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Abstract

Algorithms for reconstructing a 2-manifold from
a point sample in R3 based on Voronoi-filtering
like CRUST [1] or CoCone [2] still require – af-
ter identifying a set of candidate triangles – a
so-called manifold extraction step which identi-
fies a subset of the candidate triangles to form
the final reconstruction surface. Non-locality of
the latter step is caused by so-called slivers –
configurations of 4 almost cocircular points hav-
ing an empty circumsphere with center close to
the manifold surface.

We show that under a certain mild condition
– local uniformity – which typically holds in
practice but can also be enforced theoretically,
one can compute a reconstruction using an al-
gorithm whose decisions about the adjacencies
of a point only depend on nearby points. While
the theoretical proof requires an extremely high
sampling density, our prototype implementation
– which is described in a companion paper [4] –
exhibits pretty good results on typical sample
sets and might have some potential in partic-
ular in parallel computing or external memory
scenarios due to its local mode of computation.
The full version of this paper is available under
[5].

1 Introduction

Reconstructing a surface Γ in R3 from a finite
point sample V has attracted a lot of attention
both in the computer graphics community as
well as in the computational geometry commu-
nity. While in the former the emphasis is mostly
on algorithms that work ‘well in practice’, the
latter has focused on algorithms that come with
a theoretical guarantee: if the point sample V

∗Max-Planck-Institut für Informatik, Saarbrücken,
Germany, dumitriu@mpi-inf.mpg.de
†Ernst-Moritz-Arndt-Universität, Greifswald, Ger-

many, stefan.funke@uni-greifswald.de
‡Stanford University, Stanford, CA, U.S.A.,

nikolam@stanford.edu

Figure 1: Output of the first 5 stages of our al-
gorithm for the Stanford Bunny. Due to the con-
servative adjacency creation, some faces (light) are
non-triangular.

satisfies a certain sampling condition, the out-
put of the respective algorithm is guaranteed to
be ‘close’ to the original surface.

In [1], Amenta and Bern proposed a frame-
work for rigorously analyzing algorithms recon-
structing smooth closed surfaces. They define
for every point p ∈ Γ on the surface the local
feature size lfs(p) as the distance of p to the me-
dial axis1 of Γ. A set of points V ⊂ Γ is called a
ε-sample of Γ if ∀p ∈ Γ ∃s ∈ V : |sp| ≤ ε · lfs(p).
For sufficiently small ε, Amenta and Bern define
a canonical correct reconstruction of V with re-
spect to Γ as the set of Delaunay triangles that
are dual to Voronoi edges in the Voronoi dia-
gram of V that are intersected by the surface
Γ. Unfortunately, due to certain point config-
urations called slivers – 4 (almost) cocircular
points that are nearby on the surface and have
an empty, (almost) diametral circumsphere –
it is not possible to algorithmically determine
the canonical correct reconstruction of V with-

1The medial axis of Γ is defined as the set of points
which have at least 2 closest points on Γ.
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out knowing Γ. Algorithms have been proposed,
though, that determine a collection of Delaunay
triangles which form a piecewise linear surface
that is topologically equivalent to the canonical
correct reconstruction and converges to the lat-
ter both point-wise as well as in terms of the
surface normals as the sampling density goes to
infinity (ε→ 0).

The CoCone algorithm [2] is one example; in
its last step, it first removes triangles with free
edges and then determines the final reconstruc-
tion as the outside surface of the largest con-
nected component of the remaining triangles.
Observe that this is a highly non-local opera-
tion. There have been attempts to locally decide
for each sample p which of the candidate trian-
gles to keep for the final reconstruction; such lo-
cal decisions might disagree, though, and hence
the selected triangles do not patch up to a closed
manifold. Again, the reason why local decisions
might disagree is the presence of slivers which
induce a Voronoi vertex inside the CoCone re-
gion of the involved sample points. Each in-
volved sample point has to decide whether in ‘its
opinion’ the true surface Γ intersects above or
below the Voronoi vertex and create the respec-
tive dual Delaunay triangles. If these decisions
are not coordinated contradicting decisions are
made. Not only in theory but even in practice
the manifold extraction step is still quite chal-
lenging and requires deliberate engineering to
actually work as desired.

One potential way to obtain a local man-
ifold extraction step is to decide on trian-
gles/adjacencies in a conservative manner by
only creating those triangles/adjacencies which
are ‘safe’, i.e., where essentially the respective
dual Voronoi edge/face completely pierces the
CoCone region. It is unclear, though, how much
connectivity is lost — whether the resulting
graph is connected at all and how big potential
holes/faces are. The main contribution of this
paper is to show that it is actually possible to
make local decisions but still guarantee that the
resulting graph exhibits topological equivalence
to the original surface. That is, it is connected,
locally planar, and contains no large holes.

In [6] Funke and Milosavljevic present an al-
gorithm for computing virtual coordinates for
the nodes of a wireless sensor network which
are themselves unaware of their location. Their
approach crucially depends on a subroutine to
identify a provably planar subgraph of a commu-
nication graph that is a quasi-Unit-Disk graph.

The same subroutine will also be used in our sur-
face reconstruction algorithm presented in this
paper.

While we deal with the problem of slivers in
some sense by avoiding or ignoring them, an-
other approach coined sliver pumping has been
proposed by Cheng et al. in [3]. Their approach
works for smooth k-manifolds in arbitrary di-
mension, though its practicality seems uncer-
tain. There are, of course, other non-Voronoi-
filtering-based algorithms for manifold recon-
struction which do not have a manifold extrac-
tion step; they are not in the focus of this paper,
though.

Our Contribution

We propose a novel method for extracting a 2-
manifold from a point sample in R3. Our ap-
proach fundamentally differs from previous ap-
proaches in two respects: first it mainly op-
erates combinatorially on a graph structure,
which is derived from the original geometry; sec-
ondly, the created adjacencies/edges are “con-
servative” in a sense that two samples are only
connected if there is a safe, sliver-free region
around the two samples. Interestingly we can
show, though, that conservative edge creation
only leads to small, constant-size faces in the
respective reconstruction, hence completion to a
triangulated piecewise linear surface can easily
be accomplished using known techniques. The
most notable advantage compared to previous
Voronoi-filtering based approaches is that the
manifold extraction step can be performed lo-
cally, i.e., it only relies on adjacency information
of geometrically nearby points.

While the theoretical analysis requires an ab-
surdly high sampling density – like most of the
above mentioned algorithms do – our prototype
implementation of the novel local manifold ex-
traction step (see companion paper [4]) suggests
that the approach is viable even for practical
use.

From a technical point of view, two insights
are novel in this paper (and not a result of the
mere combination of previous results): first, we
show that the neighborhood graph that our al-
gorithms constructs is locally a quasi-unit-disk
graph; it is this property that allows us to ac-
tually make use of the machinery developed in
[6]. Second, we provide a more elegant and
much stronger result about the density of the
extracted planar graph based on the β-skeleton
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and power-spanner properties; this insight also
improves the overall result in [6].

2 Graph-based, conserva-
tive Adjacencies

In this Section we present an algorithm that
given a ε-sample V from a closed smooth 2-
manifold Γ in R3 computes a faithful reconstruc-
tion of V with respect to Γ as a subcomplex of
the Delaunay tetrahedralization of V . The out-
line of our method is as follows (with the novel
steps being 2.–5.):

1. Determine a Lipschitz function φ(v) for ev-
ery v ∈ V which lower-bounds εlfs(v) (as
in [7])

2. Construct a local neighborhood graph
G(V ) by creating an edge from every point
v to all other points v′ with |vv′| ≤ O(φ(v)).

3. Compute a subsample S of (V )

4. Identify adjacencies between elements in S
based on the connectivity ofG(V ) (as in [6])

5. Use geometric positions of the points in S
to identify faces of the graph induced by
certified adjacencies when embedded on the
manifold

6. Triangulate all non-triangular faces

7. reinsert points in V − S by computing the
weighted Delaunay triangulations on the re-
spective faces (as in [7])

The core components of the correctness proof
of this approach are:

• We show that the local neighborhood graph
corresponds locally to a quasi-unit-disk
graph for a set of points in the plane.

• The identified adjacencies locally form a
planar graph.

• This locally planar graph has faces of
bounded size.

Essentially this means that we cover Γ by a mesh
with vertex set S consisting of small enough cells
that the topology of Γ is faithfully captured.

We first discuss the 2-dimensional case, where
we are given a uniform ε-sampling (i.e. the lo-
cal feature size is 1 everywhere) of a disk and

show that steps 2. to 5. yield a planar graph
with ‘small’ faces. Then we show how the same
reasoning can be applied to the 3-dimensional
case.

2.1 Conservative adjacencies in R2

Let V be a set of n points that form a ε-sampling
of the disk of radius R around the origin o, that
is, ∀p ∈ R2 with |po| ≤ R, ∃v ∈ V : |vp| ≤ ε.

Definition 2.1 A graph G(V,E) on V is called
a α-quasi-unit-disk-graph (α-qUDG) for α ∈
[0, 1] if for p, q ∈ V

• if |pq| ≤ α then (p, q) ∈ E

• if |pq| > 1 then (p, q) /∈ E

That is, for distances between α and 1 the pres-
ence of an edge is left open.

Within G we consider the distance function
dG defined by the (unweighted) graph distances
in G(V,E). Let k ≥ 1, we call a set S ⊆ V a
tight k-subsample of V if

• ∀s1, s2 ∈ S: dG(s1, s2) > k

• ∀v ∈ V : ∃s ∈ S with dG(v, s) ≤ k.

A tight k-subsample of V can easily obtained by
a greedy algorithm which iteratively selects a so
far unremoved node v into S and removes all
nodes at distance at most k from consideration.

2.1.1 Graph-based conservative Adja-
cencies

The idea for construction and the planarity
property of our construction are largely derived
from the geometric intuition. The planarity fol-
lows from the fact that our constructed graph
– we call it combinatorial Delaunay map of S,
short CDM(S) – is the dual graph of a suitably
defined partition of the plane into simply con-
nected disjoint regions. In the following we use
the method for identifying adjacencies between
nodes in S purely based

First we introduce a labeling of G(V,E) for a
given set S ⊆ V assuming that all elements in
V (and hence in S) have unique IDs that are
totally ordered.

Definition 2.2 Consider a vertex a ∈ S and a
vertex v ∈ V − S. We say that v is an a-vertex
(or: labeled with a) if a is one of the elements
in S which is closest to v (in graph distance),
and a has the smallest ID among such.
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Clearly, this rule assigns unique labels to each
vertex and edge, due to the uniqueness of nodes’
IDs. Also note that any a ∈ S is an a-vertex.
Next we present a criterion for creating adjacen-
cies between vertices in S.

Definition 2.3 a, b ∈ S are adjacent in
CDM(S) iff there exists a path from a to b whose
1-hop neighborhood (including the path itself)
consists only of a and b vertices, and such that
in the ordering of the nodes on the path (starting
with a and ending with b) all a-nodes precede all
b-nodes.

We have the following result of [6].

Theorem 2.1 If G is an α-qUDG with α ≥ 1√
2

and S a tight k-subsample of G, then CDM(S)
is a planar graph.

Of course, just planarity as such is not too
hard to guarantee – one could simply return a
graph with no edges.

2.1.2 CDM(S) is dense(!)

Interestingly we can show that in spite of the
conservative adjacency creation, CDM(S) is rel-
atively dense, in particular it exhibits (internal)
faces of size O(1). Due to space restrictions we
cannot provide a proof in this paper but instead
refer to the complete version under [5], therefore
we only state the following corollary:

Corollary 2.1 The graph induced by S and the
adjacencies identified by our algorithm is pla-
nar, connected and has (internal) faces of size
O(1).

2.2 Conservative adjacencies in R3

All the reasoning which has been concentrating
on a flat, planar setting can be translated with
little effort to our actual setting in R3 as we
can show that locally the neighborhood graph
we construct looks like an α-UDG.

Lemma 2.1 For γ ≤ 1/16 the γlfs(p)-
neighborhood of p in the constructed graph is an
α-quasi-Unit-disk graph with α > 1/

√
2.

Now we can invoke Corollary 2.1 which im-
plies that locally for any p ∈ S the graph con-
structed by our algorithm is planar, connected
and has internal faces of constant size.

What does this mean? The graph that we
constructed on the subsample of points S is
a mesh that is locally planar and covers the
whole 2-manifold. The mesh has the nice prop-
erty that all its cells (aka faces) have constant
size (number of bounding vertices). The edge
lengths of the created adjacencies between S
are proportional to the respective local feature
sizes. Therefore its connectivity structure faith-
fully reflects the topology of the underlying 2-
manifold.

2.2.1 Algorithm epilog

We did not talk about steps (6) and (7) of our
approach since they follow exactly the descrip-
tion in [7] and are not novel to this work. The
proofs for convergence both point-wise as well as
with respect to triangle normals can be carried
over from [7] since S can be made an arbitrarily
good, locally uniform ε′-sampling (the original
ε-sampling V has to be accordingly denser, i.e.
ε� ε′). Therefore, the same theorem holds for
the result of our algorithm:

Theorem 2.2 There exists ε∗ such that for all
ε < ε∗, smooth surfaces Γ in R3 and ε-samplings
V ⊂ Γ, the triangulated surface Γ̃ output by our
algorithm satisfies the following conditions:

1. Bijection: µ : Γ̃→ Γ, determined by clos-
est point, is a bijection

2. Pointwise Approximation: For all x ∈
Γ̃, d(x, µ(x)) = O(ε2lfs(µ(x)))

3. Normal Approximation: For all x ∈ Γ̃,
∠neΓ(x)nΓ(µ(x)) = O(ε) where nF (y) de-
notes the (outside) normal of F at y2.

4. Topological Correctness: Γ and Γ̃
have the same topological type.
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