
measure for paging is the number of misses on a sequence of requests.

The crucial action of an online algorithm is to decide which item to evict from the

cache. While an offline algorithm knows all future requests and can make use of this
knowledge for the decision, the online algorithm cannot.

The following are some typical deterministic online algorithms that are used in com-

puter systems:

LRU Least-Recently-Used: evict the item whose most recent request occurred furthest

in the past

FIFO First-In-First-Out: evict the item that has been in the cache for the longest period

LFU Least-Frequently-Used: evict the item in the cache that hasbeen requested least

often

Now consider a sequenceρ1;ρ2; : : : ;ρN of requests. What is a good offline algorithm
which minimizes the number of misses ?MIN always evicts the item whose next request
occurs furthest in the future.MIN needs to know about the request sequence in advance

and in fact is optimal w.r.t. the number of misses. For an algorithm A to be examined,
let fA(ρ1; : : : ;ρN) be the number of misses which happen when using algorithmA to evict

items, fOPT(ρ1; : : : ;ρN) the number of misses for algorithmMIN .

Definition 0.25. A deterministic online paging algorithmA is calledC -competitiveif

there exists a constantb such that on every sequence of requestsρ1; : : : ;ρN we have

fA(ρ1; : : : ;ρN)6 C � fOPT(ρ1; : : : ;ρN)+b

whereC andb must be independent ofN.

44

So the competitiveness measures the performance of an online algorithm in terms of
the worst-case ratio of its cost to that of the optimal onlinealgorithm on thesamerequest
sequence. This type of analysis is also calledcompetetive analysis. Another way of

analysing an online algorithm is to look at its expected number of misses that occur on a
request sequence generated according to a probability distribution. This is calledaverage

case analysis. We will focus oncompetetive analysisfirst.

Lemma 0.26.The LRU algorithm is k-competetive.

Proof. Consider a request sequenceρ = ρ1; : : : ;ρN. Without loss of generality assume
that LRU and MIN start with the same cache contents.

We partitionρ into phasesP(0);P(1); : : : such that LRU has at mostk misses onP(0)
and exactlyk misses onP(i) for i > 0. We start at the end ofρ and scan the request

sequence. Whenever we have seenk misses made by LRU we switch to a new phase. It
remains to show that MIN has at least one miss per phase.

For phaseP(0) no argument is required as MIN gets a miss when LRU does (they
start with the same cache contents). Now look at a phaseP(i), i > 0. Let ρti be the first

andρti+1�1 the last request in that phase. Furthermore letx= ρti�1. We claim that inP(i)
there are requests tok distinct items that are all different fromx. If so, MIN clearly also

has a miss which finishes the proof.

If the k misses that LRU produces are all caused by distinct items (also different from
x), we are done. Otherwise, assume there is an itemy in P(i) on which LRU misses twice:

so assume LRU has a miss onρs1 = y andρs2 = y with ti 6 s1 < s2 < ti+1. After the
request at times1, y is in the cache. When it is thrown out at some times1 < t < s2, this
happens because it is the least recently requested item at that time, i.e. between times

s1+1 andt, at leastk distinct items must have been requested, all of which were different
from y. So includingy, at leastk+ 1 different items must have been requested during

phaseP(i) at leastk of which are different fromx.

If there is no itemy that is missed twice, but one of the misses of LRU is onx during
phaseP(i), the same argumentation holds.

As it turns out, one cannot do (deterministically) than LRU as the following lemma
proves.

Lemma 0.27. Let A be a deterministic online paging algorithm which isC -competetive.

ThenC > k.

§ 0.4 ONLINE ALGORITHMS 45

Proof. Let S= fx1; : : : ;xk;xk+1g be a set ofk+1 items. W.l.o.g. we assume thatA and
MIN havex1; : : : ;xk in their cache at the beginning. Consider the request sequence where
the next request is always the one that is not inA’s cache.

Clearly A misses on each request. When MIN has a miss on requestρt, it evicts an

item that is not requested in the nextk�1 requests, so fork consecutive requests MIN
produces only one miss.

Still we have not shown that MIN is indeed an optimal algorithm for the paging prob-

lem.

Lemma 0.28.On every request sequence MIN produces the minimum number ofmisses.

Proof. The idea of the proof will be to consider any other algorithmA which serves the

first t requests,t > 0 in the same way as MIN but produces less misses than MIN, and
modify it to an algorithmA0 which serves the firstt +1 the same way MIN does without

increasing the number of misses. Repeating this idea several times shows thatA can be
transformed into MIN without increasing the number of misses.

Let x be the item requested byρ(t+1). Assume MIN evictsu for serving this request,
A evictsv, v 6= u. DefineA0 as follows:A0 servesρ(t +1) by evictingu and then works in

the same way asA until one of the two events happens:� there is a miss at a request to pagey, y 6= v andA evictsu. In this case,A0 evictsv

andA0 is in the same state asA and has incurred the same number of misses.� there is a miss at a request to pagev, andA evictsz. In this caseA0 evictszand loads
u; nowA0 is in the same state asA and has incurred the same number of misses

By definition of MIN, a request tou cannot occur earlier than a request tov.

0.4.2 Randomized Paging

We have seen that LRU with itsk-competetiveness is the best possible. But the proof
that no better competitiveness thank is possible only holds fordeterministicalgorithms.

So if we allows randomness in the decisions of the paging algorithm, we might achieve
better bounds.

We start with a formal definition whatc-competetiveness means for a randomized

algorithm.

46

Definition 0.29. A randomized online paging algorithmA is calledC -competitiveif there
exists a constantb such that on every sequence of requestsρ1; : : : ;ρN we have

E[fA(ρ1; : : : ;ρN)℄6 C � fOPT(ρ1; : : : ;ρN)+b

where the expectation is taken over the random choices ofA andC andb must be inde-

pendent ofN.

Now consider the simplest randomized paging algorithm called RANDOM which

always evicts arandompage from the cache when needed. Unfortunately this algorithm
will not help a lot as the following lemma by Raghavan/Snir shows.

Lemma 0.30.RANDOM is no better than k-competitive.

Proof. Consider the request sequenceρ = x1x2x3 : : :xk(y1x2 : : :xk)l (y2x2 : : :xk)l : : : .
Clearly OPT has one miss in each subsequence(y1x2 : : :xk)l . At the beginning of each

subsequence, RANDOM has at mostk�1 of the requested items in memory. So a miss
has to occur during that subsequence. We call such a miss agood miss, if the item not

requested in that subsequence is evicted. During thel repetitions of the subsequence, at
least one miss occurs in each round until a good miss happens.If k�1 of the requested
items are in cache, the probability for evicting the right item when a miss occurs is 1=k.

The expected number of rounds until this happens is determined by E[# rounds till good
miss]>∑l

i=0 i � (k�1
k)i�1 � 1k = 1

k�1 ∑l
i=0 i � (k�1

k)i = 1
k�1 ∑l

i=0 i �ci = 1
k�1 � lcl+2�(l+1)cl+1+c(1�c)2 =

O(k).
So simple application of randomization does not help, but a more sophisticaed variant

performs better than any deterministic algorithm.

Algorithm MARKING: The algorithm processes a request sequence in phases. At
the beginning of each phase, all items in the cache are unmarked. Whenever a page is

requested, it is marked. On a miss, a page is chosen uniformlyat random from among the
unmarked in the cache and evicted. A phase ends when all itemsin the cache are marked
and a miss occurs. Then all marks are erased and a new phase is started.

Lemma 0.31. MARKING is 2Hk-competitive.

