
A Separation Bound for Real Algebraic Expressions
�

Christoph Burnikel† Stefan Funke‡ Kurt Mehlhorn‡ Stefan Schirra§

Susanne Schmitt‡

April 2, 2001

Abstract

Real algebraic expressions are expressions whose leaves are integers and whose internal nodes are
additions, subtractions, multiplications, divisions, k-th root operations for integral k, and taking roots of
polynomials whose coefficients are given by the values of subexpressions. We consider the sign computa-
tion of real algebraic expressions, a task vital for the implementation of geometric algorithms. We prove
a new separation bound for real algebraic expressions and compare it analytically and experimentally
with previous bounds. The bound is used in the sign test of the number type leda real.

1 Introduction
Real algebraic expressions are expressions whose leaves are integers and whose internal nodes are ad-
ditions, subtractions, multiplications, divisions, k-th root operations for integral k, and taking roots of
polynomials whose coefficients are given by the values of subexpressions; the exact definition is given
below. Examples are

�
17 � � 21 ��� �

17 � � 21 � 2
�

357 and 17 ��� 21
19 � 18 �	� 22

20 . We consider the sign
computation of real algebraic expressions.

Our main motivation is the implementation of geometric algorithms. The evaluation of geometric pred-
icates, such as the incircle or the side-of predicate, amounts to the computation of the sign of an expression.
Non-linear objects (circles, ellipses,
�
�
) lead to expressions involving roots and hence an efficient method
for computing signs of algebraic expressions is an essential basis for the robust implementation of geomet-
ric algorithms dealing with non-linear objects.

The separation bound approach is the most successful approach to sign computation; it is, for example,
used in the number type leda real [BMS96, BFMS99, MN99] and the number type Expr of the CORE
package [KLPY99]. A separation bound is an easily computable function sep mapping expressions into
positive real numbers such that the value ξ of any non-zero expression E is lower bounded by sep E � , i.e.,

either ξ � 0 or � ξ ��� sep E ��

Separation bounds allow one to determine the sign of an expression by numerical computation. An error
bound ∆ is initialized to some positive value, say ∆ � 1, and an approximation �ξ of ξ with � ξ ���ξ ��� ∆
is computed using approximate arithmetic, say floating point arithmetic with arbitrary-length mantissa. If� �ξ ��� ∆, the sign of ξ is equal to the sign of �ξ. Otherwise, � �ξ ��� ∆ and hence � ξ ��� 2∆. If 2∆ � sep E � ,
we have ξ � 0. If 2∆ � sep E � , we halve ∆ and repeat. The worst case complexity of the procedure just
outlined is determined by the separation bound; log 1 � sep E ��� determines the maximal precision needed
for the computation of �ξ and we refer to log 1 � sep E ��� as the bit bound. If ξ �� 0, the actual precisions
required is logξ and hence “easy sign tests” are much faster than the worst case. This feature distinguishes�

Partially supported by ESPRIT LTR project (Effective Computational Geometry for Curves and Surfaces).
†burnikel@mpi-sb.mpg.de, ENCOM GmbH, 66740 Saarlouis
‡ � funke,mehlhorn,sschmitt @mpi-sb.mpg.de, MPI für Informatik, 66123 Saarbrücken
§stschirr@mpi-sb.mpg.de,Think & Solve Beratungsgesellschaft, 66111 Saarbrücken

1

the separation bound approach to sign computation from approaches that explicitely compute a defining
polynomial.

Separation bounds have been studied extensively in computer algebra [Can87, Mig82, Sch00, Mig92,
Yap99], as well as in computational geometry [BMS94, BFMS00, Yap97, LY01, MS01]. We prove a
new separation bound for the following class of real algebraic expressions. The value of a real algebraic
expression is either a real algebraic number or undefined (at the end of Section 3 we show how to test
whether the value of an expression is defined).

(1) Any integer v is a real algebraic expression. The integer is also the value of the expression.

(2) If E1 and E2 are real algebraic expressions, so are E1 � E2, E1 � E2, E1 ! E2, E1 � E2, and k
�

E1, where
k � 2 is an integer. The value of k

�
E1 is undefined if k is even and the value of E1 is negative.

The value of E1 � E2 is undefined, if the value of E2 is zero. The value of E1 � E2, E1 � E2, E1 ! E2,
E1 � E2, or k

�
E1 is undefined, if the value of E1 or the value of E2 is undefined. Otherwise the value

of E1 � E2, E1 � E2, E1 ! E2, and E1 � E2 is the sum, the difference, the product and the quotient of the
values of E1 and E2 respectively and the value of k

�
E1 is the k-th root of the value of E1.

(3) If Ed, Ed " 1,
�
�
 , E1, E0 are real algebraic expressions and j is a positive integer with 0 � j � d, then# j $ Ed $ Ed " 1 $�
�
�
�$ E1 $ E0 � is an expression. If the values of the Ei are defined and ξi is the value of Ei,
the value of the expression is the j-th smallest real root of the polynomial ξdXd � ξd " 1Xd " 1 �%
�
�
&� ξ0,
if the polynomial has at least j real roots. Otherwise, the value is undefined.

Below, expression always means real algebraic expression. An expression is given as a directed acyclic
graph (dag) whose source nodes are labeled by the operands and whose internal nodes are labeled by
operators. We call an expression simple if only items (1) and (2) are used in its definition and we call it
simple and division-free if, in addition, no division operator occurs in the expression.

The starting point for the present work is the bound given by Burnikel et al. [BFMS00] for simple
expressions. We refer to this bound as the BFMS bound in the sequel.

Lemma 1 ([BFMS00]) Let E be an expression with integral operands and operations �'$��($! $)�*$ k
� for

integral k � 2. Let ξ be the value of E, let the weight D E � of E be the product of the indices (the index
of a k

� operation is k) of the radical operations in E, and let u E � and l E � be defined inductively on the
structure of E by the rules shown in the table below.

u E � l E �
integer N �N � 1
E1 + E2 u E1 � ! l E2 �*� l E1 � ! u E2 � l E1 � ! l E2 �
E1 ! E2 u E1 � ! u E2 � l E1 � ! l E2 �
E1 � E2 u E1 � ! l E2 � l E1 � ! u E2 �

k
�

E1
k� u E1 � k� l E1 �

Then ξ � 0 or ,
l E � u E � D - E . 2 " 1 / " 1 �0� ξ �1� u E � l E � D - E . 2 " 1

If E is division-free, l E �2� 1, and the above bound holds with D E � 2 replaced by D E � .
Observe the difference between the division-free case and the general case. For simple division-free

expressions, the BFMS-bound is the best bound known. Expressions with divisions arise naturally in ge-
ometric applications. Inputs to expressions are frequently fractions and, e.g., normalizing a line equation
amounts to a division. For expressions with divisions, the BFMS-bound is much weaker than for expres-
sions without divisions. We give an example. Consider the expression

210 8� 28 �3 28 � 1 �4� 26

1

2

Here u E �65 210, l E �2� 1 and D E �2� 8. So the BFMS bound is 2 " 10 7 63 � 2 " 630, since E is not division-
free and hence the dependence (of the logarithm of the bound) on D is quadratic. Without the final re-
dundant division, the expression is division-free and the bound becomes 2 " 10 7 7 � 2 " 70. Our new bound
handles divisions much better and also applies to a wider class of expressions than the BFMS bound.

This paper is structured as follows. In Section 2, we review the proof of the BFMS bound and motivate
our new way of dealing with divisions. In Section 3, we prove our main theorem, a separation bound
for expressions defined by (1), (2), and (3). In Sections 4 and 5 we compare our bound analytically and
experimentally to previous bounds.

2 A Review of the BFMS bound
An algebraic integer is the root of a polynomial with integer coefficients and leading coefficient one. The
following three Lemmas were already used in [BFMS00] and [LY01].

Lemma 2 Let α be an algebraic integer and let deg α � be the algebraic degree of α. If U is an upper
bound on the absolute value of all conjugates of α, then�α �8� U1 " deg - α .
Proof: The proof is simple. Let d be the degree of α and let α1 � α, α2,
�
�
 , αd be the conjugates of α.
The product of the conjugates is equal to the constant coefficient of the defining polynomial and hence in9

. Thus �α � ! Ud " 1 � 1.

Lemma 3 ([Hec70, Loo82] or [BFMS00, Theorem 4]) Let α and β be algebraic integers. Then α + β,
αβ and k

�
α are algebraic integers.

We also need to cover item (3) in the definition of algebraic expressions.

Lemma 4 Let ρ be the root of a monic polynomial

P X �6� Xn � αn " 1Xn " 1 � αn " 2Xn " 2 � !�!�! � α0

of degree n where the coefficients αn " 1 $ αn " 2 $�
�
�
�$ α0 are algebraic integers. Then ρ is an algebraic integer.

Proof: This fact is well-known, a proof can, for example, be found in [Neu90, Theorem 2.4]. We include
a proof for completeness. The proof uses an argument similar to the proof of Lemma 3. Let α - i j .

j , 1 � i j �
deg α j � , be the conjugates of α j for 0 � j � n � 1 and let :α j be the vector formed by the conjugates of α j.
Consider the polynomial

Q X �2� ∏
i0

∏
i1
!�!�! ∏

in ; 1

 Xn � α - in ; 1 .
n " 1 Xn " 1 � α - in ; 2 .

n " 2 Xn " 2 � !�!�! � α - i0 .0 �<

ρ is a root of Q X � and Q X � is symmetric in the α - i j .

j for all j. The theorem on elementary symmetric
function implies that Q X � is a polynomial in X and the elementary symmetric functions σ1 &:α j � ,
�
�
 ,
σdeg - α j . &:α j � . The elementary symmetric function σl &:α j � is the coefficient of Xdeg - α j .=" l in the minimal
polynomial of α j and hence in

9
(since α j is an algebraic integer). Thus Q X � is a monic polynomial in9?>

X @ and ρ is an algebraic integer.

Lemma 5 ([BFMS00, Lemma 6]) Let α and β be algebraic integers and let Uα and Uβ be upper bounds
on the absolute size of the conjugates of α and β, respectively. Then Uα � Uβ is an upper bound on the
absolute size of the conjugates of α + β, UαUβ is an upper bound on the absolute size of the conjugates of
αβ, and k

�
Uα is an upper bound on the absolute size of the conjugates of k

�
α.

3

We also need bounds for the absolute size of roots of monic polynomials. Let P X ��� X n � an " 1Xn " 1 �
an " 2Xn " 2 � !�!�! � a0 be a monic polynomial with arbitrary real coefficients, not necessarily integral, and let
α be a root of P X � . A root bound Φ is any function of the coefficients of P that bounds the absolute value
of α, i.e., �α �1� Φ an " 1 $ an " 2 $�
�
�
�$ a0 �
We require that Φ is monotone, i.e., if � ai ��� bi for 0 � i � n � 1, then

Φ an " 1 $ an " 2 $�
�
�
�$ a0 �A� Φ bn " 1 $ bn " 2 $�
�
�
�$ b0 �B

Examples of root bounds are:�α �C� 2max

, � an " 1 �D$ � � an " 2 �D$ 3� � an " 3 �E$�
�
�
�$ n� � a0 � /�α �C� 1 � max F� an " 1 �D$G� an " 2 �E$�
�
�
�$F� a0 � ��α �C� max
,
n � an " 1 �D$ � n � an " 2 �E$ 3� n � an " 3 �E$�
�
�
�$ n� n � a0 � /�α �C� ,

n
�

2 � 1 / " 1
max H � an " 1 �I n

1 J $�K � an " 2 �I n
2 J $ 3K � an " 3 �I n

3 J $�
�
�
�$ nK � a0 �I n
n JML

A proof of all bounds can be found in [Yap99]. The first bound is called the Lagrange-Zassenhaus bound
and the middle two bounds are called the Cauchy bounds.

We next briefly review the proof of the BFMS bound. For a division-free simple expression E one
observes that the value ξ of E is an algebraic integer (by Lemma 3) and that u E � is an upper bound on ξ
and all its conjugates (by Lemma 5). Furthermore D E � is an upper bound for the algebraic degree of E.
Thus � ξ ��� u E � and � ξ �1� 1 �4 u E � D - E .N" 1 � by Lemma 2.

Expressions with divisions are handled by reduction to the division-free case. Let E be a simple ex-
pression and let ξ be its value. We construct a new expression dag, also with value ξ � val E � , contain-
ing only a single division. Moreover, the division is the final operation in the dag and hence val E �A�
val E1 ��� val E2 � , where E1 and E2 are the inputs to the division. The bounds for the division free case
apply to E1 and E2 and D E1 � and D E2 � are at most D E � 2. The construction of the new dag is straight-
forward. For every node A in the original dag there are two nodes A1 and A2 in the new dag such that
val A �A� val A1 ��� val A2 � . For the leaves (which stand for integers) the replacement is trivial (we take
A1 � A and A2 � 1) and for interior nodes we use the rules

A1

A2
+ B1

B2
�6O A1B2 + A2B1

A2B2

A1

A2
! B1

B2
�6O A1A2

B1B2

A1

A2
� B1

B2
�6O A1B2

A2B1

k

P
A1

A2
�6O k

�
A1

k
�

A2

In this way, each root operation in the original dag gives rise to two root operations in the new dag. This
may square the D-value of the expression.

The starting point for the present paper was a simple but powerful observation. Although the transfor-
mation rules above are natural, they are not the only way of obtaining division free expressions E1 and E2
with val E �2� val E1 ��� val E2 � . Instead of the last rule we may also use

k

P
A1

A2
�6O k

Q
A1Ak " 1

2

A2
or

A1

k
Q

Ak " 1
1 A2

The new rule does not increase the total degree of the expression and hence D E1 � and D E2 � are at most
D E � . In an earlier version of the paper, we only used the first alternative of the new rule. Chee Yap
(personal communication, January 2001) pointed out to us that it is advantageous to have both rules (see
the proof of Lemma 6).

3 The New Bound
We derive a separation bound for the expressions defined by items (1) to (3). For items (1) and (2), we use
the BFMS rules with the modification proposed in the previous paragraph. The diamond operation allows

4

one to take the root of a polynomial

P X �6� αdXd � αd " 1Xd " 1 � !�!�! � α1X � α0

where the αi are arbitrary real algebraic numbers. Every real algebraic number can be written as the
quotient of two algebraic integers; this is well-known, but will be reproved below as part of the proof of
our main theorem. Let αi � νi � δi where νi and δi are algebraic integers. Then

P X �6� νd

δd
Xd � νd " 1

δd " 1
Xd " 1 � !�!�! � ν1

δ1
X � ν0

δ0

Let D � ∏δi. By multiplication with D we obtain

D ! P X �	�R νdD � δd � Xd �S νd " 1D � δd " 1 � Xd " 1 � !�!�! �T ν1D � δ1 � X �T ν0D � δ0 �<$
a polynomial whose coefficients are algebraic integers. We next derive a monic polynomial. To get rid
of the leading coefficient νdD � δd � , we multiply by νdD � δd � d " 1 and substitute X �4 νdD � δd � for X . We
obtain

D ! νdD � δd � d " 1 ! P U X
νdD � δd V � Q X �2�

Xd �T νdD � δd �B νd " 1D � δd " 1 � Xd " 1 � !�!�! �S νdD � δd � d " 1 ν1D � δ1 � X �T νdD � δd � d ν0D � δ0 �
which is monic and has algebraic integer coefficients. The root bounds of Section 2 provide us with an
upper bound on the size of the roots of Q X � : the size of any root of Q X � is bounded by

u � Φ � νdD � δd �B νd " 1D � δd " 1 �<$�
�
�
�$� νdD � δd � d " 1 ν1D � δ1 �<$F νdD � δd � d ν0D � δ0 ���<

Since the roots of P are simply the roots of Q divided by νdD � δd , this suggests to extend the definitions of
u and l as follows: For an expression E denoting a root of a polynomial of degree d with coefficients given
by Ed $ Ed " 1 $ Ed " 2 $�
�
�
W$ E0 we define

u E �6� Φ X
�
�
�$�H u Ed � ∏
k YZ d

l Ek � L d " i

u Ei � ∏
k YZ i

l Ek �<$�
�
�
)� and l E �2� u Ed � ∏
k YZ d

l Ek �[

We still need to define the weight D E � of an expression. We do so in the obvious way. The weight

D E � of an expression dag E is the product of the weights of the nodes and leaves of the dag. Leaves and� , � , ! and � -operations have weight 1, a k
� -node has weight k, and a # j $ Ed $�
�
�
\� -operation has weight d.

We can now state our main theorem.

Theorem 1 Let E be an expression with integer operands and operations �'$��($! $ k
� for integral k and# j $�
�
�
\� operations. Let ξ be the value of E. Let u E � and l E � be defined inductively on the structure of E

according to the following rules:

u E � l E �
integer N �N � 1
E1 + E2 u E1 � ! l E2 �*� l E1 � ! u E2 � l E1 � ! l E2 �
E1 ! E2 u E1 � ! u E2 � l E1 � ! l E2 �
E1 � E2 u E1 � ! l E2 � l E1 � ! u E2 �

k
�

E1 and u E1 �]� l E1 � k� u E1 � l E1 � k " 1 l E1 �
k
�

E1 and u E1 �]� l E1 � u E1 � k� u E1 � k " 1l E1 �# j $ Ed $�
�
�
�$ E0 � Φ X
�
�
W$ I l E � d " iu Ei � ∏k YZ i l Ek � J $�
�
�
\� u Ed � ∏k YZ d l Ek �
Let D E � be the weight of E. Then either ξ � 0 or,

l E � u E � D - E .N" 1 / " 1 �0� ξ ��� u E � l E � D - E .N" 1

5

Proof: We show that the rules for u and l keep the invariant that there are algebraic integers β and γ such
that ξ � β � γ and u E � is an upper bound on the absolute size of the conjugates of β and l E � is an upper
bound on the absolute size of the conjugates of γ.

We prove this by induction on the structure of E. The base case is trivial. If E is an integer N, we take
β � N and α � 1; β is the root of the polynomial X � N and α is a root of X � 1.

Now let E � E1 + E2. By induction hypothesis we have ξ j � β j � γ j for j � 1 $ 2. We set β � β1γ2 + β2γ1
and γ � γ1γ2. Since algebraic integers are closed under additions, subtractions and multiplications, β and γ
are algebraic integers. By Lemma 5, u E �	� u E1 � ! l E2 �W� l E1 � ! u E2 � is an upper bound on the absolute
size of the conjugates of β. Similarly, l E � is an upper bound on the absolute size of the conjugates of γ.

If E � E1 ! E2, we set β � β1β2 and γ � γ1γ2. The claim follows analogously to the previous case by
Lemma 5.

If E � E1 � E2, we set β � β1γ2 and γ � β2γ2. Again, the claim follows using Lemma 5.

If E � k
�

E1 and β1 � γ1, we set β � k
Q

β1γk " 1
1 and γ � γ1. Since algebraic integers are closed under

k
� -operations, β is an algebraic integer. By Lemma 5, u E � is an upper bound on the absolute size of the
conjugates of β. There is nothing to show for γ � γ1.

If E � k
�

E1 and β1 � γ1, we set β � β1 and γ � k
Q

βk " 1
1 γ1. Since algebraic integers are closed under

k
� -operations, γ is an algebraic integer. By Lemma 5, l E � is an upper bound on the absolute size of the
conjugates of γ. There is nothing to show for β � β1.

Finally, let E be defined by a # j $ Ed $�
�
�
�$ E0 � -operation. We set

β � # j $ 1 $ βd " 1γdγd " 2 !�!�! γ0 $ γβd " 2γdγd " 1γd " 3 !�!�! γ0 $�
�
�
�$ γn " 1γdγd " 1γd " 2 !�!�! γ1β0 �
and

γ � βdγd " 1γd " 2 !�!�! γ0

By the discussion preceding the statement of our main theorem, ξ � β � γ, β and γ are algebraic integers,
l E � is an upper bound on the absolute size of the conjugates of γ, and u E � is an upper bound on the
absolute value of the conjugates of β. This completes the induction step.

Rewriting ξ as β � γ corresponds to a restructuring of the expression dag defining E into an expression
dag E ^ with a single division-operation. We have D E ^_�2� D E � .

We still need to argue that D E � is an upper bound on the algebraic degree of β. This follows from the
fact that every operation leads to a field extensions whose degree is bounded by the weight of the operation.

We now have collected all ingredients to bound the absolute value of ξ from below. If ξ �� 0, we have
β �� 0. The absolute value of β and all its conjugates is bounded by u E � . Thus � β �1�` u E � deg - β .=" 1 � " 1 by
Lemma 2. Also � γ �1� l E � . Thus� ξ �a� β

γ
� 1

u E � deg - β .N" 1 ! 1
l E � � 1

u E � D - E .N" 1 ! l E �
The value of an algebraic expression may be undefined. Divisions by zero and taking a root of even

degree of a negative number are easily caught by the sign test. We next argue that the sign test also allows us
to test whether the diamond-operation is well defined. For this matter, we need to determine the number of
zeros of a polynomial. Sturm sequences, see [Mig92, chapter 5] or [Yap99, Chapter 7] are the appropriate
tool. The computation of Sturm sequences amounts to a gcd computation between a polynomial and its
derivative. Our sign test is sufficient to implement a gcd computation.

4 Comparison to Other Constructive Root Bounds
We compare our new bound to previous root bounds provided by Mignotte [Mig92], Canny [Can87],
Dubé/Yap [YD95], BFMS [BFMS00, MS01], Scheinermann [Sch00], Li/Yap [LY01]. We refer to the

6

bound presented in this paper as BFMSS. Root bounds can be compared along two axees: according to the
class of expressions to which they apply and according to their value.

The bounds by Mignotte, Dubé/Yap and Scheinerman apply to division-free simple expressions, BFMS
applies to simple expressions. The bounds in [LY01] and [MS01] apply to expressions defined by items (1)
to (3) with the restriction that the Ed to E0 in (3) must be integers. Canny’s bound is most general. It applies
to algebraic numbers defined by systems of multi-variate polynomial equations with integer coefficients.

We next discuss the quality of the bounds. In [BFMS00, LY01] it was already shown that the BFMS-
bound it never worse than the bounds by Mignotte, Canny, Dubé/Yap, and Scheinermann. In [LY01] it was
also shown that the BFMS bound and the Li/Yap bound are incomparable.

Lemma 6 (C. Yap, personal communication) Let E be an arbitrary simple expression, let u and l be
defined as in the original BFMS-bound, let u ^ and l ^ be defined as in Theorem 1, and let D � D E � be the
degree bound of E. Then

l E � u E � D2 " 1 � l ^ E � u ^ E � D " 1 $
i.e., the improved bound is always as least as strong as the orginal BFMS-bound

Proof: We show

u E �
l E � � u ^N E �

l ^ E � and u ^ E �A� u E � D - E . and l ^ E �A� l E � D - E .
by induction on the structure of E. Assume that these relations hold. Then

l E � u E � D2 " 1 � l E �
u E � u E � D � D � l ^\ E �

u ^ E � u ^ E � D � l ^ E � u ^ E � D " 1

and we are done.
The proof of the equality is a simple induction on the structure of E. The base case is clear. In the

inductive step we write u1 instead of u E1 � and similarly for E2, l, u ^ and l ^ . If E � E1 � E2, we have

u E �
l E � � u1l2 � u2l1

l1l2
� u1

l1
� u2

l2
� u1̂

l1̂
� u2̂

l2̂
� u ^b E �

l ^ E �

Multiplication and division are handled similarly. If E � k

�
E1, we have (assuming u1̂ � l1̂, the case u1̂ � l1̂

is handled similarly)

u E �
l E � � k

�
u1

k
�

l1
� k

P
u1

l1
� kK u1̂

l1̂
� k� u1̂ l1̂ � k " 1

l1̂
� u ^ E �

l ^ E �

For the inequalities we have to work slightly harder. The base case is again clear; observe that D � 1 in

the base case. It is also clear that u E �A� 1 (or u E �2� 0) and l E �A� 1 for all E. If E � E1 + E2, we have
(using D � D1 and D � D2)

u E � D �c u1l2 � u2l1 � D �` u1l2 � D �S u2l1 � D � uD1
1 lD2

2 � uD2
2 lD1

1 � u1̂l2̂ � u2̂l1̂ � u ^ E �
and

l E � D �R l1l2 � D � lD1
1 lD2

2 � l1̂l2̂ � l ^ E �[

Multiplication and division are handled similarly. If E � k

�
E1, we have D E1 �A� D E �F� k and hence (as-

suming u1̂ � l1̂, the case u1̂ � l1̂ is handled similarly)

u E � D � uD d k
1 � uD1

1 � u1̂ � k
Q

u1̂ l1̂ � k " 1 � u ^ E � and l E � D � lD d k
1 � lD1

1 � l1̂ � l ^ E ��

7

We next show that the new bound can be significantly better than the old bound. Consider the expression
F � k� x � a and E � F � F where x is a ck-bit integer for some constant c and a is a d-bit integer for some
constant d. Then D E �2� k. We evaluate both bounds as functions of k.

For the BFMS-bound we have logu F �e�f 1 � k � ck � c, log l F �e� d � k, logu E �e� 1 � c � d � k, log l E �e�
2d � k and hence the BFMS bit bound is k2 � 1 � logu E �*� log l E �2� Θ k2 � .

For the BFMSS-bound we have logu F �2�g 1 � k �h ck � d �2� c � d � k, log l F �2� d, logu E �2� 1 � c �
d � k � d, log l E �2� 2d and hence the BFMSS bit bound is k � 1 � logu E �*� logl E �2� Θ k � .

It remains to compare the BFMSS and the Li/Yap bound. For division-free simple expressions, the
bounds are identical. For expressions with divisions, the bounds are incomparable.

We start with an example, where the BFMSS-bound is significantly better. Let1 E0 � 17 � 3, let Fi ��
Ei " 1 and Ei � Fi � Fi for 1 � i � k, and let E � Ek � Ek. Then deg Ei �6� deg Fi �2� 2i. We evaluate both

bounds as functions of k.
For the BFMSS bound, we have

logu E0 �i� log17 $
log l E0 �i� log3 $
log l Fi �i� log l Ei " 1 �<$
logu Fi �i� 1

2
 logu Ei " 1 �*� log l Ei " 1 ���<$

log l Ei �i� 2log l Fi �2� 2log l Ei " 1 �2� 2i log3 $
logu Ei �i� 1 � logu Fi �*� log l Fi �� 1 � 1

2
logu Ei " 1 ��� 3

2
log l Ei " 1 �� 1 � 1

2
logu Ei " 1 ��� 3

2
2i " 1 log3� ∑

0 j j k i
2 " j � 2 " i log17 � 2i " 1 3

2
log3 ∑

0 j j k i
4 " j

� 2 � 2 " i log17 � 2i log3

and hence logu E �	� 1 � logu Ek ��� log l Ek �M� 3 � 4 ! 2k and log l E �6� 2log l Ek �l� 4 ! 2k. We conclude
that the BFMSS bit bound is equal to 2k � 1 �B 3 � 4 ! 2k �W� 4 ! 2k � Θ 4k � . Increasing k by one, quadruples
the numbers of bits.

The Li/Yap bound involves the lead coefficient of the minimal polynomial and is at least the logarithm
of the lead coefficient. Li and Yap compute the following estimates lc for the lead coefficients. Let di �
D Ei �M� D Fi �M� 2i. Then log lc E0 �]� log3 � 1, log lc Fi �]� log lc Ei " 1 � , log l Ei �M� 2 ! di ! log lc Fi �A�
2 ! 2i log lc Ei " 1 �m� 2i ∏1 j j j i 2 j ! log3 � 2i - i � 3 .nd 2, log lc E �m� 2 ! 2k log lc Ek � and hence the Li-Yap bit
bound is Ω 2k2 d 2 � . Increasing n by one multiplies the required number of bits by more than 2k.

We next give an example where the Li/Yap bound is better. We start with the fraction 17 � 3, square k
times and then take roots k times. The weight of the expression is 2k and logu E �]� 2k. The BFMSS bit
bound is therefore at least Ω 4k � . On the other hand, the Li/Yap bound is O 2k � .

An implementation should compute the Li/Yap and BFMSS bounds and use the better of the bounds.

5 Experimental Evaluation
The separation bound approach to sign determination of algebraic numbers is used in the number types
real of LEDA [LED] and Expr of CORE [KLPY99]. We report about the improvements in running time
due to the new separation bounds and due to a recent reimplementation of leda real. We also compare
CORE and leda real.

1Any other fraction will also work as the initial value.

8

All tests are based on LEDA 4.2.1 with the most recent arithmetic module incorporated. For the tests
with the CORE library we used CORE v1.3 available from [LY01]; it uses the Li/Yap-bound. All bench-
marks are performed on a Sun Ultra 5 with 333 MHz, 128 MB RAM, running Solaris 2.7. We used g++
2.95.2.1 as a compiler, times are always stated in seconds.

We briefly review the implementation of leda real, a detailed description is available in [BMS96].
The number type supports the sign determination of simple algebraic expressions. Expressions are repre-
sented by their expression dag G E � . The input values of E are contained in the leaves of the dag, every
inner node corresponds to an arithmetical operation, and the root corresponds to E.

When the sign of an algebraic number E needs to be dermined, the datatype first computes a separation
bound qE . Using leda bigfloat arithmetic (= floating-point numbers with exponent and mantissa of
arbitrary length), the datatype computes successively intervals of decreasing length that include E, until
the interval does not contain zero or the length of the interval is less than qE .

Several shortcuts are used to speed up the computation of the sign. First, a double approximation �E
and an error bound err such that �E � �E ��� err is stored with every node of the expression dag. As long as
the double approximation �E is known to be exact, i.e. err � 0, no expression graph is constructed and �E
represents E.

Secondly, if the double approximation �E suffices to determine the sign of E, i.e. 0 �o > �E � err$ �E � err @ ,
no bigfloat computation is triggered. This technique is called a floating-point filter.

In the reimplementation, we made the following improvements:

(1) the separation bound is the better of the Li/Yap and the BFMSS bound.

(2) the implementation of the underlying bigfloat arithmetic has been improved; at the beginning it was
based on number type leda integer for integer numbers of arbitrary size, now it directly operates
on vectors of long integers.

(3) memory management within the real datatype has been improved; in particular, space for the
bigfloat approximations is now only allocated if bigfloat computation is necessary for a sign de-
termination.

(4) the built-in floating-point filters have been improved, both with respect to running time as well as
precision.

Overall, the efficiency has improved for ’easy instances’ (i.e. instances that do not need the bigfloat
computation) due to improved floating-point filter techniques as well as for ’difficult instances’ due to the
improved separation bounds and bigfloat implementation.

We turn to our experiments. The source code of all experiments is available at http://www.mpi-sb.
mpg.de/˜funke/SepBoundESA01.html. Many of the experiments make use of L-bit random integers. We
generated them outside the leda real number type and used them as inputs for our expressions.

(1) The first test is a simple check of a binomial expression. Let x � a
b $ y � c

d where a, b, c, and d are L-
bit integers and let E �f � x � � y �W� � x � y � 2

�
xy. For the old BFMS-bound we get a sepBFMS � 160L �

381, for our improved bound sepimprov � 96L � 60, whereas the LiYap-bound gives sepLiYap � 28L � 60.
This is of course reflected in the running times.

L 25 50 100 200 400 800 1600
BFMS 0.04 0.10 0.27 0.77 2.21 6.55 20.73
Improv 0.01 0.04 0.10 0.27 0.77 2.26 7.07
LiYAP 0.00 0.01 0.02 0.04 0.11 0.29 0.91

(2) Let x and y be L-bit integers, C �p � x � � y �F�* x � y ��� and E � C � C. For both our old and improved
bound we get sepBFMS � sepImprov � 6L � 64, whereas the LiYap-bound gives sepLiYap � 65L � 91. Again
this shows in the running times.

L 500 1000 2000 4000 8000 16000
BFMS 0.01 0.03 0.08 0.25 0.72 2.33
Improv 0.01 0.03 0.08 0.24 0.73 2.32
LiYAP 0.36 1.05 3.17 9.47 28.5 85.6

9

We now turn to examples for which we have already proved differing asymptotic behaviour of the
bounds in Section 4.

(3) First consider F � k� x � y and E � F � F where x is a 100k-bit integer and y a 32-bit integer. The
BFMS bound is Θ k2 � , whereas the new bound is Θ k � . The Li/Yap bound is also Θ k � and even better
than our new bound.

k 2 4 8 16 32 64
BFMS time 0.01 0.02 0.20 2.22 24.36 86.6

BFMS bound 391 1683 6751 26781 106396 421787
Improv. time 0.01 0.01 0.01 0.04 0.11 0.36

Improv. bound 214 538 1198 2524 5179 10459
LiYap time 0.01 0.01 0.01 0.03 0.04 0.12

LiYap bound 150 346 750 1564 3195 6427

The running time of multiplication, division, and the root operation for L-bit numbers in leda bigfloat
is Llog3. Doubling k in case of the BFMS bound quadruples the separation bound and hence multiplies the
running time by about2 9, whereas in case of the improved bound, the separation bound doubles and the
running time roughly triples.

(4) For E0 � 17 � 3 $ Fi � �
Ei " 1 $ Ei � Fi � Fi $ E � Ek � Ek, the BFMS and the BFMSS bound for E is

Θ 4k � (but with different constant factors), whereas the Li-Yap bound is Θ 2k2 � .
k 2 3 4 5 6

BFMS time 0.01 0.01 0.02 0.80 8.86
BFMS bound 237 1213 5885 27645 126973
Improv. time 0.01 0.01 0.01 0.04 0.32

Improv. bound 76 284 1084 4220 16636
LiYap time 0.01 0.01 1.98 1781 (too long)

LiYap bound 140 2076 65596 4194428 536871164

In the following test we compare different implementations: real(1) denotes our old implementation
and real(2) the new implementation.

(5) As in our first example we take x � a
b $ y � c

d , where a $ b $ c $ d are L-bit integers, and E �p � x � � y �W�� x � y � 2
�

xy. As we can see, the improved implementation of the LEDA real datatype already leads to
a speedup of a factor of 4, even when using the same separation bound. The new separation bound gives
another speedup of a factor of 3. We did not expect the currently available CORE/Expr implementation
that far behind, since it uses the Li-Yap bound which is superior to our bounds in this example. We neither
understand why there is no difference in running time for L � 100 and L � 200, nor the change in running
time when doubling the bitlength of the input values.

L 25 50 100 200 400 800
real(1) sepBFMS 0.12 0.30 0.98 2.63 8.48 23.97
real(2) sepBFMS 0.04 0.10 0.27 0.77 2.21 6.55
real(2) sepimprov 0.01 0.04 0.10 0.27 0.77 2.26

CORE/Expr sepOldLiYap 2.32 15.7 116.9 116.84 692 3973

(6) The final comparison concerns easy sign tests. The following expression arises during Fortune’s
sweep-line algorithm for Voronoi diagrams: E � a � � b

c � a qr� � b q
c q where a, a ^ , b, b ^ , c, and c ^ are random 3L-,

6L-, and 2L-bit integers. The root bounds do not play a role here, only the efficiency of the implementation,
in particular the floating-point filters comes into play. To get meaningful results we measured the time of
200000 sign computations.

2As machines get slower as they use more memory, we see a factor of slightly more than 9.

10

L 50 100 200
double 0.08 0.08 0.08
real(1) 1.64 1.65 194
real(2) 1.22 1.23 120

CORE/Expr 568 555 672

Clearly, pure double arithmetic is the fastest, creating the expression dag does not come without cost.
But as you can see, our new implementation gains about 25% compared to the old one. The huge increase
in running time for L � 200 can be explained by the fact that in this case, the numbers get too large to be
representable by a double (remember that we create integers of length 6L). Therefore the floating-point
filters will always fail and bigfloat arithmetic has to be used. CORE does not have built-in floating-point
filters so it is much slower then leda real.

6 Conclusions
We presented a new separation bound for algebraic expressions. The bound applies to a wide class of
expressions and is easily computable. For many expressions it gives much better bounds than previous
bounds resulting in significant gains in running time. We see two main challenges: (1) For algebraic
numbers defined by systems of polynomials, Canny’s bound is the best bound known. Provide a better
bound. (2) Our bound as well as the Li/Yap bound is very easy to compute. In the context of expensive
sign computations it is worthwile to investigate more expensive methods for computing separation bounds.

References
[BFMS99] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact efficient computational geometry made easy. In Proceedings

of the 15th Annual Symposium on Computational Geometry (SCG’99), pages 341–350, 1999. www.mpi-sb.mpg.de/
˜mehlhorn/ftp/egcme.ps.

[BFMS00] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic
expressions involving radicals. Algorithmica, 27:87–99, 2000.

[BMS94] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments: Theoretical and
experimental results. In Springer, editor, Proceedings of the 2nd Annual European Symposium on Algorithms - ESA’94,
volume 855 of Lecture Notes in Computer Science, pages 227–239, 1994.

[BMS96] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck-
Institut für Informatik, Saarbrücken, 1996.

[Can87] J.F. Canny. The Complexity of Robot Motion Planning. The MIT Press, 1987.
[Hec70] E. Hecke. Vorlesungen über die Theorie der algebraischen Zahlen. Chelsea, New York, 1970.
[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and Chee Yap. A core library for robust numeric and geometric computation. In

Proceedings of the 15th Annual ACM Symposium on Computational Geometry, pages 351–359, Miami, Florida, 1999.
[LED] LEDA (Library of Efficient Data Types and Algorithms). www.mpi-sb.mpg.de/LEDA/leda.html.
[Loo82] R. Loos. Computing in algebraic extensions. In B. Buchberger, G. E. Collins, and R. Loos, editors, Computer Algebra.

Symbolic and Algebraic Computation, volume 4 of Computing Supplementum, pages 173–188. Springer-Verlag, 1982.
[LY01] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In Proceedings of the 12th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA’01), pages 496–505, 2001.
[Mig82] M. Mignotte. Identification of Algebraic Numbers. Journal of Algorithms, 3(3):197–204, September 1982.
[Mig92] M. Mignotte. Mathematics for Computer Algebra. Springer, 1992.
[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University

Press, 1999. 1018 pages.
[MS01] K. Mehlhorn and St. Schirra. Exact computation with leda real - theory and geometric applications. In G. Alefeld,

J. Rohn, S. Rumpf, and T. Yamamoto, editors, Symbolic Algebraic Methods and Verification Methods. Springer Verlag,
Vienna, 2001. www.mpi-sb.mpg.de/\˜{}mehlhorn/ftp/ledareal.ps.

[Neu90] J. Neukirch. Algebraische Zahlentheorie. Springer-Verlag, 1990.

[Sch00] E. R. Scheinerman. When close enough is close enough. American Mathematical Monthly, 107:489–499, 2000.
[Yap97] Yap. Towards exact geometric computation. CGTA: Computational Geometry: Theory and Applications, 7, 1997.
[Yap99] C.K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 1999.
[YD95] C.K. Yap and T. Dube. The exact computation paradigm. In Computing in Euclidean Geometry II. World Scientific Press,

1995.

11

