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Abstract—Geographic routing protocols like GOAFR or GPSR heavily depends on the distribution and number of anchars, a
rely on exact location information at the nodes, as when the \el|l as the connectivity of the network as a whole.
greedy routing phase gets stuck at a local minimum, they require, For geographic routing protocols, imprecise location iinfo
as a fallback, a planar subgraph whose identification, in all . . ! .
existing methods, depends on exact node positions. In practice, Mation can hgve devaSta“nQ consequences. In particuten w
however, location information at the network nodes is hardly the network is sparse or in the presence of obstacles, the
precise; be it because the employed location hardware, such asgreedy geographic routing phase frequently encountem loc
GPS, exhibits an inherent measurement imprecision, or because minima, where a packet gets stuck due to all neighboring

the localization protocols which estimate positions of the network nodes being further away from the target than its current
nodes cannot do so without errors.

In this paper we propose a novel naming and routing scheme IoclaFion. In this case, a recovery phas_e has to be employed,
that can handle the uncertainty in location information. It is guiding the packet out of the local minimum and towards the

based on a macroscopic variant of geographic greedy routing, as target node. This recovery phase is based on a planarizztion
well as a macroscopic planarization of the communication graph. the communication graph, which essentially allows the ptack

If an upper bound on the deviation from true node locations is 1, he royted around communication voids in the network. In
available, our routing protocol guarantees delivery of messages

Due to its macroscopic view, our routing scheme also produces the Presence of imprecise location information, typicainair
shorter and more load-balanced paths than common geographic graph constructions like the Gabriel grapto not necessarily
routing schemes, in particular in sparsely connected networks or produce a connected planar subgraph of the communication
in the presence of obstacles. graph. See for example Figure 1. Here we have drawn three
nodes in the plane, all with a communication radius1of
Assume that the locations of node?3 and Q are known

For many applications of wireless sensor networks it isrecisely. The position of5 is incorrectly estimated to be
essential that the wireless nodes be aware of their geagrapdt S’, though. Note that the absolute deviation from the true
location. A notable example is geographic routing, whick hgosition is less thar /3. The communication graph of these
been extensively studied in the past [1], [2], [3], [4], [S]three nodes contains only two edgép, Q) and(Q, S). Un-
[6], and proved to be very useful in practice because of itsrtunately, due to the imprecise location information ofle
simplicity, scalability and low routing overhead. Geodrp S, the edge(P, Q) does not pass the Gabriel edge condition
routing is also a basis for other higher-level applicatiofis (having an empty diametral ball) and hence is deleted. The
sensor networks, such as the data-centric storage, oiirttackemaining graph is not connected anymore and cannot be used
and surveillance. as a reliable fallback in case when the geographic greedy

However, the assumption that nodes have tegactgeo- routing phase gets stuck. Furthermore, once a message gets
graphic location information available is often unwareaht very close to its target, imprecise node locations are ofs® u
Even with onboard GPS receivers, there is a certain measuredelivering the message, hence some different strategip, s
ment error which causes the reported geographic locationae local flooding, has to be employed.
be only near the true location. Also very often — in particula On the other hand, for some sensor network applications it
in wireless sensor network applications where thousandsi9fnot necessary to know theue locations of sensor nodes,
nodes are deployed — one cannot afford equipping every sengsg instead some other set iokentedlocations can serve the
node with a positioning device due to high cost. Furthermorgurpose; the made up coordinates may or may not have to
such a device would waste energy, or even fail to work iesemble the original ones in one way or another, depending
the areas of bad reception or indoors. Another way in whigh the application. The true coordinates are typically less

nodes can discover their locations is using a |00a|izati0mportant in cases when they are 0n|y interna"y used by the
algorithm to infer the location from a small set of anchor

”09'93' equipp_ed with GPS receivers. This SQ'Ut?O” i$ eves le 1Two points/nodes in the plangeq are neighbors in the Gabriel graph if
satisfactory, since the performance of localization athors the ball whose equator &g is empty of other points/nodes.

I. INTRODUCTION



Fig. 1. Non-connectedness of the Gabriel graph constmdtiocase of
imprecise node locations. Fig. 2. A complex network topology (left), and the plar@ombinatorial
Delaunay Map (CDM)computed by our algorithm (right).

algorithm and not communicated to the user; for example

in the case of geographic hashing for data-centric storafm several of the above approaches. It takes a high-level
On the other hand, they are clearly indispensable in trackimiew on the topology of the sensor field, by adopting a
applications, where in fact this is the main informationttha landmark-based approach, and thus inheriting the robsstne
user wants to know about. and load-balancing properties of e.g. GLIDER. On the other

Recently a number of methods for computing these so callrdnd, we remove the sparseness restriction on the landmarks
virtual coordinateshas been proposed in the literature. Theg@at is we can afford to have as many of them as required by
methods typically use only connectivity information, whic the amount of topological features of the network. We adhiev
is in in most cases readily available in a wireless networtis by not having to store the landmark graph and its routing
see for example [7], [8], [9]. The problem with all thesénformation in each node; instead, wse geometric routing
approaches is that the computation of these virtual coatdin to navigate the landmark grapiWhat makes this possible is
is computationally rather challenging and in all the apphes the fact that our landmark graph is guaranteed tqlamar.
requires at least in some steps a global view on the netwaile take advantage of the fact that even imprecise location
when computing a planar graph embedding. The approach timidrmation suffices to embed such a graph in a completely
we present in this paper can be seen as a way to avoid Ibealized fashion.
expensive and centralized embedding computation by using
approximate location information that is often availabiete Il. OVERVIEW
nodes.

Another approach to avoid the complexity of global em- Unless noted otherwise, we assume that the sensors are
bedding is suitably partitioning the domain and constnggti represented by points in the plane and can communicate with
a set of local embeddings which are then connected usi@gch other according to the unit disk graph [11] or quasi-
some other, perhaps non-geometric routing method.|did  unit-disk graph [12] model of connectivity. Thguasi-unit-
mark based methodalled GLIDER [10], proposes a two-tierdisk graph with parametes for a set of points in the plane
scheme, targeted at making the routing infrastructurelestalsertainly has an edge between all nodes that have distance at
under small fluctuations of the network connectivity, whicinost 1/a and certainly no edge between pairs of nodes at
are inevitable in practice. It achieves this goal by having distance more thah. For nodes at distance betwegm and
preprocessing phase in which a sparse séamdmark nodes 1 the the presence of an edge is uncertain. In our exposition
is selected to serve as a rough guideline for high-levelajlobve furthermore only deal with the static case, i.e. statipna
routing between distant parts of the network. The assumptioetwork nodes, as this is typical in wireless sensor network
is that the connectivity of such a sparse set, which captur@gplications.
the global topology of the network, tends to be more robust toOur starting point is the GLIDER method of Faref
local link variability. The routing is then performed by ngi al. [10], in the sense that we also build a two-layer landmark-
the landmark graph and the associated routing table (whishsed structure. We extend and modify their approach in the
every node can afford to store locally during the prepraogds part that deals with the upper layer of the hierarchy. The
to plan the global route, and realizing this route in theioay authors of [10] do not propose a specific landmark selection
real-world network (in a way that takes care not to overloagtheme, but they emphasize that the set of landmarks should
the landmark nodes). The set of landmarks has to be spaise,sparse, because its main purpose is to capture the large
in order to be of manageable size for a single sensor goale topological features of the sensor field, such as the la
store. On the other hand, The number of landmarks is alsoles, which are assumed to be few. Furthermore, they use
constrained by the complexity of the sensor field that tithe fact that the global topology is likely to remain stable
landmark graph has to capture (in particular, the number ofer extended periods of time, given the typical variations
holes and passages). Clearly, these two requirementstare ohetwork connectivity. Their routing algorithm has a proast
in collision. global planning phase that uses a global routing table dtore

In this paper we propose a method that combines the idedseach node’s memory. Clearly, sparsity and stability ef th



landmark graph are the key properties that enable such ay global state information stored at any of the nodes.
approach. In Figure 2, left, we see a network of complex topology
In this work we take a slightly different approach inncluding holes. Using the structure of the connectivitagr
the landmark selection strategy and the construction of thad the approximate geographic locations of the nodes, our
landmark graph. First, we allow our landmark set to be mueaigorithm computes glanar Combinatorial Delaunay Map
denser. In the GLIDER terminology, this corresponds toipar{CDM) (and its embedding), as can be seen on the right. The
tioning the sensor field into many very small “routable tiJes CDM is navigated using a macroscopic version of geographic
where each tile is a set of nodes that share the closest (in tbeting with the fallback routine based on the planar embed-
graph distance) landmark. Smaller tiles means finer résolut ding of the CDM.
and the ability to capture smaller topological features.tn  The rest of the paper is organized as follows. In Section I
other hand, the complexity of the landmark complex becomeg introduce a variant of greedy geographic routing thakaor
prohibitively high, so the routing table approach to globan the macroscopic level of the landmark graph, at that point
planning, employed by GLIDER, is not scalable any more. still assuming that exact geographic location informatisn
We get around this problem by making sure that the lanevailable. In Section IV we describe a distributed construc
mark graph that we construct is planar. The graph constiuction of a provably planar substructure of the combinatorial
by GLIDER is a variation of thecombinatorial Delaunay Delaunay graph, which we callombinatorial Delaunay Map
graph (CDG), which was proposed in [13] as a way tqCDM). Due to space restrictions we leave out the proofs,
extend the classical notion of Delaunay triangulation fromvhich can be found in [9]. We show how the combinatorial
planar geometry to the unit-disk graph setting. The idea ésnbedding of the CDM can be computed even using only
to approximate the Voronoi and the Delaunay diagram of approximate location information at the landmark nodes. Fi
sparse set of landmark nodes (analogous to a set of poin&ly, in Section V we compare our new approach with known
in the plane), using the rest of the nodes as a samplirmuting protocols like GLIDER and GPSR.
of the plane. Then the nodes are partitioned into Voronoi
tiles, such that the nodes in a single tile share the closest!!!-
landmark (measured in the graph distance). Variationsisf th Let us for now assume that all the nodes in our wireless
construction have been studied in the past under the nanework by some means are aware of their true geographic
graph Voronoi diagranj14], [15]. Finally, the CDG is a graph location. In that case, very attractive routing protocote a
induced by the adjacencies of the Voronoi tiles associafdd wbased on geographic routing, as pioneered in GPSR, GFG
distinct landmarks. and refined later e.g. in AFR [6], GOAFR [4] and GOAFR+
Unfortunately, the CDG is not a triangulation, in fact it i5]. The idea of greedy geographic routing is very simple:
not even planar in general. The typical reason for violatinghen sending a packet to a destination, the node currently
planarity is that many spurious Delaunay edges (tile adjacéholding the packet simply forwards it to the node among
cies) are detected in the “degenerate” regions of the n&woits one-hop neighbors which is closest to the destination
i.e. those that are roughly equally distant from more thgbased on the Euclidean distance given by the geographic
three landmarks. While this type of degeneracy can often lmeations). It can happen, though, that in presence of tioles
considered an extremely rare, or easy to handle event in the network a packet gets stuck in a local minimum. Different
continuous geometry, in the graph setting it is not the casemethods have been proposed to overcome this problem. The
We present a completely localized and distributed proeaduyest known among those is probably GPSR, which exhibits a
for computing a landmark graph which is provably planar. Welanar subgraph of the connectivity graph and uses perimete
adopt a similar approach of trying to mimic planar geometrfprwarding when the greedy phase gets stuck. What makes
but we take special care that the degeneracies as descriB&BER and other geographic routing schemes so attractive is
above are not considered as valid. Then, we constructthee fact that, in particular for dense network deploymettis,
planar embedding of the landmark graph. We argue that eyaneduced paths are very close to optimum, still no auxiliary
imprecise location information at the landmark nodes sesficrouting structures have to be maintained.
to compute such a planar embedding in a completely localizedThe quality of the paths produced by geographic routing
fashion. The resulting embedding faithfully resembles th@otocols decreases, though, in the presence of holes or for
true geometry and topology of the sensor field. Finally, wlew node densities (as this induces small holes everywhere i
use the approximate coordinates of the landmark nodesths network). In these situations GPSR for example often has
their virtual coordinates for global planning purposes] ase to switch from the greedy phase to perimeter routing, which
standard geographic routing algorithms to route packetiseat not only tends to produce longer paths than necessary, but
macroscopic level, among the tiles. At the microscopic llevalso leads to load imbalance in particular on the hole baynda
— when forwarding a packet from a tile to an adjacent tile aodes. One can partly remedy this problem by considering not
determined by the geographic routing algorithm — we empl@nly a 1-hop neighborhood but &-hop neighborhood when
the same strategy as GLIDER by following gradient lines tdetermining the node where to forward the packet. If the size
landmarks of adjacent tiles. of the holes is below the chosen neighborhood dizeghe
Note that this completely eliminates the need for keepirgyeedy phase will still succeed and not get stuck in a local
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minimum. The problem with this approach is that the requirdstoadcasts an OUT message within fthop neighborhood.
storage per node to keep track of thehop neighborhood The process continues until all nodes are either landmarks o
increases drastically with (it is about quadratic irk). inactive.

In this section we introduce a variant of geographic greedy To show that the output is indeedkahop independent set,
routing — we call itMacroscopic Geographic Greedy Routingt suffices to ensure that a node cannot receive a deactivatio
(MGGR)- that is also less susceptible to small holes, but doeessage after it has already joined the landmark set. This is
not require additional memory at the network nodes to stoaehieved by requiring that the nodes join the independent se
an extended neighborhood. The core of our approach is to firsthe order of increasing IDs, i.e. a node is allowed to bezom
compute a partition of the network into smalés by choosing a landmark only after it has received either an IN or an OUT
a set of landmarks and assigning each node to its closestrtiessage from all it&-hop neighbors with lower IDs.
hop-distance) landmark. The same idea is employed by thene then compute thgraph Voronoi diagram[14] of the
GLIDER routing protocol, with the crucial difference, thgilu  communication graph with respect to the set of landmarks
that for GLIDER one can only afford to createsmallnumber selected as above. The graph Voronoi diagram is a graph
of landmarks, since the resulting landmark Voronoi compleanalogue of the corresponding object defined in geometry.
(LVC) or its respective dual, the combinatorial Delaunagmdr Informally, the Voronoi diagram of a graph with respect to a
(CDG), which captures the adjacencies of the tiles, has to dbset of its vertices (the landmarks) is a partition of theex
stored aeverysingle network node. For MGGR the navigatiorset into disjoint subsets (Voronoi regionstides) according to
between the tiles will not be based on the global availabift which landmark is closest to the vertices of a given subges. T
the CDG but on location information, so the maintenance adistances are defined in a standard graph-theoretic semse, a
storage overhead does not grow with the number of tiles. Lik#ortest path lengths on the unweighted communicatiorngrap
in GLIDER, special treatment is necessary after the packdbte that Voronoi regions and landmarks are in one to one
has reached the tile of the target node. For GLIDER, a locgbrrespondence, as in the geometric case.
coordinate system is defined within the tile. The packetésith Finally, we store for each node in tile 7, the distance
led to its final destination by the local coordinates. If aigs, to and coordinate of each landmark whose respective tile
the whole tile is flooded, which can be quite expensive, as the adjacert to 7,. For communication graphs of bounded
tiles are rather big for large networks. In case of MGGR, dutoubling dimension — as they typically arise in the context
to the increased number of landmarks, the tiles are relativesf wireless networks — there are only few adjacent tiles,
small, so flooding a tile or broadcasting a message acroks alience there is only very little additional storage requiegd
via a backbone (e.g. a connected dominating set) is a rellativeach node. Theombinatorial Delaunay graph (CDG3 then
cheap operation. the graph which has a node for each landmark and an edge
between two landmarks if and only if the respective tiles are
adjacent. See Figure 3 for a depiction of these concepts: on

Moving between the two extremes — each node is the left, the whole network with a set of landmarks selected a
landmark vs. picking only a constant number of landmarkg maximalk-hop independent set; in the middle, the induced
independent of the network size — interpolates the resgultigraph Voronoi diagram (in fact only edges that connect two
combinatorial structure between the original commun@ati nodes in two different tiles); and on the right, the dual
graph (as used for GPSR) and the combinatorial Delaungtyucture, the combinatorial Delaunay graph (CDG), which
graph (as used in GLIDER). We certainly aim to choose éxhibits non-planarities in several places.
large number of landmarks as we want to bound the effortThe construction — apart from the fact that we create many
for delivering a packet in its final tile. On the other handiles of constant diameter instead of a constant number of
we don't want to have the tiles too small as MGGR thefiles of rather large diameter — is exactly the same as in
becomes more susceptible to small local minima/holes, likg IDER; hence we can employ their distributed construgtion
the original GPSR. There is another argument for choosiitg rghly skipping the global distribution of the CDG across the
too many landmarks/too small tiles which will only becomgyhole network. And likewise we use the distance information
apparent in the next section where we discuss the case whgfandmarks of adjacent tiles to forward a packet from one
only imprecise location information is available. tile ¢, to an adjacent tilé, by just following the gradient of

Our approach is to have the inter-landmark distance B respective distance function towards the landmarkof
constant, i.e. independent of the network size. To this enghtil crossing the boundary .

we fix a small constank, e.g. k. = 5, and select the set of
landmarks to be a&-hop independent set of nodes. For thi8. Naming and Greedy Routing

we use a very simple greedy algorithm. Initially, all nodes 1o naming scheme for the resulting network is rather

are active. Active nodes decide to become landmarks (jQifaightforward: a node with unique ID id is assigned the

the independent set) asynchronously. When a node becom%ﬁ]e (p,id) wherep denotes the position of the landmark
landmark, it broadcasts an IN message withirkiisop neigh-

borhood. All the recipients of the message become inactiveza jiie  is adjacent to a tile’ if there exist nodes € , v’ € = and
i.e. lose the ability to become landmarks. A deactivatedenod, ') is an edge in the communication graph.

A. Landmark Selection and Inter-tile Connectivity



Fig. 3. A network topology with a set of landmarks, the indugedph Voronoi diagram, and its dual combinatorial Delaunap(CDG).

owning the tile that contains. Clearly, the resulting names areenters the final tile in some node either v is adjacent to
unique if the node IDs were unique in the first place. Severalnode in the CDS backbone or already part of the CDS
nodes can have the same first component in their name backbone. In the former case it relays the packet to one of
these are exactly all the nodes that belong to the same tildts adjacent nodes contained in the CDS backbone (which has
Greedy routing then follows the same scheme as GPSR hbugxist as it is @&onnectedlominating set). Then the packet is
on a macroscopic level. Let us assume a packet needs topbgpagated through the CDS backbone where essentially ever
sent from a node with namés,id;) to a node with name nodew € CDS retransmits the packet once. By the domination
(pt,id;). Assume first thaps # p;, i.e. the target node residesproperty all nodes within the tile are guaranteed to rectiee
in tile 7, the source node resides in titg with 7, # 7,. packet. Due to the sparsity of the CDS, interference can also
As long as the packet is at a nodein 7, with respective be kept under control much easier than in case of flooding the
first naming component,, the node inspects the coordinatesile in an uncontrolled fashion. A connected dominating set
p1, P2, ... p; Of all landmarks of the adjacent tiles, 7»,...7;  can be easily computed locally within each (small!) tilengsi
and selects some tilg as target tile if theEuclideandistance known algorithms like [16].
from p; to p; is s_maller thgn that tcps It can r_each the (P Planar Graph Construction
boundary ofr; by just following the distance gradient store . . )
for the landmark of;. Once it reaches; it again inspects the AS in case of the “non-macroscopic” GPSR it may happen
neighboring tiles of; whether for any of them the respectivénat @ packet that is currently in some titg with landmark
landmark is closer tg;. The process is repeated until thé'_lt positionp; realizes that all of the landmarks of adjacent
packet hopefully reaches tils. There remain two issues toliles are further away from the target landmark thanThat

address. What happens if none of the landmarks of the adjadSntn€ Packet is stuck atlacal minimum To overcome this
tiles are geographically closer to the target landmark than Proplem, GPSR switches to the perimeter routing phase where

landmark of the current tile? And once the packet reaches #{h the help of a planar subgraph of the original unit-disk
target tile 7, how is the packet delivered to the respectivEmmunication graph, the packet is routed around probiemat
target node(p;, id;)? local minima or holes. The important fact here is that petéane

routing requires the identification off@danar subgraph of the
C. Intra-Tile Connectivity network in which the greedy routing takes place (the whole
ommunication graph in case of GPSR). To be more precise,
Iso GPSR requires a geometmenbeddingof this planar
ubgraph. Since in our case GPSR operates on the macroscopic
evel of tiles or respective landmarks, we essentially need
go exhibit and construct a planar subgraph of the adjacency
aph of all the landmarks. This can be accomplished by

Let us first discuss the packet delivery in the final tile. B
construction via a maximal-hop independent set for smail
(e.g.k = 5), our tiles are very small (their diameter is bounde
by 2k), that is we can either afford flooding the whole til
— which is much cheaper than in GLIDER, where the til

size essentially grows with the network size if the numb . . !
of landmarks is kept constant — or we can use one of t e following construction. First create an edge betweem tw

many known algorithms to construct a connected dominati ?‘d’;"’_‘”‘fh i thbelr respe(;uve gles art()e_ a(;lja_ce‘]-ng 'll'he tiewgl h
set (CDSY within each tile and use this as a backbone ggrapn 1s the above mentioned combinatorial Delaunay grap

spread the packet to all nodes in that tile. Note that the cos used in the GLIDER approach. Unfortunately, this graph

only has to cover the nodes within one small tile and theeefo) typically not planar. However, since the' actualiedges'hej t
G cannot be longer tha2k, a simple inspection within

can be computed completely locally. Hence when the pac ) . o : )
P P y y P a local neighborhood can identify intersecting pairs ofesqg
3A connected dominating set for a graph{V, E) is a subseD C V such one O_f Wh_'Ch can then be removed. This technique has be.en
thatVo € V : v € D or w € D for somew such that(v, w) € E. exploited in [17], but of course the search performed byrthei



algorithm may not be local. So when during the greedy phademain by being either a unit-disk or quasi-unit-disk graph

a packet gets stuck in a local minimum, this planar graph Krst we introduce dabeling of the communication gragbr

used to recover. We will not elaborate on this planarizatian given set of landmarks.

approach but instead present an alternative way to planariz Definition 1:

the CDG which also works foimprecisenode locations. () Consider a landmark and a vertex. We say thav is an

E. Summary a—verte>.< if a is one of the landmarks which are closest to
' v, and it has the smallest ID among all such landmarks.

In this section we combined ideas from geographic routingi) Consider arbitrary landmarks, b and an edge = (u, v).
protocols, like GPSR, with landmark based routing schemes, We say that is ana-edge if bothu andv area-vertices.

like GLIDER. The rationale behind that is to improve the \we say thatke is anab-edge ifu is ana-vertex andv is
behavior when local minima are encountered during the greed 3 p-vertex or vice versa.
routing phase; this still poses a problem for geographi@mgu  cearly, this rule assigns a unique label to each vertex and
protocols like GPSR, especially in scenarios where the nefyge, due to the uniqueness of nodes’ IDs. Also note that any
work exhibits many holes or has a low-density communicatiQngmark « is an a-vertex. Next we present a criterion for
graph. While we expect the greedy phase in this macroscom%king two landmarks adjacent in the CDM.
version of geographic routing to encounter fewer local mayi  pefinition 2: Landmarksa andb are adjacent in the CDM
we still have the fallback in the form of a planar substruetuts ihere exists a path from to b whose 1-hop neighborhood
on the CDG, instrumented by perimeter routing to guarantggc|yding the path itself) consists only efandb vertices, and
message delivery. In our experimental section we will sée thy,ch that in the ordering of the nodes on the path (startitiy wi
MGGR leads to a much higher delivery rate of the greedy ang ending withb) all a-nodes precede abtnodes. We call
phase than GPSR without perimeter routing. Note that Wch a pattwitness patifor the adjacency betweenandb.
to now we were assuming that exact location information |§ote that the CDG is actually defined in a very similar way
available at the selected landmark nodes. with the only difference that the-hop neighborhood of the
path is not cared about.
Due to space restrictions we cannot elaborate on the proof
_ ) ) of why this construction yields a planar subgraph of the CDM.
Let us now switch to the scenario where omlgproximate |nstead, we refer to [9], where the full proof is given in deta
geographic location information is available. Most of thgyq only cite the main result of [9]:
construction described in the previous section still &®IOne  Theorem 1:The combinatorial Delaunay map (CDM) built

essential ingredient is missing, though: how can we pruee Hjsing the rule of Definition 2 is planar for any quasi-unitidis
combinatorial Delaunay graph to guarantee planarity baaedgraph witha < /2.

approximate location information only? _ _ _

In a first step we will sketch how a planar subgraph of tHg- Embedding the Combinatorial Delaunay Map
CDG can be extracted — we call g@ombinatorial Delaunay = The goal of the embedding phase is to determine the
map (CDM) Then we show how a combinatorial embeddingclockwise order of the paths that witnessed the adjacendies
of the CDM can be computed using the approximate locati@my vertex in the CDM, that is, to determine the combinatoria
information at the landmark nodes. This combinatorial enembedding of the CDM.
bedding allows us to use the recovery/fallback protocols asConsider some landmarkand its neighboring landmarks in

IV. PLANARIZATION AND EMBEDDING OF THE
COMBINATORIAL DELAUNAY GRAPH

described e.g. in GPSR or GOAFR. the CDM, one of which i9. For an edg€a, b) in the CDM
. we define itscone denoted bycone(a,b), to be the angle
A. Planar Graph Extraction under whicha sees all nodes on the witness path froro b

The idea for the construction and the main properties of oautsidea’s tile. For a landmarle we consider the sdf,, of all
planar graph are largely derived from geometric intuitido. adjacent edges in the CDM; we determine a maximal subset
be specific, the planarity follows from the fact that our CD8V i £, of those edges such that their respective cones are mutually
the dual graphof a suitably defined partition of the plane intadisjoint. We say that landmark supportsthe edge sef’,. We
simply connected disjoint regions. In the following, we defi keep an edgéu, b) from the CDM if and only if it is supported
such a planar partition based on the landmark set, and pgopbg both a andb. In the following, let us only consider such
a method for identifying a subset of edges of the combinaitoriedges supported by both endpoints, and the assodraided
Delaunay graph using only the information available in th€ombinatorial Delaunay Map (RCDMBY construction, it is
graph connectivity. The whole reasoning is based on the fadivious that the order of the angles around each landmark
that the original communication graph is not an arbitragpir gives us the circular order of the surviving adjacenciesatTh
but in some way resembles the geometry of the underlyiigy we have determined the combinatorial embedding of the

RCDM. Observe that this process is completely localized,

“A combinatorial embedding of a planar graph is given by its sagled  sjnce a landmark has to inspect only adjacent landmarkshwhic
edges, as well as a cyclic ordering of the edges around eatéxva some

planar embedding of the graph. Given a combinatorial embeddmgface are at most2k hops away, and: is chosen to be a small
cycles can be easily traversed. constant.



So far we have still neglected the fact that oafyproximate
node locations are available. Assume now that node location
are not given exactly, but with some uncertainfythat is, the
true position of a landmark might keaway from the location
reported to us.

1) Choice of the inter-landmark distance based on location
uncertainty: The idea of how to deal with uncertain node
locations is rather trivial. We simply put a ball of radius :

& around each node of the witness pathne(a,b) is then Fig- 4. Success rate of greedy forwarding. (i) The networdus our

. . . simulation. (i) The simulation results for varying degredsroprecision of
defined as the angle under whiglsees all théalls of radius  he node locations.
¢ around the nodes on the witness path frano b outside
a’s tile. That, of course, widensone(a, b), but not by much,
provided thatk — which determines the minimum distance We emphasize that in all our experiments the node density
between adjacent landmarks — is chosen large enough. Bquite low relative to the communication radius (the agera
the more uncertain the node locations are — i.e. the largiagree of the communication graph is always not much more
§ — the larger one has to pick — in our experiments we than 10). This is meant to show that our method does not
obtained very good performance (that is, most edges of ttegjuire extremely dense deployments, despite the fact that
CDM survived the angle test) by settiig= 5 - max(1,4/2). it relies on the fact that the nodes “sample” the plane and
Choosingk larger essentially makes the angles under whicwitness” the various adjacencies between different megjio
the witness path parts are seen smaller (since they aresat I&ensor nodes are always deployed uniformly at random in a
k hops away). square, and additional holes have been created manually.

2) Dealing with disconnectedness of the CDMsing our
rules for pruning adjacencies from the CDM, it might happ
in theory that a landmark chosen by our algorithm turns
out to be disconnected from the rest of the CDM. In such Previously we made the claim that our method retains
cases, we would deleteand assign its tile accordingly to thethe benefits of the macroscopic view on network topology,
neighboring landmarks. In practice, though, for all thenmek e.g. robustness to small holes. As a good measure of this
deployments we have considered, this is not an issue. robustness, we considered the fraction of times when greedy

o ) _ forwarding alone is able to successfully deliver the messag
C. Embedding in the Absence of Location Information  \ve compared our algorithm with GPSR under various degrees

Our procedure for extracting a planar graph does not redy imprecision of the node location§ & 0 denotes exact node
on any location information, only the embedding phase dodscations,d = 0.25 that the true location of a node might be
It is actually possible to derive an embedding of the exéidctup to one quarter of the communication radius away from the
planar graph without using any location information, [9] idocation assumed by GPSR/MGGR). We obtained the results
an example. Unfortunately, these methods are typicallyemashown in Figure 4.
involved and require non-local computation. The simulated network had abowb, 000 nodes and an
average degree @f. In addition to being sparse, the network
had many small holes. The landmarks for MGGR were chosen

To evaluate the performance of our routing scheme, weéth k = 5, i.e. according to the formula mentioned above. The
performed a set of computer-simulated experiments. We corates were obtained by averaging ovér 000 trials, where in
pared our routing scheme to GLIDER and GPSR in terms e#ch trial a message was routed using GPSR/MGGR, between
delivery success rate, path length, message load on the naesource and a destination chosen uniformly at random. We
and the number of routing messages sent. In particular, w&n see that MGGR significantly outperforms GPSR, the dif-
were interested in the comparison with GPSR in the casefaefence becoming even more pronounced with higher degrees
uncertain node locations (note that imprecision of the no@é imprecision of the node locations.
locations has no effect on GLIDER, since GLIDER does not
use location information). B. Path Length

Our simulator (written in C++) is not packet-based, and thus For the setting of exact node locations we also compared the
it does not take into account some issues that occur in peactiengths of the produced paths, averaged dvé00 randomly
(i.e. medium access and message loss). However, we feel ttaisen source-destination pairs. The network consisted of
these factors would have similar impact on all algorithnmg] a about17, 500 nodes. We considered two different topologies
thus would not significantly affect the relative performanc on the same node distribution: a unit-disk graph (corredpon

The localized Delaunay graph [18] is used for face routingg to « = 1) and a quasi-unit-disk graph (= 1.25). In the
in GPSR. In all the experiments involving GLIDER, we usédirst case the average degree wasand in the second case
a fixed number of 20 landmarks, which is consistent witlihe landmark selection parameter was- 5. Figure 5 shows
GLIDER's philosophy of sparse landmark graphs. the network used in the simulation and the values we obtained

GPSR | MGGR
0=20 0.613 0.929
0 =0.25 0.533 0.916
60 = 0.50 0.258 0.832
6 =0.75 0.084 0.710

e‘ﬁ' Success Rate of Greedy Forwarding under Imprecise Node
Locations

V. SIMULATION RESULTS



—points | _saoomms | _semams | st | poian_| sgormms | _semings | et

Algorithm Avg. path length Algorithm | Avg. comm. cost/msg
a=1| a=1.25 GLIDER 257.52

GPSR 65.99 83.40 GPSR 45.19

MGGR 42.04 50.49 MGGR 72.39

Fig. 5. Average path length. (i) The network used in simutgtiand the Fig. 6. Communication cost per routed message. (i) The spatsefse
selected landmarks. The network contains a large topolbfgiature (the long landmarks used by GLIDER. (ii) Simulation results.
narrow “corridor” with a small “entrance”).

As expected, due to the presence of the narrow “corridor”, fo
a significant fraction of the test instances GPSR has to fraves
lot of effort in face routing. Our CDM-based algorithm is abl
to route more efficiently into and around the “corridor” wgin
the landmark graph. MGGR significantly outperforms GPSR,

in many cases by a factor of two or more. Also, we can see thdtig- 7. Traffic load (left to right). (i) GLIDER (i) GPSR (JiMGGR
the relative performance does not change too much between

the two topologies. We did not compare directly with GLIDEI?:_igure 6 (ii) shows our results. We compared GLIDER, GPSR

bgt expgct the latter to prodgce considerably better pa‘[hsa'nd MGGR, in a network of abouR, 700 nodes with average
this setting due to the sparsity of the network and the mc&

lobal view on the network topology (which has the drawba egree 10. The landmark selection parameter /s = 5.
9 ST pology (which ha: ) e found that GLIDER has to resort to flooding the last
of a non-local initialization phase for distributing thisobal

. - o tile most of the time, i.e. using greedy routing on the the
view within the network). we 'TE‘fer {0 the original GI‘IDERlocaI coordinates rarely leads to the destination. Contbine
paper [10] for a comparison with GPSR.

with the fact that the tiles are large, this leads to a poor
C. Communication Cost performance by GLIDER in this metric (greedy routing on

. . . . the local coordinates employed by GLIDER typically reqsire
In MGGR, the tile associated with each landmark is O{higher density of the communication graph).

constant size (the constant depending on the choice of the
parameter). The following experiment confirms that havingD. Traffic Load
small tiles reduces communication cost in the final stages of\fe also evaluated the load-balancing properties of our
message delivery, i.e. inside the tile of the destinatiodeno scheme. The network ha#l 800 nodes with average degree
For each ofl, 000 randomly chosen source-destination pairs, and we again tested oh,000 randomly chosen pairs.
we record an estimate of the number of messages neededfie landmark selection parameter was= 5. We route one
route one message. message per pair and add one unit of load to each node on
We estimate the cost using the following simple modefhe path.
which in our opinion provides sufficiently fair comparisdfor Figure 7 shows the visualization of the results. Darkerslisk
the part of the route determined by greedy forwarding (usingpresent nodes with higher load. As expected, GPSR suffers
real coordinates or simply graph distance), we add one ufiém the “hole-hugging” phenomenon, whereas GLIDER suc-
of communication cost per link traversed by the path. For th#eds in taking the load further from the hole boundary.
part of the route discovered by flooding a Voronoi tile, which We notice that MGGR does not quite match GLIDER'’s
happens in the final stages of GLIDER and MGGR, the cosérformance. This is due to the fact that in GLIDER a
is equal to twice the size of maximal independent set (MIS)landmark can often be far from hole boundaries, and it is easy
of this tile (we compute maximal independent sets for thestil to see that the load balancing effect grows with this distanc
in advance). We felt that this is a more realistic measure tha@ne reason is that the landmarks tend to attract messages fro
pure flooding, since most practical systems implement sont neighboring tiles, thus pulling them further into theeiior.
simple form of scheduled broadcast with very little overhealn that sense, as noted previously, by changing the tile size
In Figure 6(i) one can observe that the set of randomind the landmark separation, one can interpolate betweein lo
chosen landmarks used by GLIDER fails to capture the holégalancing benefits of GLIDER, and the energy efficiency of

landmark-based methods.
5This is in fact the size of @onnected dominating set (CD8btained by
adding nodes to the chosen MIS to make it connected. The siaeyo€DS E. Summary
is an upper bound on the optimal number of messages needed foadchst . .
within the tile. Indeed, if only the nodes in the CDS send onesage each, In conclusion, our experiments show that the MGGR algo-

all other nodes will get the message. rithm retains most of the advantages of landmark-based-meth



ods, while improving their energy efficiency and scalafilib
particular, we showed that it successfully avoids smalksol
and does not closely follow the boundary edges, which is on[g]
of the main drawbacks of GPSR. One big improvement with
respect to these methods, as the comparison with GLIDER!
shows, is in terms of energy efficiency, since the final itilea-
phase of message delivery only requires flooding a constar$j
sizes neighborhood.
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