
Structural Filtering

A Paradigm for Efficient and Exact Geometric

Programs

Stefan Funke a, Kurt Mehlhorn b,1 and Stefan Näher c,1

aGraduiertenkolleg, Max-Planck-Institut für Informatik, Im Stadtwald, 66123
Saarbrücken, Germany

bMax-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany
cUniversität Halle-Wittenberg, FB Informatik, 06099 Halle, Germany

Abstract

We introduce a new and simple filtering technique that can be used in the imple-
mentation of geometric algorithms called ”structural filtering”. Using this filtering
technique we gain about 20 % when compared to predicate-filtered implementa-
tions. Of theoretical interest are some results regarding the robustness of sorting
algorithms against erroneous comparisons.

There is software support for the concept of structural filtering in LEDA and
CGAL[LEDA,CGAL].

1 Introduction

Geometric algorithms use geometric predicates in their conditionals. The com-
mon strategy for the exact implementation of geometric algorithms is to eval-
uate all geometric predicates exactly and to use floating-point filters to make
the exact evaluation of predicates fast. Floating-point filters have proved to be
very efficient both in practice [ST99,BFS98,MN99] and in theory [DP98]. The
evaluation of a geometric predicate amounts to the computation of the sign of
an arithmetic expression. A floating-point filter evaluates the expression us-
ing floating-point arithmetic and also computes an error bound to determine
whether the floating point computation is reliable. If the error bound does
not suffice to prove reliability, the expression is re-evaluated using exact arith-
metic. Exact geometric computation incurs an overhead when compared to a

1 Research partially supported by EU-project GALIA

Preprint submitted to Elsevier Preprint 10 April 2002

pure floating-point implementation. For “easy inputs” where the floating-point
computation always yields the correct sign, the overhead consists of the com-
putation of the error bound. This overhead is about a factor of two for good
filter implementations. For “difficult inputs” where the floating-point filter al-
ways fails, the overhead may be much larger, but this is not really relevant,
as the floating-point computation possibly produces an incorrect result.

The challenge is to achieve exact geometric computation
at the cost of floating-point arithmetic.

Structural filtering is a step in this direction. Structural filtering views the ex-
ecution of an algorithm as a sequence of steps and applies filtering at the level
of steps. A step may contain many predicate evaluations, errors are allowed
in the evaluations of predicates, but the outcome of a step is guaranteed to
be correct. We give a simple example. Consider a search for an element x in
a leaf-oriented search tree. If all comparisons are exact, the standard search
algorithm locates x. If comparisons may err, the standard search algorithm
may reach an incorrect leaf. Two exact comparisons suffice to check whether
the correct leaf has been reached. If the wrong leaf was reached, the correct
leaf can then be reached by a simple walk through the sequence of leaves.
The walk, but only the walk, requires exact comparisons. Observe how the
structure of the search tree is used to trade expensive exact comparisons for
cheap comparisons which may potentially err.

The savings can be significant if the total cost of the locate steps is larger
than the total cost of the update steps. For many randomized incremental
algorithms, the total cost of the locate steps is θ(n log n) and the total cost of
the update steps is θ(n)

In this paper we investigate the potential of structural filtering theoretically
and experimentally. In section 2 we give a classification of filtering techniques
and compare our approach to filtering at the predicate and at the algorithm
level. We show that predicate filtering is a special case of structural filtering
and that structural filtering has the potential of improving upon predicate
filtering for a wide class of algorithms. The class includes all incremental algo-
rithms of computational geometry. In Sections 3 and 4 we give some theoretical
results on structural filtering. We show, for example, that quicksort stays an
optimal sorting algorithm when comparisons may err, but mergesort becomes
suboptimal. In Section 5 we report about our experiments with implementa-
tions of algorithms for sorting and the computation of Delaunay diagrams. In
both cases we obtain a considerable speed-up compared to predicate-filtered
implementations.

2

2 Filtering Strategies

The topic of this section is a general discussion of filtering strategies. We
view the execution of an algorithm as a sequence of steps. A step may be
anything from the execution of a single instruction over the execution of a
large subprogram to the execution of the entire program. If every step of an
algorithm produces the correct result, the entire computation will produce the
correct result.

The execution of a step consists of the evaluation of conditionals and the
execution of the straight-line code between the conditionals. The simplest way
to ensure the correct execution of a step is to guarantee that all conditionals
in the step are evaluated correctly.

An alternative way to ensure the correct execution of a step is to allow errors
in the evaluation of the conditionals, to check at the end of the step whether
the step performed correctly, and, if not, to repair the errors made. Of course,
this approach is only viable if the “unsafe” execution of a step is faster than
its “safe” execution, if the correctness check is simple, if errors occur rarely,
and if the repair is simple. Observe that there are four “ifs” in the preceding
sentence. We will show that there are many situations where the answer to all
four ifs is yes.

We start by refining our view of the execution of an algorithm. We view algo-
rithms as manipulating an underlying data structure and distinguish between
search and update steps. Update steps are pieces of code that may change
the underlying data structure and search steps are pieces of code that do not
change the underlying data structure but are otherwise arbitrary. Structural
filtering applies to search steps. It does not modify update steps. Thus the
underlying data structure stays correct. We give three examples to illustrate
the concepts.

(1) Any algorithm falls under the paradigm if we call the value of all program
variables the underlying data structure, the evaluation of each predicate 2

in a conditional a search step (the step “searches” for the value of the
expression), and call the straight-line pieces of code between conditionals
update steps.

(2) Consider a dictionary implementation based on a balanced tree. The tree
constitutes the data structure manipulated by the algorithm. An insert
operation consists of a search step, which determines the position in the
tree at which the new key is to be added, followed by an update step,

2 We assume that predicates in conditionals have no side-effects, a minor restriction.
In geometric programs the predicates in conditionals are typically the evaluation of
the sign of an arithmetic expression.

3

which adds the key to the tree.
(3) Consider an incremental algorithm for constructing Delaunay diagrams.

The data structure is the current Delaunay triangulation and a search
structure for locating points in the triangulation. An insertion of a new
point consists of a search step, which locates the triangle of the current
triangulation containing the new point, and an update step which inserts
the point, performs flips to construct the new Delaunay triangulation,
and modifies the search structure.

We postulated that a search step does not change the underlying data struc-
ture. A search step computes information (= the value of a predicate, a po-
sition in a tree, a triangle in a triangulation) which the subsequent update
step uses to perform changes on the data structure. A search step evaluates
some number of predicates. We assume that a predicate can be evaluated in
two ways; the expensive way guarantees the correct value and the cheap way
will usually give the correct result, but may err. In this general discussion we
make no assumption about when a cheap comparison errs. In the context of
geometric programs a cheap evaluation of a predicate is the evaluation with
floating point arithmetic, and an expensive evaluation is the evaluation with
exact arithmetic (maybe with a floating-point filter).

The safe way to perform a step is to use only expensive predicate evaluations.
Assume now that we use cheap predicate evaluations instead. The following
observation is trivial but powerful. If a search step amounts to a walk in an
acyclic graph where predicate evaluations are used to determine the edges to
be followed, then a search step will always terminate. In our three examples
above the search is a walk in an acyclic graph 3 .

The search step, if executed with cheap predicates, may not end in the right
sink of the acyclic graph. We postulate that it is easy to check whether the
correct sink is reached. In our first example, the check amounts to the error-
bound computation in the floating point evaluation of the underlying arith-
metic expression, in our second example, the check amount to the (exact)
comparison with the two neighboring elements, and in the third example, the
check amounts to orientation tests with three sides of a triangle.

If the search step ends in the correct sink of the search graph, we are done
at this point. If the check reveals an error, we still have to find the correct
sink. There is a generic way of reaching the correct sink. Repeat the search
with expensive predicate evaluations. Observe that this is possible because we
postulated that a search step does not change the underlying data structure.
In our first example, the generic strategy amounts to an evaluation with exact
arithmetic. In the two other examples, there are better ways to correct the

3 In the first example the graph is a tree with three nodes. In the root the boolean
expression is evaluated and the two children correspond to true and false.

4

error. In the second example, we may walk along the leaves of the tree and in
the third example, we may use a walk through the triangulation.

Let us summarize. Structural filtering applies to search steps. If the search step
amounts to the walk in an acyclic graph then it can be performed with cheap
comparisons without the danger of looping. An error in the search step can
always be corrected by redoing the search with expensive comparisons. Better
strategies may exist and we gave two examples. The verification of the search
step is problem dependent. With the generic solution to error correction, only
the verification requires additional programming.

What can we hope to gain by structural filtering? The cost of an update step
is unchanged. The cost of a search step is its cost when executed with cheap
comparisons, plus the cost of the check, plus the cost of the repair. Structural
filtering is particularly useful if the search steps dominate the running time of
the algorithm. This is the case for our second and third example and, more
generally, for many incremental constructions in geometry. In an insertion into
a tree, the search step has cost O(log n) and the update step has cost O(1).
The same holds true for randomized incremental algorithms for convex hulls,
Delaunay triangulations, Voronoi diagrams, and many other problems.

There is a second phenomenon which is exploited by structural filtering. Pred-
icate evaluations may be redundant. There may be several paths to the correct
sink and hence errors in predicates may be corrected by later predicates. Fig-
ure 1 illustrates the phenomenon for our third example.

We will next compare structural filtering with filtering on the predicate level
and filtering on the algorithm level.

Filtering at the predicate level amounts to evaluate all predicates correctly,
but to do so in a clever way. The evaluation of a predicate amounts to the
computation of the sign of an arithmetic expression. Predicate filtering com-
putes the sign in three stages: In stage one the expression is evaluated using
floating-point arithmetic, in stage two an error bound for the floating-point
computation is computed, and in stage three the expression is evaluated with
exact arithmetic, if the error bound does not suffice to conclude that the sign
computed in stage one is the correct sign. The cheap evaluation of the predi-
cate uses only stage one. The implementation of predicate filters is discussed
in [BFS98] and [MN99]. The efficacy of floating-point filters is discussed ex-
perimentally in [FV,MN99,ST99] and theoretically in [DP98].

Let us consider the extreme cases. If the floating-point computation always
computes the correct sign, the cheap evaluation never errs and saves the com-
putation of the error bound. The computation of the error bound has typically
about the same cost as the computation of the sign and hence a cheap compar-

5

ison has about half the cost of an expensive comparison. Thus we may expect
that structural filtering can make significant savings; we should not expect
to see a factor of two since the search step has to do some work outside the
predicate evaluations and since structural filtering has to verify the result of
the search.

If the floating-point computation never computes the correct sign, predicate
filtering always has to resort to exact arithmetic. Since the cost of exact arith-
metic is significantly larger than the cost of floating-point arithmetic (around
10-100 times the cost; see [ST99], for example), stage three will dominate the
cost of an expensive predicate evaluation and a cheap comparison is much
cheaper than an expensive comparison. Thus, even with the generic repair
technique, the cost of structural filtering is not much larger than the cost
of predicate filtering; observe that the cost of the search step with cheap
predicates will be much smaller than the cost of the search with expensive
predicates.

The advantage of predicate filtering is its genericity. Once ”filtered” versions
of the predicates are available, all algorithms using them benefit. There is
no change required in an algorithm to switch from unfiltered predicates to
filtered predicates. Moreover, the techniques for writing filtered predicates are
well developed and even software supported [BFS98].

The disadvantage of predicate filtering is the fact that the error-bound com-
putation is always made. Structural filtering avoids it at the cost of the veri-
fication of the search step.

While the filters on predicate level work on the level of the most basic (low-
level) operations of an algorithm, filters on algorithm level work on the highest
level possible. Here the idea is: compute with floating-point arithmetic, check
the result, and repair, if necessary, to get the exact result.

There are two problems with filtering at the algorithm level. First, the design
of robust algorithms using only floating-point arithmetic is a difficult task
even if robustness only means that the program should always run to com-
pletion. The papers [FM91,Mil88,SOI90] illustrate the difficulty of designing
robust algorithms. Second, the repair step is non-trivial if the floating-point
algorithm does not come with a strong guarantee of what it computes. The
purpose of restricting filtering to the search steps is precisely to guarantee that
errors in predicate evaluations do not corrupt the data structure. Only the pa-
per [KW98] discusses filtering at the algorithm level and the repair step. The
main disadvantage of filtering at the algorithm level is that there are no widely
applicable techniques for obtaining robust floating-point implementations.

Of course, filtering at the algorithm level approach also has its advantages. If
no cheap evaluation errs, the result will be correct, and the only additional

6

cost is the cost of checking.

3 Sorting

We consider the problem of sorting a set S = {x1, . . . , xn} from a linearly
ordered universe. Our algorithms may use cheap and expensive comparisons.
An expensive comparison always gives the correct result whereas a cheap com-
parison may err in a comparison of xi and xj, if |rank(xi) − rank(xj)| ≤ k,
where rank(x) is the number of elements in S that are smaller than x.

As a measure for the quality of the outcome xs(1), . . . , xs(n) of a sorting algo-
rithm, we count the number of inversions, i.e.:

I = |{(i, j) : i < j, xs(i) > xs(j)}|

Lemma 1 Any sorting algorithm using cheap comparisons only may produce
a result with I = ((k − 1) · n)/2 inversions.

PROOF. Let x1, . . . , xn be the elements to be sorted (in increasing order).
Group them into n/k groups G0, G1, . . . , Gn/k−1 of adjacent elements, i.e.,
Gi = {xk·i+1, . . . , xk·i+k}. An algorithm cannot distinguish between the ele-
ments in one group and hence may output them in decreasing order even if
all comparisons between elements of distinct groups are correct. Each group
then contributes (k · (k − 1))/2 inversions. 2

An immediate consequence of this lemma is the following corollary:

Corollary 2 In our model, any sorting algorithm requires Ω(n · log k) expen-
sive comparisons to exactly sort a sequence of n elements.

PROOF. We only need to observe that O(k · log k) expensive comparisons
are needed for each group of size k to obtain a correct result. 2

An (almost) sorted sequence containing I inversions can be sorted using (2,4)-
finger search trees with O(n · log(2 + I/n)) expensive comparisons or using
insertion sort with O(n + I) expensive comparisons ([Me84]). Hence, if we
can prove a sorting algorithm to produce O(k ·n) inversions when using cheap
comparisons only, we can combine this algorithm with (2,4)-finger search trees
to an exact sorting algorithm which is optimal with respect to the number of
expensive comparisons.

7

In the following we will examine mergesort, quicksort and heapsort when exe-
cuted with cheap comparisons. It turns out, that quicksort is optimal whereas
mergesort is suboptimal. Heapsort may be optimal, but we can only prove a
suboptimal bound.

3.1 Mergesort

Lemma 3 Mergesort with cheap comparisons produces a result with at most
k · n · log n inversions.

PROOF. We show that for a (by mergesort possibly incorrectly sorted) list
x1x2x3 . . . xn and elements xi, xj, i < j, we have rank(xi) ≤ rank(xj)+k·log n.
The lemma follows immediately.
We use induction on the number of merging levels. Level 0 with n = 1 is
trivial. Now assume we have two lists x1x2 . . . xn/2 and xn/2+1 . . . xn which we
want to merge. Consider w.l.o.g. an element xj from the first list. By induction
hypothesis, all elements xi, i < j have rank at most rank(xj) + k · log n/2. So
the largest element of the second list that is moved to the result list before xj

can have at most rank k + rank(xj) + k · log n/2 = rank(xj) + k · log n. 2

Lemma 4 For k = 1 mergesort may produce Ω(n · log n) inversions (with
cheap comparisons).

PROOF. Let x1x2 . . . xn be the result sequence of mergesort. The idea of
the proof is that we construct an input for mergesort and the outcome of
all comparisons such that there are l disjoint subsequences of length d ≈ n

l
,

where each of these subsequences is decreasing. Hence we get about d2 · l in-
versions in the resulting sequence. For l = n/ log n and d = log(n/ log n) this
is Ω(n · log n). Note, that only comparisons of elements may err whose ranks
differ by one.
We construct the input recursively. Let L be the set of sequences {L1, L2, . . . , Ll}
where Li = {xi1 , xi2 . . . , xid} with xij = xij−1

− 1 for j = 2 . . . d. And for all
i 6= j, Li ∩ Lj = ∅. We now look at the complete binary tree representing the
computation of mergesort.
Starting at the root, we distribute the contents of the sequences to the sub-
trees. From each sequence Li we send the first element to one subtree and the
remaining sequence to the other subtree.
More formally, each node v with children vleft, vright is given a set of sequences
Sv = {L

v
1, L

v
2, . . . , L

v
m} and a set of “processed” elements Ev. For the root we

have Sroot = L and Eroot = ∅. Intuitively, Ev are the elements to be distributed
amongst the leaves of the subtree rooted at v.

8

The procedure for a node v works as follows: first we partition the set Ev into
two sets of equal size Ev = Evleft

]Evright
. We send the heads of the first m/2

sequences to the left child node, i.e., Evleft
:= Evleft

∪{head(Lv
i)|i = 1 . . .m/2}

and the tails to the right child node, i.e., Svright
:= {tail(Lv

i)|i = 1 . . .m/2}.
The same the other way around with the second half of the sequences, i.e.,
Evright

:= Evright
∪ {head(Lv

i)|i = (m/2) + 1 . . .m} and Svleft
:= {tail(Lv

i)|i =
(m/2) + 1 . . .m}.

It is easy to see that the number of elements in Ev of a node v on level k is
ek = k · l/2k, the number of elements in Sv of the same node v is sk = l/2k.
Our construction goes through as long as ek, sk ≥ 2. Hence for a given l, the
upper bound d for k is given by d = log l. So we can choose l = n/ log n and
d = log(n/ log n). As d < log n, our construction ends a few levels above the
leaves. We then distribute the elements of each Ev arbitrarily among the leaves
of the subtree rooted at v and assign arbitrary values to the still unoccupied
leaves.

It remains to show that each of these sequences in L appears in the resulting
sequence of mergesort in reverse (i.e. decreasing) order. This can be easily seen
by induction on the merge steps where such a sequence ”participates” with
some of its elements.

Let us consider a sequence Li. When we merge sequences s1, s2, some elements
S ⊂ Li may be present in s1 or s2. If so, exactly one, the largest element x1

of S is in one sequence – let’s say w.l.o.g. in s1 – and all the rest of S, i.e.
x2, x3, . . . , xd′ (xi = xi−1− 1 for i = 2 . . . d

′), is in s2 and by induction hypoth-
esis in reverse order. As we assume that elements of different sequences Li, Lj

are compared correctly, the elements of S present in s2 are not interleaved
with elements of other sequences Lj. Again, as elements of different sequences
are compared exactly, there will be a point in the merging process of s1 and s2

where x1 is compared with x2. This comparison may err since x1 = x2+1 and
hence x1 is moved to the result sequence before x2, i.e. S ends up in reverse
order in the result sequence of this merging step. 2

For k = 1, our upper and lower bound have the same order. We leave it as an
open problem to prove a lower bound for k > 1. The lower bound shows that
mergesort is not optimal.

3.2 Quicksort

Lemma 5 Quicksort (with cheap comparisons) produces a list with at most
2 · k · n inversions.

9

PROOF. We show that for a fixed element y, the rank of an element x right
of y in the result of quicksort is greater than rank(y)− 2k. This implies that
the number of such pairs (y, x) where x < y is at most 2k.

If x < y, but x ends up to the right of y then there must be a node z at which
y is routed to the left or y = z and x is routed to the right or x = z. The
element z is either smaller than x, equal to x, lies between x and y, is equal
to y, or is larger than y.

In the first case the comparison between z and y is incorrect and hence the
ranks of z and y differ by at most k. Since x lies between z and y the ranks z
and y differ by at most k. The last case is symmetric.

In the second case the comparison between y and x is incorrect and hence the
ranks of x and y differ by at most k. The next to last case is symmetric.

In the third case the comparisons between x and z and between y and z are
incorrect and hence the rank of either element differs by at most k from the
rank of z. Thus the rank of x and y differs by at most 2k. 2

This lemma shows that quicksort is optimal up to a constant factor with
respect to robustness against imprecision of the comparison operation.

It is not obvious that the expected number of comparisons of quicksort is still
O(n log n). The standard argument is that the rank of the root is a random
integer in {1, . . . , n} and hence we get balanced subproblems. This argument
does not hold any longer since comparisons may be incorrect. The argument
is basically correct as long as the number of elements in a subset is much
larger than k, say larger than 5k. Once a subset is smaller than 5k the depth
of the resulting tree is at most 5k and hence the depth of the entire tree
is O(k + log n). The number of cheap comparison required by quicksort is
therefore O(n · k + n log n). We next improve the bound to O(n · log n)

Consider the following directed graph on S. We have an arc from x to y if x
is declared smaller than y by a cheap comparison. The indegree of a node is
then the number of elements that are declared smaller and the outdegree of
a node is the number of elements that are declared larger. For each node the
sum of the indegree and the outdegree is equal to n − 1. The total indegree
is equal to the total outdegree; both are equal to n(n − 1)/2, the number of
arcs.

The claim is that in any such graph the number of “middle” elements, i.e.,
those elements which have their indegree as well as their outdegree bounded
by 7n/8 is at least a fixed fraction of the elements. Here is a proof.

10

Partition S into sets A, B, and C, where A contains all elements whose outde-
gree is at least 7n/8, C contains all elements whose indegree is at least 7n/8,
and B contains the remaining elements. For an element in B the indegree and
the outdegree are bounded by 7n/8.

Lemma 6 |B| ≥ n/10.

PROOF. Assume that |B| < n/10. Also assume that |A| ≥ |C|. Then |A| ≥
(n− n/10)/2 = 9 · n/20 and hence |B| + |C| ≤ 11 · n/20. Each x ∈ A has an
outdegree of at least 7 ·n/8; at most 11 ·n/20 of its outgoing edges can end in
B∪C and hence at least (7/8−11/20) ·n > n/8 edges have to end in A. Since
every node in A has more than n/8 outgoing edges to nodes in A there must
be at least one node in A whose indegree is larger than n/8, a contradiction
to the definition of A. 2

The Lemma above shows that at least n/10 elements are good splitters and
hence the recursion depth of quicksort is O(log n) with high probability; see
[MR95]. Thus quicksort uses O(n log n) cheap comparisons with high proba-
bility.

3.3 Heapsort

Lemma 7 In our model starting with a correct heap, heapsort (with cheap
comparisons) produces a result with at most 2 · k · n · log n inversions.

PROOF. Heapsort operates in phases. In each phase it outputs the root of
the heap, moves the key of a leaf into the root and lets the element sink down
to its correct position by a sequence of downheap operations. We show that at
the beginning of each phase and for each node n and its children ci, i = 1, 2:

rank(key[n])− rank(key[ci]) ≤ 2 · k

where key[x] denotes the key stored at node x. It follows that the maximum
rank of an element within the heap is rank(key[root])+ 2 · k · log n, and hence
each phase can create at most 2 · k · log n inversions. The lemma follows.

Let n be a node in the tree, c1, c2 its children, p its parent and key′[x], x ∈
{p, n, c1, c2} the key stored at x after a downheap operation on node n.

11

We show that after a downheap operation on node n,

rank(key′[p])− rank(key′[n]) ≤ 2 · k

rank(key′[n])− rank(key′[ci]) ≤ 2 · k

and if there was a swap with child cs, s ∈ {1, 2}

rank(key′[n]) ≤ rank(key′[cs]) + k

As the downheap operation before the current one has kept the above invari-
ant, we know that rank(key[p])− rank(key[n]) ≤ k. We now compare key[n]
with min(key[c1], key[c2]). If no swap happens, we know that rank(key[n]) ≤
rank(key[ci]) + 2 · k and the downheap operation stops.

If a swap happens with let’s say c1, we have: rank(key
′[n]) ≤ rank(key′[c1])+

k and rank(key′[n]) ≤ rank(key′[c2]) + 2 · k. Hence also rank(key′[p]) −
rank(key′[n]) ≤ 2 · k. The downheap operation continues with node c1. 2

A correct heap can be constructed with a linear number of expensive compar-
isons. Heap building with inexact comparisons also yields a heap which sat-
isfies for any node n and its children c1, c2, rank(key[n])−rank(key[ci]) ≤ 2·k.

Summary: We showed that quicksort is optimal in our model up to a con-
stant factor, and that mergesort is suboptimal. For heapsort we leave the exact
behaviour as an open question.

With a repair step – either finger search trees or insertion sort –, quicksort
allows exact sorting of a sequence with O(n log k) (using finger search trees)
or O(k · n) (using insertion sort) expensive comparisons. The former bound is
optimal as we have proved in corollary 2.

Note that for this application, incorrect comparisons always require a repair
later on. So we can only gain by saving the cost of computing the error bound
and possibly some exact arithmetic computations where the error bound is
too weak to prove the correctness of a (correct) floating-point result.

4 Searching

In a comparison based search structure which is a directed acyclic graph (e.g.
a tree), we can use cheap comparisons during the location of a new point
without taking the risk of looping. The only thing we have to make sure is

12

that there is an easy way to get from a possibly incorrect result of the search
to the correct result.

In the following we will consider binary search trees and a search structure for
point location during the randomized incremental construction of the Delau-
nay Triangulation of points in the plane.

4.1 Binary Search on Trees followed by Linear Search through the Leaves

Consider a comparison based search structure for a linearly ordered set S of
objects x1 < x2 < . . . xn. We use x0 and xn+1 to denote the fictitious points
−∞ and +∞. The search structure divides space into 2n + 1 cells, n cells
corresponding to the points in S and n+1 cells for the open intervals between
adjacent points in S. There is a natural linear order on the cells. Each cell is
either a closed or an open interval. In the linear arrangement of the cells open
and closed cells alternate and the extreme cells are open. The following lemma
bounds the maximal “error” of a search in terms of the set of points whose
comparison with the query point is erroneous. It assumes that all comparisons
are between the query point and points in S. All comparison-based realizations
of dictionaries have this property.

Lemma 8 Consider a query point q and let i be such that xi < q < xi+1 or
xi = q. If the comparisons between q and xj are correct for |i− j| ≥ k then the
cell delivered by a search for q has distance at most 2k from the cell containing
q.

PROOF. Assume that a search for q produces a cell C ′ different from C.
We may assume w.l.o.g. that C ′ is to the left of C. Then q was compared
with the right endpoint, say xj, of C

′ and the outcome of this comparison was
erroneous. There are at most the cells xj, (xj, xj+1), . . . , xi between C ′ and
C. By our assumption we have i − j < k and hence the distance between C ′

and C is at most 2k. 2

Under the assumptions of the preceding Lemma the cost of a search for q is
O(log n) cheap comparisons plus O(k) expensive comparisons.

As for sorting, we remark that incorrect decisions always lead to a repair step
at the end; so we only may gain by not having to compute the error bounds
and possibly some exact arithmetic evaluations due to the error bound being
too weak.

13

4.2 Point Location for Delaunay Triangulations

In the randomized incremental algorithm for computing the Delaunay triangu-
lation of a set of points in the plane, a search structure is maintained to locate
each new point to be inserted in the current triangulation. This is usually im-
plemented as a history graph, which is a directed acyclic graph recording all
insertions and flips executed in the algorithm so far. Again, we can perform
all comparisons cheaply and still get to some sink corresponding to a triangle.
Then we have to check whether the query point in fact lies inside this trian-
gle. If not, we walk across one side of the current triangle whose inequality
was violated to an adjacent triangle. We continue like that until we reach the
correct triangle.

We remark that even if some comparisons are incorrect, the correct triangle
may still be reached directly (see Figure 1). So the potential gain in running
time is due to saving error bound computations as well as exact arithmetic
evaluations of non-crucial predicates.

5 Experimental Results

We performed two experiments to evaluate the benefits of structural filtering.
In the first experiment we sorted points lexicographically and in the second
experiment we computed the Delaunay triangulation of a set of points. For
both experiments we used the rational geometry kernel of the LEDA sys-
tem [LEDA]. In this kernel, points (type rat point) are represented by ho-
mogeneous coordinates of type integer (the arbitrary precision integer type of
LEDA) and also by floating-point approximations of type double. The kernel
uses a floating-point filter on the predicate level (see [MN99, Section 8.7]). An
exact evaluation of a geometric predicate operates in three steps: (1) Compute
the value using floating-point arithmetic, (2) compute an error bound, (3) if
necessary, evaluate the predicate using integer arithmetic. A cheap evaluation
performs only step (1).

LEDA, Version 3.8, provides means for easily implementing algorithms accord-
ing to the ”structural filtering” paradigm. Using a global flag (rat point::float computation only),
the programmer can tell the kernel to always take the sign of the floating-point
computation (step (1)) when evaluating a predicate. Hence implementing a
”cheap” locate procedure just means turning on this flag and performing the
location procedure as usual. To check for the correctness of the outcome, the
”exact” mode has to be switched on again, of course. Our experience shows
that modifying existing implementations to make use of structural filtering
usually is a matter of a few minutes, adding just a few lines of code.

14

Table 1
Quicksort: total running time in secs, 2 · 105 to 1.6 · 106 points

1 · 105 2 · 105 4 · 105 8 · 105 1.6 · 106

qs exact 2.58 5.65 12.5 28.0 63.4

qs repair 1.93 4.35 9.56 21.1 49.7

qs float 1.80 4.05 8.94 19.8 47.2

The rational geometry kernel of LEDA can be used as a kernel traits class
with the algorithms of CGAL and hence structural filtering is also available
for programmers using CGAL [CGAL].

5.1 Sorting

Sorting a set of points lexicographically is a very common subroutine in many
geometric algorithms. We have implemented a ”structurally filtered” version
of quicksort, i.e., after choosing the splitter, all elements are distributed to the
left or right according to a possibly inexact floating-point comparison. A call
of quicksort is still guaranteed to return a sorted sequence. This requires the
use of a non-trivial conquer-step. The conquer-step is essentially insertion sort
of the splitter and the ”right” sequence until no swaps take place anymore.
In the worst case, this requires O(k2) comparisons per recursion, but overall,
the number of such comparisons is bound by O(n · k) as we have shown. In
practice, this turned out to be more efficient than a ”repair run” over the final
result. Usually, only 2 (exact) comparisons are necessary (to check that the
splitter is greater than the rightmost element of the left sequence and smaller
than the leftmost element of the right sequence).

Observe, that repairing the final result could be regarded as a filter on ”algo-
rithm level”, whereas repairing after every recursion is more the ”intermediate
level filter” we are advocating.

We have compared both implementations, the exact quicksort and the struc-
turally filtered quicksort with a floating-point-only implementation. As input
for all three implementations we chose randomly generated rat points. The
output was the sequence of points in lexicographic order. Our experiments
show an advantage of about 20–25 % compared to the ”normal”, exact ver-
sion of quicksort, which is due to not having to compute the error bounds
for most comparisons (see Table 5.1). Surprisingly, the version which uses
only floating-point operations, does not perform twice as fast as the exact,
predicate filtered version. This is probably due to cache and memory effects.
So the version using structural filtering is only about 5–7 % slower than the
floating-point version. See table 5.1 for our results.

15

5.2 Randomized Incremental Delaunay Triangulation

We have implemented the randomized incremental algorithm for computing
the Delaunay Triangulation of a point set in the plane using the LEDA rational
geometry kernel. We call this version dt exact in the following. Then we
modified the search structure in our implementation to make use of structural
filtering, i.e., we did the comparisons in the directed acyclic Delaunay graph
using inexact floating-point comparisons and performed ”walking” at the end
to guarantee that we reach the correct triangle. We call this version dt search.

Finally, a simple observation allowed us to even perform all incircle tests
(which trigger ”flips”) inexactly. If we guarantee that a flip only takes place in
a convex quadrilateral, we always have a valid triangulation. At the end of the
algorithm we start the flipping algorithm to make sure that the triangulation
we have computed is indeed the Delaunay triangulation. As in the version
dt search, we perform the point location with floating-point arithmetic only,
followed by ”walking”. This version is called dt flip.

Why do we hope for an improvement in running time compared to the dt exact
version? In the following we assume that floating-point arithmetic always gives
the exact result and has cost 1 per predicate evaluation. We also assume that
the floating-point filter always can decide the predicate but has cost 2 per pred-
icate evaluation. This is a reasonable assumption on the overhead imposed by
current floating-point filter schemes.

For the query structure, instead of c · log n exact orientation tests – for some
constant c –, we have c · log n floating-point tests followed by three exact
orientation tests to verify that we are in the correct triangle. Hence overall we
may decrease our cost by n · ((c · log n)− 3).

For the incircle tests, things are not quite that good. The expected number of
incircle tests is about 9 · n during the algorithm. Hence the exact algorithm
has to pay a cost of 18 ·n. The modified algorithm where the incircle tests are
first done in floating-point arithmetic only, has to pay a cost of 9 · n , but has
to perform about 3 · n exact incircle tests at the end, to check that the local
Delaunay property is fulfilled. Hence overall we can only decrease our cost by
3 · n which probably will be negligible.

In both cases, though, a considerable gain in performance can be achieved
if there were tests which required arbitrary precision when done exactly, but
are not important for the outcome of the algorithm. An example for this
phenomenon was given for the query structure in Figure 1. For the incircle
tests, imagine that in the set of input points there is a subset of more than
3 points lying (almost) on a circle. As long as no point inside this circle is
inserted, all tests involving triangles of 4 of these points are (nearly) degenerate

16

A B

C

P

Q
1 2 3

AP BP

PC

1
3

2

Fig. 1. When locating Q, the orientation of Q w.r.t
−−→
PC is not important.

and hence are hard to decide by the floating-point filter on predicate level.
Nevertheless the outcome of any of these tests does not affect the final result
at all as these edges are ”flipped away” later-on when a point inside the circle
is inserted (see Figure 2).

The results of our experiments can be found in Tables 2, 3, 4 and 5. As input
data we used rat points with homogeneous integer coordinates of different
bit-lengths. As to be expected, for random inputs (Table 2), the dt search
version gains about 10-15 % in the overall running time against the dt exact
version, due to not having to compute the error bounds for most predicates.
The dt flip version, though, performs much worse since the additional check
over all edges of the triangulation is rather expensive in that case, even if no
flips take place. A similar result can be observed for input data on a grid (see
Table 3), but here, the advantage of inexact search is even bigger than in the
random case.

Looking at the location time only, we have a difference in running time of
20-29 % between the exact and ”structurally filtered” search (see Table 4).

For points near a circle, the picture changes drastically (see Table 5). Here the
dt flip version performs much better than the two other versions, and since
the dominating cost are the incircle tests (almost all of them are ”difficult”,
i.e., require exact arithmetic) the dt exact and dt search version do not
differ significantly in their running times. The dt flip version performs more
than 30 % better than the other two implementations, since there are many
difficult tests during the algorithm which are not important for the final result.
Note that this difference increases substantially (up to a factor of 3!) if we place
one additional point for example in the center of the circle.

17

Fig. 2. Incircle tests are not important, if a center point is inserted later on.

Table 2
Delaunay Triangulation: running time in secs; 400000 random points, 32–128 bit

32 40 52 80 100 128

dt exact 194 195 192 197 194 198

dt search 174 170 169 171 170 175

dt flip 204 204 201 204 206 207

Table 3
Delaunay Triangulation: running time in secs; 600x600 grid, 32–128 bits

32 40 52 80 100 128

dt exact 208 216 228 268 351 462

dt search 177 188 197 233 314 402

dt flip 216 232 246 290 591 645

Table 4
Point location time in secs, 40bit, 600x600 grid and 400000 random points

grid random

dt exact 90 86

dt search 64 67

Table 5
Delaunay Triang.: running time in secs; 100000 points near a circle, 32–128 bits

32 40 52 80 100 128

dt exact 75.4 74.7 74.8 75.2 75.1 75.8

dt search 73.0 72.8 73.0 73.3 73.1 72.0

dt flip 48.2 48.3 48.4 47.7 48.3 48.5

18

6 Conclusion

We have presented a simple filtering scheme which can be used in addition to
(or maybe instead of) the well-known predicate filtering when implementing
geometric algorithms. The main idea is to allow predicate decisions to be
erroneous but still guarantee a correct final result. Of course, this requires
some predicates to be evaluated exactly. But the number of those predicates
can be kept rather low as we have shown.

As we have seen in our experimental results, running time can be improved
either due to fewer error bounds computed (as in the example of quicksort),
or due to exact computations saved because the result of the predicate is
not important (Delaunay triangulation of points near a circle). The gain in
performance varies from 20 % (quicksort and point location in Delaunay tri-
angulation algorithm) to 30 % (inexact flipping during the insertions).

Our idea is generic in a sense that it can be applied to almost all algorithms
whose operation can be divided into location and update procedures. Struc-
tural filtering addresses the location stage, which usually dominates the run-
ning time for incremental algorithms. Our current research is focused on how
to make the update stages more efficient and also deals with the efficient
construction of geometric objects.

Starting with version 3.8, LEDA [LEDA] provides support for the use of struc-
tural filtering, and modifying existing implementations usually involves adding
only a few lines of code.

References

[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using
cascaded computation. In Proceedings of the 14th Annual Symposium on
Computational Geometry (SCG’98), pages 175–183, 1998.

[CGAL] CGAL (Computational Geometry Algorithms Library).
www.mpi-sb.mpg.de/CGAL/cgal.html.

[DP98] O. Devillers, F. Preparata A probabilistic analysis of the power of
arithmetic filters. Diescrete and Computational Geometry, 1998, 20:523-
547.

[FM91] S. Fortune and V.J. Milenkovic. Numerical stability of algorithms for
line arrangements. In Proceedings of the 7th Annual ACM Symposium
on Computational Geometry (SCG’91), pages 334–341. ACM Press, 1991.

19

[FV] S. Fortune and C.J. VanWyk. Efficient Exact Arithmetic for
Computational Geometry In Proceedings of the 9th Annual ACM
Symposium on Computational Geometry (SCG’93). ACM Press, 1993.

[KW98] L. Kettner and E. Welzl. One Sided Error Predicates in Geometric
Computing. In Proc. 15th IFIP World Computer Congress,
Fundamentals - Foundations of Computer Science, Kurt Mehlhorn
(Eds.), pp. 13-26, August 1998.

[LEDA] LEDA (Library of Efficient Data Types and Algorithms).
www.mpi-sb.mpg.de/LEDA/leda.html.

[Me84] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching
Springer, 1984.

[Mil88] V.J. Milenkovic. Verifiable Implementations of Geometric Algorithms
Using Finite Precision Arithmetic. PhD thesis, Carnegie Mellon
University, 1988.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial
and Geometric Computing. Cambridge University Press, 1999. Some
chapters are available at www.mpi-sb.mpg.de/~mehlhorn.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[ST99] S. Schirra A Case Study on the Cost of Geometric
Computing Proceedings of Workshop on Algorithm Engineering and
Experimentation (ALENEX99), 1999

[SOI90] K. Sugihara, Y. Ooishi, and T. Imai. Topology-oriented approach to
robustness and its applications to several voronoi-diagram algorithms. In
Proceedings of the 2nd Canadian Conference in Computational Geometry
(CCCG’90), pages 36–39, 1990.

20

