
Guaranteed-delivery Geographic Routing under
Uncertain Node Locations

Stefan Funke
Max-Planck-Institut f̈ur Informatik

Stuhlsatzenhausweg 85
66123 Saarbr̈ucken, Germany

Email: funke@mpi-inf.mpg.de

Nikola Milosavljevíc
Computer Science Department

Stanford University
Stanford, CA, U.S.A.

EMail: nikolam@cs.stanford.edu

Abstract—Geographic routing protocols like GOAFR or GPSR
rely on exact location information at the nodes, as when the
greedy routing phase gets stuck at a local minimum, they require,
as a fallback, a planar subgraph whose identification, in all
existing methods, depends on exact node positions. In practice,
however, location information at the network nodes is hardly
precise; be it because the employed location hardware, such as
GPS, exhibits an inherent measurement imprecision, or because
the localization protocols which estimate positions of the network
nodes cannot do so without errors.

In this paper we propose a novel naming and routing scheme
that can handle the uncertainty in location information. It is
based on a macroscopic variant of geographic greedy routing, as
well as a macroscopic planarization of the communication graph.
If an upper bound on the deviation from true node locations is
available, our routing protocol guarantees delivery of messages.
Due to its macroscopic view, our routing scheme also produces
shorter and more load-balanced paths than common geographic
routing schemes, in particular in sparsely connected networks or
in the presence of obstacles.

I. I NTRODUCTION

For many applications of wireless sensor networks it is
essential that the wireless nodes be aware of their geographic
location. A notable example is geographic routing, which has
been extensively studied in the past [1], [2], [3], [4], [5],
[6], and proved to be very useful in practice because of its
simplicity, scalability and low routing overhead. Geographic
routing is also a basis for other higher-level applicationsof
sensor networks, such as the data-centric storage, or tracking
and surveillance.

However, the assumption that nodes have theirexact geo-
graphic location information available is often unwarranted.
Even with onboard GPS receivers, there is a certain measure-
ment error which causes the reported geographic location to
be only near the true location. Also very often – in particular
in wireless sensor network applications where thousands of
nodes are deployed – one cannot afford equipping every sensor
node with a positioning device due to high cost. Furthermore,
such a device would waste energy, or even fail to work in
the areas of bad reception or indoors. Another way in which
nodes can discover their locations is using a localization
algorithm to infer the location from a small set of anchor
nodes, equipped with GPS receivers. This solution is even less
satisfactory, since the performance of localization algorithms

heavily depends on the distribution and number of anchors, as
well as the connectivity of the network as a whole.

For geographic routing protocols, imprecise location infor-
mation can have devastating consequences. In particular, when
the network is sparse or in the presence of obstacles, the
greedy geographic routing phase frequently encounters local
minima, where a packet gets stuck due to all neighboring
nodes being further away from the target than its current
location. In this case, a recovery phase has to be employed,
guiding the packet out of the local minimum and towards the
target node. This recovery phase is based on a planarizationof
the communication graph, which essentially allows the packet
to be routed around communication voids in the network. In
the presence of imprecise location information, typical planar
graph constructions like the Gabriel graph1 do not necessarily
produce a connected planar subgraph of the communication
graph. See for example Figure 1. Here we have drawn three
nodes in the plane, all with a communication radius of1.
Assume that the locations of nodesP and Q are known
precisely. The position ofS is incorrectly estimated to be
at S′, though. Note that the absolute deviation from the true
position is less than1/3. The communication graph of these
three nodes contains only two edges,(P,Q) and (Q,S). Un-
fortunately, due to the imprecise location information of node
S, the edge(P,Q) does not pass the Gabriel edge condition
(having an empty diametral ball) and hence is deleted. The
remaining graph is not connected anymore and cannot be used
as a reliable fallback in case when the geographic greedy
routing phase gets stuck. Furthermore, once a message gets
very close to its target, imprecise node locations are of no use
in delivering the message, hence some different strategy, such
as local flooding, has to be employed.

On the other hand, for some sensor network applications it
is not necessary to know thetrue locations of sensor nodes,
but instead some other set ofinventedlocations can serve the
purpose; the made up coordinates may or may not have to
resemble the original ones in one way or another, depending
on the application. The true coordinates are typically less
important in cases when they are only internally used by the

1Two points/nodes in the planep,q are neighbors in the Gabriel graph if
the ball whose equator ispq is empty of other points/nodes.
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Fig. 1. Non-connectedness of the Gabriel graph construction in case of
imprecise node locations.

algorithm and not communicated to the user; for example
in the case of geographic hashing for data-centric storage.
On the other hand, they are clearly indispensable in tracking
applications, where in fact this is the main information that a
user wants to know about.

Recently a number of methods for computing these so called
virtual coordinateshas been proposed in the literature. These
methods typically use only connectivity information, which
is in in most cases readily available in a wireless network,
see for example [7], [8], [9]. The problem with all these
approaches is that the computation of these virtual coordinates
is computationally rather challenging and in all the approaches
requires at least in some steps a global view on the network
when computing a planar graph embedding. The approach that
we present in this paper can be seen as a way to avoid the
expensive and centralized embedding computation by using
approximate location information that is often available at the
nodes.

Another approach to avoid the complexity of global em-
bedding is suitably partitioning the domain and constructing
a set of local embeddings which are then connected using
some other, perhaps non-geometric routing method. Theland-
mark based methodcalled GLIDER [10], proposes a two-tier
scheme, targeted at making the routing infrastructure stable
under small fluctuations of the network connectivity, which
are inevitable in practice. It achieves this goal by having a
preprocessing phase in which a sparse set oflandmark nodes
is selected to serve as a rough guideline for high-level global
routing between distant parts of the network. The assumption
is that the connectivity of such a sparse set, which captures
the global topology of the network, tends to be more robust to
local link variability. The routing is then performed by using
the landmark graph and the associated routing table (which
every node can afford to store locally during the preprocessing)
to plan the global route, and realizing this route in the original
real-world network (in a way that takes care not to overload
the landmark nodes). The set of landmarks has to be sparse,
in order to be of manageable size for a single sensor to
store. On the other hand, The number of landmarks is also
constrained by the complexity of the sensor field that the
landmark graph has to capture (in particular, the number of
holes and passages). Clearly, these two requirements are often
in collision.

In this paper we propose a method that combines the ideas

Fig. 2. A complex network topology (left), and the planarCombinatorial
Delaunay Map (CDM)computed by our algorithm (right).

from several of the above approaches. It takes a high-level
view on the topology of the sensor field, by adopting a
landmark-based approach, and thus inheriting the robustness
and load-balancing properties of e.g. GLIDER. On the other
hand, we remove the sparseness restriction on the landmarks,
that is we can afford to have as many of them as required by
the amount of topological features of the network. We achieve
this by not having to store the landmark graph and its routing
information in each node; instead, weuse geometric routing
to navigate the landmark graph. What makes this possible is
the fact that our landmark graph is guaranteed to beplanar.
We take advantage of the fact that even imprecise location
information suffices to embed such a graph in a completely
localized fashion.

II. OVERVIEW

Unless noted otherwise, we assume that the sensors are
represented by points in the plane and can communicate with
each other according to the unit disk graph [11] or quasi-
unit-disk graph [12] model of connectivity. Thequasi-unit-
disk graph with parameterα for a set of points in the plane
certainly has an edge between all nodes that have distance at
most 1/α and certainly no edge between pairs of nodes at
distance more than1. For nodes at distance between1/α and
1 the the presence of an edge is uncertain. In our exposition
we furthermore only deal with the static case, i.e. stationary
network nodes, as this is typical in wireless sensor network
applications.

Our starting point is the GLIDER method of Fanget
al. [10], in the sense that we also build a two-layer landmark-
based structure. We extend and modify their approach in the
part that deals with the upper layer of the hierarchy. The
authors of [10] do not propose a specific landmark selection
scheme, but they emphasize that the set of landmarks should
be sparse, because its main purpose is to capture the large
scale topological features of the sensor field, such as the large
holes, which are assumed to be few. Furthermore, they use
the fact that the global topology is likely to remain stable
over extended periods of time, given the typical variationsin
network connectivity. Their routing algorithm has a proactive
global planning phase that uses a global routing table stored
at each node’s memory. Clearly, sparsity and stability of the



landmark graph are the key properties that enable such an
approach.

In this work we take a slightly different approach in
the landmark selection strategy and the construction of the
landmark graph. First, we allow our landmark set to be much
denser. In the GLIDER terminology, this corresponds to parti-
tioning the sensor field into many very small “routable tiles”,
where each tile is a set of nodes that share the closest (in the
graph distance) landmark. Smaller tiles means finer resolution,
and the ability to capture smaller topological features. Onthe
other hand, the complexity of the landmark complex becomes
prohibitively high, so the routing table approach to global
planning, employed by GLIDER, is not scalable any more.

We get around this problem by making sure that the land-
mark graph that we construct is planar. The graph constructed
by GLIDER is a variation of thecombinatorial Delaunay
graph (CDG), which was proposed in [13] as a way to
extend the classical notion of Delaunay triangulation from
planar geometry to the unit-disk graph setting. The idea is
to approximate the Voronoi and the Delaunay diagram of a
sparse set of landmark nodes (analogous to a set of points
in the plane), using the rest of the nodes as a sampling
of the plane. Then the nodes are partitioned into Voronoi
tiles, such that the nodes in a single tile share the closest
landmark (measured in the graph distance). Variations of this
construction have been studied in the past under the name
graph Voronoi diagram[14], [15]. Finally, the CDG is a graph
induced by the adjacencies of the Voronoi tiles associated with
distinct landmarks.

Unfortunately, the CDG is not a triangulation, in fact it is
not even planar in general. The typical reason for violating
planarity is that many spurious Delaunay edges (tile adjacen-
cies) are detected in the “degenerate” regions of the network,
i.e. those that are roughly equally distant from more than
three landmarks. While this type of degeneracy can often be
considered an extremely rare, or easy to handle event in the
continuous geometry, in the graph setting it is not the case.

We present a completely localized and distributed procedure
for computing a landmark graph which is provably planar. We
adopt a similar approach of trying to mimic planar geometry,
but we take special care that the degeneracies as described
above are not considered as valid. Then, we construct a
planar embedding of the landmark graph. We argue that even
imprecise location information at the landmark nodes suffices
to compute such a planar embedding in a completely localized
fashion. The resulting embedding faithfully resembles the
true geometry and topology of the sensor field. Finally, we
use the approximate coordinates of the landmark nodes as
their virtual coordinates for global planning purposes, and use
standard geographic routing algorithms to route packets atthe
macroscopic level, among the tiles. At the microscopic level
– when forwarding a packet from a tile to an adjacent tile as
determined by the geographic routing algorithm – we employ
the same strategy as GLIDER by following gradient lines to
landmarks of adjacent tiles.

Note that this completely eliminates the need for keeping

any global state information stored at any of the nodes.
In Figure 2, left, we see a network of complex topology

including holes. Using the structure of the connectivity graph
and the approximate geographic locations of the nodes, our
algorithm computes aplanar Combinatorial Delaunay Map
(CDM) (and its embedding), as can be seen on the right. The
CDM is navigated using a macroscopic version of geographic
routing with the fallback routine based on the planar embed-
ding of the CDM.

The rest of the paper is organized as follows. In Section III
we introduce a variant of greedy geographic routing that works
on the macroscopic level of the landmark graph, at that point
still assuming that exact geographic location informationis
available. In Section IV we describe a distributed construc-
tion of a provably planar substructure of the combinatorial
Delaunay graph, which we callCombinatorial Delaunay Map
(CDM). Due to space restrictions we leave out the proofs,
which can be found in [9]. We show how the combinatorial
embedding of the CDM can be computed even using only
approximate location information at the landmark nodes. Fi-
nally, in Section V we compare our new approach with known
routing protocols like GLIDER and GPSR.

III. M ACROSCOPICGEOGRAPHICGREEDY ROUTING

Let us for now assume that all the nodes in our wireless
network by some means are aware of their true geographic
location. In that case, very attractive routing protocols are
based on geographic routing, as pioneered in GPSR, GFG
and refined later e.g. in AFR [6], GOAFR [4] and GOAFR+
[5]. The idea of greedy geographic routing is very simple:
when sending a packet to a destination, the node currently
holding the packet simply forwards it to the node among
its one-hop neighbors which is closest to the destination
(based on the Euclidean distance given by the geographic
locations). It can happen, though, that in presence of holesin
the network a packet gets stuck in a local minimum. Different
methods have been proposed to overcome this problem. The
best known among those is probably GPSR, which exhibits a
planar subgraph of the connectivity graph and uses perimeter
forwarding when the greedy phase gets stuck. What makes
GPSR and other geographic routing schemes so attractive is
the fact that, in particular for dense network deployments,the
produced paths are very close to optimum, still no auxiliary
routing structures have to be maintained.

The quality of the paths produced by geographic routing
protocols decreases, though, in the presence of holes or for
low node densities (as this induces small holes everywhere in
the network). In these situations GPSR for example often has
to switch from the greedy phase to perimeter routing, which
not only tends to produce longer paths than necessary, but
also leads to load imbalance in particular on the hole boundary
nodes. One can partly remedy this problem by considering not
only a 1-hop neighborhood but ak-hop neighborhood when
determining the node where to forward the packet. If the size
of the holes is below the chosen neighborhood sizek, the
greedy phase will still succeed and not get stuck in a local



minimum. The problem with this approach is that the required
storage per node to keep track of thek-hop neighborhood
increases drastically withk (it is about quadratic ink).

In this section we introduce a variant of geographic greedy
routing – we call itMacroscopic Geographic Greedy Routing
(MGGR)– that is also less susceptible to small holes, but does
not require additional memory at the network nodes to store
an extended neighborhood. The core of our approach is to first
compute a partition of the network into smalltiles by choosing
a set of landmarks and assigning each node to its closest (in
hop-distance) landmark. The same idea is employed by the
GLIDER routing protocol, with the crucial difference, though,
that for GLIDER one can only afford to create asmallnumber
of landmarks, since the resulting landmark Voronoi complex
(LVC) or its respective dual, the combinatorial Delaunay graph
(CDG), which captures the adjacencies of the tiles, has to be
stored ateverysingle network node. For MGGR the navigation
between the tiles will not be based on the global availability of
the CDG but on location information, so the maintenance and
storage overhead does not grow with the number of tiles. Like
in GLIDER, special treatment is necessary after the packet
has reached the tile of the target node. For GLIDER, a local
coordinate system is defined within the tile. The packet is then
led to its final destination by the local coordinates. If thisfails,
the whole tile is flooded, which can be quite expensive, as the
tiles are rather big for large networks. In case of MGGR, due
to the increased number of landmarks, the tiles are relatively
small, so flooding a tile or broadcasting a message across a tile
via a backbone (e.g. a connected dominating set) is a relatively
cheap operation.

A. Landmark Selection and Inter-tile Connectivity

Moving between the two extremes – each node is a
landmark vs. picking only a constant number of landmarks
independent of the network size – interpolates the resulting
combinatorial structure between the original communication
graph (as used for GPSR) and the combinatorial Delaunay
graph (as used in GLIDER). We certainly aim to choose a
large number of landmarks as we want to bound the effort
for delivering a packet in its final tile. On the other hand
we don’t want to have the tiles too small as MGGR then
becomes more susceptible to small local minima/holes, like
the original GPSR. There is another argument for choosing not
too many landmarks/too small tiles which will only become
apparent in the next section where we discuss the case when
only imprecise location information is available.

Our approach is to have the inter-landmark distance be
constant, i.e. independent of the network size. To this end,
we fix a small constantk, e.g. k = 5, and select the set of
landmarks to be ak-hop independent set of nodes. For this
we use a very simple greedy algorithm. Initially, all nodes
are active. Active nodes decide to become landmarks (join
the independent set) asynchronously. When a node becomes a
landmark, it broadcasts an IN message within itsk-hop neigh-
borhood. All the recipients of the message become inactive,
i.e. lose the ability to become landmarks. A deactivated node

broadcasts an OUT message within itsk-hop neighborhood.
The process continues until all nodes are either landmarks or
inactive.

To show that the output is indeed ak-hop independent set,
it suffices to ensure that a node cannot receive a deactivation
message after it has already joined the landmark set. This is
achieved by requiring that the nodes join the independent set
in the order of increasing IDs, i.e. a node is allowed to become
a landmark only after it has received either an IN or an OUT
message from all itsk-hop neighbors with lower IDs.

We then compute thegraph Voronoi diagram[14] of the
communication graph with respect to the set of landmarks
selected as above. The graph Voronoi diagram is a graph
analogue of the corresponding object defined in geometry.
Informally, the Voronoi diagram of a graph with respect to a
subset of its vertices (the landmarks) is a partition of the vertex
set into disjoint subsets (Voronoi regions ortiles) according to
which landmark is closest to the vertices of a given subset. The
distances are defined in a standard graph-theoretic sense, as
shortest path lengths on the unweighted communication graph.
Note that Voronoi regions and landmarks are in one to one
correspondence, as in the geometric case.

Finally, we store for each nodev in tile τv the distance
to and coordinate of each landmark whose respective tile
is adjacent2 to τv. For communication graphs of bounded
doubling dimension – as they typically arise in the context
of wireless networks – there are only few adjacent tiles,
hence there is only very little additional storage requiredat
each node. Thecombinatorial Delaunay graph (CDG)is then
the graph which has a node for each landmark and an edge
between two landmarks if and only if the respective tiles are
adjacent. See Figure 3 for a depiction of these concepts: on
the left, the whole network with a set of landmarks selected as
a maximalk-hop independent set; in the middle, the induced
graph Voronoi diagram (in fact only edges that connect two
nodes in two different tiles); and on the right, the dual
structure, the combinatorial Delaunay graph (CDG), which
exhibits non-planarities in several places.

The construction – apart from the fact that we create many
tiles of constant diameter instead of a constant number of
tiles of rather large diameter – is exactly the same as in
GLIDER; hence we can employ their distributed construction,
only skipping the global distribution of the CDG across the
whole network. And likewise we use the distance information
to landmarks of adjacent tiles to forward a packet from one
tile t1 to an adjacent tilet2 by just following the gradient of
the respective distance function towards the landmark oft2
until crossing the boundary tot2.

B. Naming and Greedy Routing

The naming scheme for the resulting network is rather
straightforward: a nodev with unique ID id is assigned the
name (p, id) where p denotes the position of the landmark

2A tile τ is adjacent to a tileτ ′ if there exist nodesv ∈ τ , v′ ∈ τ ′ and
(v, v′) is an edge in the communication graph.



Fig. 3. A network topology with a set of landmarks, the inducedgraph Voronoi diagram, and its dual combinatorial Delaunay graph(CDG).

owning the tile that containsv. Clearly, the resulting names are
unique if the node IDs were unique in the first place. Several
nodes can have the same first component in their name —
these are exactly all the nodes that belong to the same tile.

Greedy routing then follows the same scheme as GPSR but
on a macroscopic level. Let us assume a packet needs to be
sent from a node with name(ps, ids) to a node with name
(pt, idt). Assume first thatps 6= pt, i.e. the target node resides
in tile τt, the source node resides in tileτs with τt 6= τs.
As long as the packet is at a nodev in τs with respective
first naming componentps, the node inspects the coordinates
p1, p2, . . . pl of all landmarks of the adjacent tilesτ1, τ2, . . . τl

and selects some tileτi as target tile if theEuclideandistance
from pt to pi is smaller than that tops. It can reach the
boundary ofτi by just following the distance gradient stored
for the landmark ofτi. Once it reachesτi it again inspects the
neighboring tiles ofτi whether for any of them the respective
landmark is closer topt. The process is repeated until the
packet hopefully reaches tileτt. There remain two issues to
address. What happens if none of the landmarks of the adjacent
tiles are geographically closer to the target landmark thanthe
landmark of the current tile? And once the packet reaches the
target tile τt, how is the packet delivered to the respective
target node(pt, idt)?

C. Intra-Tile Connectivity

Let us first discuss the packet delivery in the final tile. By
construction via a maximalk-hop independent set for smallk
(e.g.k = 5), our tiles are very small (their diameter is bounded
by 2k), that is we can either afford flooding the whole tile
– which is much cheaper than in GLIDER, where the tile
size essentially grows with the network size if the number
of landmarks is kept constant – or we can use one of the
many known algorithms to construct a connected dominating
set (CDS)3 within each tile and use this as a backbone to
spread the packet to all nodes in that tile. Note that the CDS
only has to cover the nodes within one small tile and therefore
can be computed completely locally. Hence when the packet

3A connected dominating set for a graphG(V, E) is a subsetD ⊆ V such
that ∀v ∈ V : v ∈ D or w ∈ D for somew such that(v, w) ∈ E.

enters the final tile in some nodev, either v is adjacent to
a node in the CDS backbone or already part of the CDS
backbone. In the former case it relays the packet to one of
its adjacent nodes contained in the CDS backbone (which has
to exist as it is aconnecteddominating set). Then the packet is
propagated through the CDS backbone where essentially every
nodew ∈ CDS retransmits the packet once. By the domination
property all nodes within the tile are guaranteed to receivethe
packet. Due to the sparsity of the CDS, interference can also
be kept under control much easier than in case of flooding the
tile in an uncontrolled fashion. A connected dominating set
can be easily computed locally within each (small!) tile using
known algorithms like [16].

D. Planar Graph Construction

As in case of the “non-macroscopic” GPSR it may happen
that a packet that is currently in some tileτi with landmark
at positionpi realizes that all of the landmarks of adjacent
tiles are further away from the target landmark thanpi. That
is, the packet is stuck at alocal minimum. To overcome this
problem, GPSR switches to the perimeter routing phase where,
with the help of a planar subgraph of the original unit-disk
communication graph, the packet is routed around problematic
local minima or holes. The important fact here is that perimeter
routing requires the identification of aplanar subgraph of the
network in which the greedy routing takes place (the whole
communication graph in case of GPSR). To be more precise,
also GPSR requires a geometricembeddingof this planar
subgraph. Since in our case GPSR operates on the macroscopic
level of tiles or respective landmarks, we essentially need
to exhibit and construct a planar subgraph of the adjacency
graph of all the landmarks. This can be accomplished by
the following construction. First create an edge between two
landmarks if their respective tiles are adjacent. The resulting
graph is the above mentioned combinatorial Delaunay graph
as used in the GLIDER approach. Unfortunately, this graph
is typically not planar. However, since the actual edges in the
CDG cannot be longer than2k, a simple inspection within
a local neighborhood can identify intersecting pairs of edges,
one of which can then be removed. This technique has been
exploited in [17], but of course the search performed by their



algorithm may not be local. So when during the greedy phase
a packet gets stuck in a local minimum, this planar graph is
used to recover. We will not elaborate on this planarization
approach but instead present an alternative way to planarize
the CDG which also works forimprecisenode locations.

E. Summary

In this section we combined ideas from geographic routing
protocols, like GPSR, with landmark based routing schemes,
like GLIDER. The rationale behind that is to improve the
behavior when local minima are encountered during the greedy
routing phase; this still poses a problem for geographic routing
protocols like GPSR, especially in scenarios where the net-
work exhibits many holes or has a low-density communication
graph. While we expect the greedy phase in this macroscopic
version of geographic routing to encounter fewer local minima,
we still have the fallback in the form of a planar substructure
on the CDG, instrumented by perimeter routing to guarantee
message delivery. In our experimental section we will see that
MGGR leads to a much higher delivery rate of the greedy
phase than GPSR without perimeter routing. Note that up
to now we were assuming that exact location information is
available at the selected landmark nodes.

IV. PLANARIZATION AND EMBEDDING OF THE

COMBINATORIAL DELAUNAY GRAPH

Let us now switch to the scenario where onlyapproximate
geographic location information is available. Most of the
construction described in the previous section still applies. One
essential ingredient is missing, though: how can we prune the
combinatorial Delaunay graph to guarantee planarity basedon
approximate location information only?

In a first step we will sketch how a planar subgraph of the
CDG can be extracted – we call itcombinatorial Delaunay
map (CDM). Then we show how a combinatorial embedding4

of the CDM can be computed using the approximate location
information at the landmark nodes. This combinatorial em-
bedding allows us to use the recovery/fallback protocols as
described e.g. in GPSR or GOAFR.

A. Planar Graph Extraction

The idea for the construction and the main properties of our
planar graph are largely derived from geometric intuition.To
be specific, the planarity follows from the fact that our CDM is
thedual graphof a suitably defined partition of the plane into
simply connected disjoint regions. In the following, we define
such a planar partition based on the landmark set, and propose
a method for identifying a subset of edges of the combinatorial
Delaunay graph using only the information available in the
graph connectivity. The whole reasoning is based on the fact
that the original communication graph is not an arbitrary graph
but in some way resembles the geometry of the underlying

4A combinatorial embedding of a planar graph is given by its nodes and
edges, as well as a cyclic ordering of the edges around each vertex in some
planar embedding of the graph. Given a combinatorial embedding, the face
cycles can be easily traversed.

domain by being either a unit-disk or quasi-unit-disk graph.
First we introduce alabeling of the communication graphfor
a given set of landmarks.

Definition 1:
(i) Consider a landmarka and a vertexv. We say thatv is an

a-vertex if a is one of the landmarks which are closest to
v, and it has the smallest ID among all such landmarks.

(ii) Consider arbitrary landmarksa, b and an edgee = (u, v).
We say thate is ana-edge if bothu andv area-vertices.
We say thate is anab-edge ifu is ana-vertex andv is
a b-vertex or vice versa.

Clearly, this rule assigns a unique label to each vertex and
edge, due to the uniqueness of nodes’ IDs. Also note that any
landmarka is an a-vertex. Next we present a criterion for
making two landmarks adjacent in the CDM.

Definition 2: Landmarksa andb are adjacent in the CDM
if there exists a path froma to b whose 1-hop neighborhood
(including the path itself) consists only ofa andb vertices, and
such that in the ordering of the nodes on the path (starting with
a and ending withb) all a-nodes precede allb-nodes. We call
such a pathwitness pathfor the adjacency betweena andb.
Note that the CDG is actually defined in a very similar way
with the only difference that the1-hop neighborhood of the
path is not cared about.

Due to space restrictions we cannot elaborate on the proof
of why this construction yields a planar subgraph of the CDM.
Instead, we refer to [9], where the full proof is given in detail,
and only cite the main result of [9]:

Theorem 1:The combinatorial Delaunay map (CDM) built
using the rule of Definition 2 is planar for any quasi-unit disk
graph withα ≤

√
2.

B. Embedding the Combinatorial Delaunay Map

The goal of the embedding phase is to determine the
clockwise order of the paths that witnessed the adjacenciesof
any vertex in the CDM, that is, to determine the combinatorial
embedding of the CDM.

Consider some landmarka and its neighboring landmarks in
the CDM, one of which isb. For an edge(a, b) in the CDM
we define itscone, denoted bycone(a, b), to be the angle
under whicha sees all nodes on the witness path froma to b
outsidea’s tile. For a landmarka we consider the setEa of all
adjacent edges in the CDM; we determine a maximal subset
E′

a of those edges such that their respective cones are mutually
disjoint. We say that landmarka supportsthe edge setE′

a. We
keep an edge(a, b) from the CDM if and only if it is supported
by both a and b. In the following, let us only consider such
edges supported by both endpoints, and the associatedRefined
Combinatorial Delaunay Map (RCDM). By construction, it is
obvious that the order of the angles around each landmark
gives us the circular order of the surviving adjacencies. That
is, we have determined the combinatorial embedding of the
RCDM. Observe that this process is completely localized,
since a landmark has to inspect only adjacent landmarks which
are at most2k hops away, andk is chosen to be a small
constant.



So far we have still neglected the fact that onlyapproximate
node locations are available. Assume now that node locations
are not given exactly, but with some uncertaintyδ, that is, the
true position of a landmark might beδ away from the location
reported to us.

1) Choice of the inter-landmark distance based on location
uncertainty: The idea of how to deal with uncertain node
locations is rather trivial. We simply put a ball of radius
δ around each node of the witness path.cone(a, b) is then
defined as the angle under whicha sees all theballs of radius
δ around the nodes on the witness path froma to b outside
a’s tile. That, of course, widenscone(a, b), but not by much,
provided thatk – which determines the minimum distance
between adjacent landmarks – is chosen large enough. So,
the more uncertain the node locations are – i.e. the larger
δ – the larger one has to pickk — in our experiments we
obtained very good performance (that is, most edges of the
CDM survived the angle test) by settingk = 5 ·max(1, δ/2).
Choosingk larger essentially makes the angles under which
the witness path parts are seen smaller (since they are at least
k hops away).

2) Dealing with disconnectedness of the CDM:Using our
rules for pruning adjacencies from the CDM, it might happen
in theory that a landmarka chosen by our algorithm turns
out to be disconnected from the rest of the CDM. In such
cases, we would deletea and assign its tile accordingly to the
neighboring landmarks. In practice, though, for all the network
deployments we have considered, this is not an issue.

C. Embedding in the Absence of Location Information

Our procedure for extracting a planar graph does not rely
on any location information, only the embedding phase does.
It is actually possible to derive an embedding of the extracted
planar graph without using any location information, [9] is
an example. Unfortunately, these methods are typically more
involved and require non-local computation.

V. SIMULATION RESULTS

To evaluate the performance of our routing scheme, we
performed a set of computer-simulated experiments. We com-
pared our routing scheme to GLIDER and GPSR in terms of
delivery success rate, path length, message load on the nodes
and the number of routing messages sent. In particular, we
were interested in the comparison with GPSR in the case of
uncertain node locations (note that imprecision of the node
locations has no effect on GLIDER, since GLIDER does not
use location information).

Our simulator (written in C++) is not packet-based, and thus
it does not take into account some issues that occur in practice
(i.e. medium access and message loss). However, we feel that
these factors would have similar impact on all algorithms, and
thus would not significantly affect the relative performance.

The localized Delaunay graph [18] is used for face routing
in GPSR. In all the experiments involving GLIDER, we use
a fixed number of 20 landmarks, which is consistent with
GLIDER’s philosophy of sparse landmark graphs.

GPSR MGGR
δ = 0 0.613 0.929
δ = 0.25 0.533 0.916
δ = 0.50 0.258 0.832
δ = 0.75 0.084 0.710

Fig. 4. Success rate of greedy forwarding. (i) The network used in our
simulation. (ii) The simulation results for varying degrees of imprecision of
the node locations.

We emphasize that in all our experiments the node density
is quite low relative to the communication radius (the average
degree of the communication graph is always not much more
than 10). This is meant to show that our method does not
require extremely dense deployments, despite the fact that
it relies on the fact that the nodes “sample” the plane and
“witness” the various adjacencies between different regions.
Sensor nodes are always deployed uniformly at random in a
square, and additional holes have been created manually.

A. Success Rate of Greedy Forwarding under Imprecise Node
Locations

Previously we made the claim that our method retains
the benefits of the macroscopic view on network topology,
e.g. robustness to small holes. As a good measure of this
robustness, we considered the fraction of times when greedy
forwarding alone is able to successfully deliver the message.
We compared our algorithm with GPSR under various degrees
of imprecision of the node locations (δ = 0 denotes exact node
locations,δ = 0.25 that the true location of a node might be
up to one quarter of the communication radius away from the
location assumed by GPSR/MGGR). We obtained the results
shown in Figure 4.

The simulated network had about10, 000 nodes and an
average degree of6. In addition to being sparse, the network
had many small holes. The landmarks for MGGR were chosen
with k = 5, i.e. according to the formula mentioned above. The
rates were obtained by averaging over10, 000 trials, where in
each trial a message was routed using GPSR/MGGR, between
a source and a destination chosen uniformly at random. We
can see that MGGR significantly outperforms GPSR, the dif-
ference becoming even more pronounced with higher degrees
of imprecision of the node locations.

B. Path Length

For the setting of exact node locations we also compared the
lengths of the produced paths, averaged over1, 000 randomly
chosen source-destination pairs. The network consisted of
about17, 500 nodes. We considered two different topologies
on the same node distribution: a unit-disk graph (correspond-
ing to α = 1) and a quasi-unit-disk graph (α = 1.25). In the
first case the average degree was10, and in the second case8.
The landmark selection parameter wask = 5. Figure 5 shows
the network used in the simulation and the values we obtained.



Algorithm Avg. path length
α = 1 α = 1.25

GPSR 65.99 83.40
MGGR 42.04 50.49

Fig. 5. Average path length. (i) The network used in simulation, and the
selected landmarks. The network contains a large topological feature (the long
narrow “corridor” with a small “entrance”).

As expected, due to the presence of the narrow “corridor”, for
a significant fraction of the test instances GPSR has to invest a
lot of effort in face routing. Our CDM-based algorithm is able
to route more efficiently into and around the “corridor” using
the landmark graph. MGGR significantly outperforms GPSR,
in many cases by a factor of two or more. Also, we can see that
the relative performance does not change too much between
the two topologies. We did not compare directly with GLIDER
but expect the latter to produce considerably better paths in
this setting due to the sparsity of the network and the more
global view on the network topology (which has the drawback
of a non-local initialization phase for distributing this global
view within the network). We refer to the original GLIDER
paper [10] for a comparison with GPSR.

C. Communication Cost

In MGGR, the tile associated with each landmark is of
constant size (the constant depending on the choice of the
parameterk). The following experiment confirms that having
small tiles reduces communication cost in the final stages of
message delivery, i.e. inside the tile of the destination node.
For each of1, 000 randomly chosen source-destination pairs,
we record an estimate of the number of messages needed to
route one message.

We estimate the cost using the following simple model,
which in our opinion provides sufficiently fair comparison.For
the part of the route determined by greedy forwarding (using
real coordinates or simply graph distance), we add one unit
of communication cost per link traversed by the path. For the
part of the route discovered by flooding a Voronoi tile, which
happens in the final stages of GLIDER and MGGR, the cost
is equal to twice the size of amaximal independent set (MIS)
of this tile (we compute maximal independent sets for the tiles
in advance)5. We felt that this is a more realistic measure than
pure flooding, since most practical systems implement some
simple form of scheduled broadcast with very little overhead.

In Figure 6(i) one can observe that the set of randomly
chosen landmarks used by GLIDER fails to capture the holes.

5This is in fact the size of aconnected dominating set (CDS)obtained by
adding nodes to the chosen MIS to make it connected. The size ofany CDS
is an upper bound on the optimal number of messages needed for a broadcast
within the tile. Indeed, if only the nodes in the CDS send one message each,
all other nodes will get the message.

Algorithm Avg. comm. cost/msg
GLIDER 257.52
GPSR 45.19
MGGR 72.39

Fig. 6. Communication cost per routed message. (i) The sparse set of
landmarks used by GLIDER. (ii) Simulation results.

Fig. 7. Traffic load (left to right). (i) GLIDER (ii) GPSR (iii) MGGR

Figure 6 (ii) shows our results. We compared GLIDER, GPSR
and MGGR, in a network of about18, 700 nodes with average
degree 10. The landmark selection parameter isk = 5.
We found that GLIDER has to resort to flooding the last
tile most of the time, i.e. using greedy routing on the the
local coordinates rarely leads to the destination. Combined
with the fact that the tiles are large, this leads to a poor
performance by GLIDER in this metric (greedy routing on
the local coordinates employed by GLIDER typically requires
a higher density of the communication graph).

D. Traffic Load

We also evaluated the load-balancing properties of our
scheme. The network had8, 800 nodes with average degree
9, and we again tested on1, 000 randomly chosen pairs.
The landmark selection parameter wask = 5. We route one
message per pair and add one unit of load to each node on
the path.

Figure 7 shows the visualization of the results. Darker disks
represent nodes with higher load. As expected, GPSR suffers
from the “hole-hugging” phenomenon, whereas GLIDER suc-
ceeds in taking the load further from the hole boundary.

We notice that MGGR does not quite match GLIDER’s
performance. This is due to the fact that in GLIDER a
landmark can often be far from hole boundaries, and it is easy
to see that the load balancing effect grows with this distance.
One reason is that the landmarks tend to attract messages from
the neighboring tiles, thus pulling them further into the interior.
In that sense, as noted previously, by changing the tile size
and the landmark separation, one can interpolate between load
balancing benefits of GLIDER, and the energy efficiency of
landmark-based methods.

E. Summary

In conclusion, our experiments show that the MGGR algo-
rithm retains most of the advantages of landmark-based meth-



ods, while improving their energy efficiency and scalability. In
particular, we showed that it successfully avoids small holes
and does not closely follow the boundary edges, which is one
of the main drawbacks of GPSR. One big improvement with
respect to these methods, as the comparison with GLIDER
shows, is in terms of energy efficiency, since the final intra-tile
phase of message delivery only requires flooding a constant-
sizes neighborhood.
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