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Abstract. We consider the problem of assigning powers to nodes of a
wireless network in the plane such that a message from a source node
s reaches all other nodes within a bounded number k of transmissions
and the total amount of assigned energy is minimized. By showing the

existence of a coreset of size O(
`

1

ǫ

´4k
) we are able to (1+ǫ)-approximate

the bounded-hop broadcast problem in time linear in n which is a drastic
improvement upon the previously best known algorithm.
While actual network deployments often are in a planar setting, the
experienced metric for several reasons is typically not exactly of the
Euclidean type, but in some sense ’close’. Our algorithm (and others) also
work for non-Euclidean metrics provided they exhibit a certain similarity
to the Euclidean metric which is known in the literature as bounded

doubling dimension. We give a novel characterization of such metrics also
pointing out other applications such as space-efficient routing schemes.

1 Introduction

Radio networks connecting a number of stations without additional infrastruc-
ture have recently gained considerable interest. Since the sites often have limited
power supply, the energy consumption of communication is an important opti-
mization criterion.

In the first part of the paper we consider the following problem: Given a set
P of points (stations) in R

2 and a distinguished source point s ∈ P (sender)
we want to assign distances/ranges r : P → R

+
0 to the elements in P such that

the resulting communication graph contains a branching rooted at s spanning
all elements in P and with depth at most k (an edge (p, q) is present in the
communication graph iff r(p) ≥ |pq|). Goal is to minimize the total assigned
energy

∑

p∈P r(p)
δ, where δ is the distance-power gradient and typically a con-

stant between 2 and 6 (δ = 2 reflects the exact energy requirement for free space
communication, larger values are used as popular heuristic model for absorption
effects). Such a branching corresponds to a broadcast operation from station s
to all other nodes in the network with bounded latency. This is one of the most
basic communication tasks in a wireless radio network.
⋆ This work was supported by the Max Planck Center for Visual Computing and

Communication (MPC-VCC) funded by the German Federal Ministry of Education
and Research (FKZ 01IMC01).
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In Section 2 of this paper we construct a (k, ǫ)-coreset of size O(
(

1
ǫ

)4k
) for

a given instance of a bounded-hop broadcast problem, that is, we identify a
small subset of the original problem instance for which the solution translates
to an almost as good solution of the original problem. Interestingly, the size of
this ’problem sketch’ only depends on k and the desired approximation quality
(1 + ǫ) but is independent of n. Hence we can approximate the bounded-hop
broadcast problem – even using a brute force algorithm – in time linear in n
and only doubly exponential in k (in contrast to the result in [1] which is triply
exponential in k where it is also an exponent of n).

For analytical purposes it is very convenient to assume that all network nodes
are placed in the Euclidean plane; unfortunately, in real-world wireless network
deployments, especially if not in the open field, the experienced energy require-
ment to transmit does not exactly correspond to some power of the Euclidean
distance between the respective nodes. Buildings, uneven terrain or interference
might affect the transmission characteristics. Nevertheless there is typically still a
strong correlation between geographic distance and required transmission power.
An interesting question is now how to model analytically this correlation. One
possible way is to assume that the required transmission energies are powers of
the distance values in some metric space containing all the network nodes, and
that this metric space has some resemblance to a low-dimensional Euclidean
space. Resemblance to low-dimensional Euclidean spaces can be described by
the so-called doubling dimension [5]. The doubling dimension of a metric space
(X, d) is the least value α such that any ball in the metric with arbitrary radius
R can be covered by at most 2α balls of radius R/2. Note that for any α ∈ N,
the Euclidean space R

α has doubling dimension Θ(α). In Section 3 we consider
the doubling dimension a bit more in-depth and give a novel characterization
of such metrics based on hierarchical fat decompositions (HFDs). We then show
how the algorithm for energy-efficient broadcast presented in Section 2 as well
as other algorithms in the wireless networking context can be adapted to metric
spaces of bounded doubling dimension. Interestingly, metrics of bounded dou-
bling dimension are not a tight characterization of all the metrics that allow for
well-behaved HFDs, that is, there are metrics which are not of bounded dou-
bling dimension, still our and many other algorithms run efficiently. As a side
result we show how such HFDs directly lead to well-separated pair decomposi-
tions of linear-size (such WSPDs were also constructed in a randomized fashion
in [7]). Finally, in Section 4 we examine metrics of bounded doubling dimension
that arise as shortest-path metrics in unweighted graphs (e.g. unit-disk commu-
nication graphs). We show that for such metrics, an HFD can be computed in
near-linear time, and the latter can be instrumented to derive a simple deter-
ministic routing scheme that allows for (1+ǫ)-stretch using routing tables of size
O((1

ǫ
)O(α) · log2 n) bits using a rather simple construction (compared to [3]).

Related Work

In [1] Ambühl et al. present an exact algorithm for solving the 2-hop broadcast
problem with a running time of O(n7) as well as a polynomial-time approxima-
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tion scheme for a fixed number of hops k and constant ǫ which has running time

O(nµ) where µ = O((k2/ǫ)2
k

), that is, their algorithm is triply exponential in
the number of hops (and this dependence shows up in the exponent of n!). Both
their algorithms are for the low-dimensional Euclidean case. Metrics of bounded
doubling dimension have been studied for quite some time, amongst others Tal-
war in [9] provides algorithms for such metrics that (1 + ǫ) approximate various
optimization problems like TSP, k-median, and facility location. Furthermore
he gives a construction of a well-separated pair decomposition for unweighted
graphs of bounded doubling dimension α that has size O(sαn logn) (for doubling
constant s). Based on that he provides compact representation schemes like ap-
proximate distance labels, a shortest path oracle, as well as a routing scheme
which allows for (1 + ǫ)-paths using routing tables of size O(( log n

ǫ
)α log2 n). An

improved routing scheme using routing tables of size O((1/ǫ)O(α) log2 n) bits was
presented in [3] by Chan et al., but the construction is rather involved and based
on a derandomization of the Lovasz Local Lemma. Har-Peled and Mendel in [7]
gave a randomized construction for a WSPD of linear size which matches the
optimal size for the Euclidean case from Callahan and Kosaraju in [2].

2 Bounded-hop Energy-Efficient Broadcast in R
2

Given a set P of n nodes in the Euclidean plane, a range assignment for P is a
function r : P → R≥0. For a given range assignment r we define its overall power
consumption as νr =

∑

p∈P (r(p))δ . A range assignment r for a set P induces a
directed communication graph Gr = (P,E) such that for each pair (p, q) ∈ P×P ,
the directed edge (p, q) belongs to E if and only if q is at distance at most r(p)
from p, i.e. |pq| ≤ r(p).

The k-hop broadcast problem is defined as follows. Given a particular source
node s, Gr must contain a directed spanning tree rooted at source s to all other
nodes p ∈ P having depth at most k. W.l.o.g. we assume the largest Euclidean
distance between the source node s and any other node p ∈ P to be equal to 1.
We say a range assignment r is valid if the induced communication graph Gr

contains a directed spanning tree rooted at s with depth at most k; otherwise
we call r invalid.

Definition 1. Let P be a set of n points, s ∈ P a designated source node.
Consider another set S of points (not necessarily a subset of P ). If for any valid
range assignment r : P → R≥0 there exist a valid range assignment r′ : S → R≥0

such that νr′ ≤ (1 + ǫ) · νr and for any valid range assignment r′ : S → R≥0

there exists a valid range assignment r : P → R≥0 such that νr ≤ (1 + ǫ) · νr′

then S is called (k, ǫ)-coreset for (P, s).

A (k, ǫ)-coreset for a problem instance (P, s) can hence be viewed as a problem
sketch of the original problem. If we can show that a coreset of small size exists,
solving the bounded-hop broadcast problem on this problem sketch immediately
leads to an (1 + ǫ)2-solution to the original problem.
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This definition of a coreset differs slightly from the definition of a coreset
defined in previous papers. For example, the term coreset has been defined for
k-median [6] or minimum enclosing disk [8]. However, in the case of the bounded-
hop broadcast problem we have to consider two more issues. The first is feasi-
bility. While any solution to the coreset for the k-median problem is feasible
wrt to the original problem this is not the case for every coreset solution for
the bounded-hop broadcast problem. The second issue is monotonicity. For the
problem of the smallest enclosing disk the optimal solution does not increase if
we remove points from the input. We do not have this property here. An optimal
solution can increase or decrease if we remove points.

Our coreset construction is heavily based on the insight that for any valid
range assignment r there exists an almost equivalent (in terms of total cost)
range assignment r′ where all assigned ranges are either zero or rather ’large’.
We formalize this in the following structure lemma:

Lemma 1 (Structure Lemma). Let r be a valid range assignment for (P, s)
of cost νr. For any 0 < ǫ < 1 there exists a valid range assignment r′ with either

r′(p) = 0 or r′(p) ≥ (1 − ǫ)ǫ2k−2 and total cost νr′ ≤
(

1 + ǫ
1−ǫ

)δ

νr.

Proof: Let r be a valid range assignment. Consider a spanning tree rooted at
s of depth at most k contained in the communication graph Gr. We call it the
communication tree.

We will construct a valid range assignment r′ from the given range assignment
r. Initially, we set r′(p) = r(p). After the first phase we will ensure r′(s) ≥
(1 − ǫ)ǫk−1 and after the second phase we will ensure r′(p) ≥ (1 − ǫ)ǫ2k−2 for
any node p.

The core idea to this construction is that if we have two nodes that are
geometrically close to each other and one has a large power value r(p) assigned
to it and the other a rather small power value, we can safely increase the larger
by a bit, remove the smaller one, and still have a valid power assignment. We
apply this idea once in the opposite direction of the communication paths, i.e.
towards the source node s (first phase) and once along the direction of the
directed communication paths (second phase).

If r(s) ≥ (1− ǫ)ǫk−1 we are done with the first phase. Otherwise, there exists
a directed path of length at least 1 from source node s to some node p having
at most k hops. Let the nodes on this path be labeled p = p0, p1, . . . , pl = s,
l ≤ k as in Figure 1. Note that r(p0) does not contribute to the length of this
path as it is the last node on the directed path. On this path pick the node
with largest index j such that r(pj) ≥ (1 − ǫ)ǫj−1. Such a node clearly exists as
∑l

i=1 r(pi) ≥ 1 and
∑l

i=1(1 − ǫ)ǫi−1 < 1. Setting r′(s) = r(pj)
(

1 + ǫ
1−ǫ

)

and

r′(pi) = 0 for i = j . . . l − 1 increases the cost νr′ only slightly but still ensures
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a valid range assignment because

r′(s) = r(pj)

(

1 +
ǫ

1 − ǫ

)

≥ r(pj) + ǫj > r(pj) +

l
∑

i=j+1

(1 − ǫ)ǫi−1 (1)

> r(pj) +

l
∑

i=j+1

r(pi), (2)

i.e. we increased r′(s) such that all nodes that could be reached by nodes
pj , pj+1, . . . , pl−1 can now be reached directly by s.

In the second phase we can use an analogous argument starting from source
node s. We assign each node p in the communication tree a level according to
the number of hops to the source node s, where the source node s has level 0 and
the leaves of the tree have level at most k. We distinguish two cases. In the first
case r′(s) = r(s), i.e. the value of the starting node s has not been increased.
The other case occurs when it has been increased, i.e. r′(s) > r(s).

Let us look at the first case. Consider all maximal paths {tj} in the commu-
nication tree starting from node s where all nodes have r(p) < (1 − ǫ)ǫk−1+i if
node p is on level i. We can set r′(s) = r(s)(1+ ǫ

1−ǫ
) and r′(p) = 0 for all p ∈ ti.

Hence, we again maintain a valid range assignment and the next nodes p along
the paths of the communication tree satisfy r(p) ≥ (1 − ǫ)ǫk−1+i if node p is on
level i. Applying the same reasoning iteratively to these nodes we finally have
that for all nodes p either r′(p) = 0 or r′(p) ≥ (1− ǫ)ǫk−1+i for a node p on level
i. Note that for nodes p on level k we can set r′(p) = 0. Hence, we have a valid
range assignment r′ with r′(p) ≥ (1 − ǫ)ǫ2k−2.

Let us now consider the second case, when r′(s) > r(s), i.e. the value of
s has been increased in the first phase of the construction. Here we increased

r′(s) already in the first phase to at least (1 − ǫ)ǫk−2
(

1 + ǫ
1−ǫ

)

= ǫk−2. Hence,

we can continue as in the first case without increasing r′(s) anymore, because

ǫk−2 >
∑k

i=0(1 − ǫ)ǫk−1+i for ǫ < 1.
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The cost of the valid range assignment r′ satisfies

νr′ =
∑

p∈P

(r′(p))
δ
≤

∑

p∈P

(

r(p)

(

1 +
ǫ

1 − ǫ

))δ

=

(

1 +
ǫ

1 − ǫ

)δ

νr (3)

Using the preceding Lemma it is now easy to come up with a small coreset
by using a grid of width roughly an ǫ-fraction of the minimum non-zero range
assigned in r′.

Lemma 2. For any k-hop broadcast instance there exists a (k, (δ + 2)ǫ)-coreset

of size O(
(

1
ǫ

)4k
).

Proof: We will only sketch the main idea here. We place a grid of width ∆ =
1√
2
ǫ · rmin on the plane, where rmin = (1− ǫ)ǫ2k−2. Notice, that the grid has to

cover an area of radius 1 around the source only because the furthest distance

from node s to any other node is 1. Hence its size is O(
(

1
ǫ

)4k
) for small ǫ. Now

assign each point in P to its closest grid point. Let the coreset S be the set
of grid points that had at least one point from P snapped to it. Applying the

Structure Lemma 1 induces a relative error of
(

1 + ǫ
1−ǫ

)δ

. Since the grid induces

an error of (1 + ǫ) the total relative error is bounded by (1 + (δ + 2)ǫ).
Unfortunately we are not aware of any efficient algorithm for computing even

just a constant approximation to the bounded-hop broadcast problem. But since
we were able to reduce the problem size to a constant independent of n, we can
also employ a brute-force strategy to compute an optimal solution for the reduced
problem (S, s), which in turn translates to an (1+(δ+2)ǫ)2-approximate solution
to the original problem since the reduced problem (S, s) is a (k, (δ+2)ǫ)-coreset.

When looking for a optimal, energy-minimal solution for S, it is obvious that
each node needs to consider only |S| different ranges. Hence, naively there are at
most |S||S| different range assignments to consider at all. We enumerate all these
assignments and for each of them we check whether the induced communication
graph contains a directed spanning tree of depth at most k rooted at the grid
point corresponding to the original root node s, that is whether the respective
range assignment is valid; this can be done in time |S|2. Of all the valid range
assignments we return the one of minimal cost.

Assuming the floor function a (k, (δ+2)ǫ)-coreset S for an instance of the k-
hop broadcast problem for a set of n radio nodes in the plane can be constructed
in linear time. Hence we obtain the following corollary:

Corollary 1. A (1+(δ+2)ǫ)2-approximate solution to the k-hop energy-minimal
broadcast problem on n points in the plane can be computed in time O(n +

|S||S|) = O

(

n+
(

1
ǫ

)4k( 1
ǫ
)4k

)

.

A simple observation allows us to improve the running time slightly. Since
eventually we are only interested in an approximate solution to the problem, we
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are also happy with only approximating the optimum solution for the coreset S.
Such an approximation for S can be found more efficiently by not considering all
possible at most |S| ranges for each grid point. Instead we consider as admissible
ranges only 0 and rmin · (1+ ǫ)i for i ≥ 0. That is, the number of different ranges
a node can attain is at most 1+ log1+ǫ r

−1
min ≤ 4k

ǫ
· log 1

ǫ
for ǫ ≤ 1. This comes at

a cost of a (1 + ǫ) factor by which each individual assigned range might exceed
the optimum. The running time of the algorithm improves, though, which leads
to our main result in this section:

Corollary 2. A (1+(δ+2)ǫ)3-approximate solution to the k-hop energy-minimal
broadcast problem on n points in the plane can be computed in time

O
(

n+
(

4k
ǫ
· log 1

ǫ

)|S|)
= O

(

n+
(

4k
ǫ

)( 1
ǫ
)4k

)

.

A (1 + ψ)-approximate solution can be obtained by choosing ǫ = θ(ψ/δ).

3 Properties of Low-Dimensional Metrics

As mentioned in the introduction, the theoretical analysis of algorithms typically
requires some simplifying assumptions on the problem setting. In case of wireless
networking, a very common assumption is that all the network nodes are in the
Euclidean plane, distances are the natural Euclidean distances, and the required
transmission energy is some power of the Euclidean distance. This might be true
for network deployments in the open field, but as soon as there are buildings,
uneven terrain or interference, the effective required transmission power might
be far higher. Still, it is true that there is a strong correlation between geo-
graphic/Euclidean distance and required transmission power. So how could we
define the problem using less demanding assumptions but still be able to analyt-
ically prove properties of the algorithms and protocols of interest? One possible
way is to assume that the required transmission energies are powers of distance
values in some metric space on the network nodes, and that this metric space has
some resemblance to a low-dimensional Euclidean space. ”Resemblance to a low-
dimensional Euclidean space” could be equivalent to the existence of a mapping
into low-dimensional Euclidean space which more or less preserves distances (low
distortion embeddings). Another means to capture similarity to low-dimensional
Euclidean spaces is the so-called doubling dimension. The doubling dimension of
a metric space (X, d) is the least value α such that any ball in the metric with
arbitrary radius R can be covered by at most 2α balls of radius R/2. Note that
for any α ∈ N, the Euclidean space R

α has doubling dimension Θ(α). In the fol-
lowing we show that a metric of bounded doubling dimension exhibits not only
this Euclidean-like covering property but also a respective packing property.

3.1 Metrics of Bounded Doubling Dimension

The fact that every ball can be covered by at most a constant number of balls
of half the radius (covering property) induces the fact, that not too many balls



8 Stefan Funke and Sören Laue

of sufficiently large radius can be placed inside a larger ball (packing property).
The following lemma states this fact precisely. (The same observation was made
in Section 2 of [7] in the context of net-trees but was not explicitly stated in this
general form.)

Lemma 3 (Packing Lemma). Given a metric (X, d) with doubling constant
k, i.e. every ball can be covered by at most k balls of half the radius, then, at
most k pairwise disjoint balls of radius r/2 + ǫ, for ǫ > 0 can be placed inside a
ball of radius r.

Proof: Consider a ball B of radius r. Place a set S = {B1, B2, . . . , Bl} of
pairwise disjoint balls each having radius r/2+ǫ inside B. LetC = {b1, b2, . . . , bk}
be a set of balls of radius r/2 that cover the ball B. The distance between two
centers of balls from S is at least r+2ǫ > r as they are pairwise disjoint. Hence,
every ball bi ∈ C can cover at most one center of a ball Bj ∈ S. Since every ball
from the set S is covered and especially its center, we have |S| ≤ |C| = k.

The same generalizes to arbitrary radii. If a ball B of radius R can be covered
by at most k balls of radius r then there can be at most k pairwise disjoint balls
of radius r + ǫ for ǫ > 0 placed inside B. We will make use of this packing
property at various places later.

3.2 Hierarchical Fat Decompositions (HFD)

Given an arbitrary metric (X, d), a decomposition is a partition of X into
clusters {Ci}. A hierarchical decomposition is a sequence of decompositions
Pl, Pl−1, . . . , P0, where each cluster in Pi is the union of clusters from Pi−1,
Pl = X , and P0 = {{x}|x ∈ X}, i.e. Pl is the single cluster containing X and ev-
ery point forms one separate cluster in P0.

1 We refer to clusters of Pi as clusters
at level i. A hierarchical decomposition where each cluster of the same level i is
contained in a ball of radius ri, contains a ball of radius α·ri, and ri−1 ≤ β ·ri for
constants α and β < 1 is called a hierarchical fat decomposition (HFD). Thus,
in an HFD clusters are fat and the size of the clusters from different levels form
a geometric sequence. We call a set fat if the ratio between an inscribed ball and
a surrounding ball is bounded by a constant.

We will show how to construct an HFD for an arbitrary metric (X, d). With-
out loss of generality we assumeminp,q∈Xd(p, q) = 1. We call Φ = maxp,q∈Xd(p, q)
the spread of X . We construct the HFD bottom-up. Let Li be a set of points
which we call landmarks of level i. With each landmark we associate a cluster
Ci(l) ⊆ X .

On the lowest level we have Lo = X and C0(l) = {l}, i.e. each point forms
a separate cluster. Obviously, each cluster is contained in a ball of radius 1 and
contains a ball of radius 1

2 . Starting from the lowest level we construct the next
level recursively as follows. For level i we compute a 4i-independent maximal
set (i.e. a maximal set with respect to insertion with the pairwise distance of
at least 4i) of landmarks Li from the set Li−1 of landmarks from one level

1 This is also known as a laminar set system as used frequently in the literature.
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below. Hence, the distance between any two landmarks of level i is at least 4i.
We compute the Voronoi diagram VD of this set Li and call the Voronoi cell
of l V Ci(l). The union of all clusters of landmarks from level i − 1 that fall
in the region V Ci(l) form the new cluster that we associate with landmark l,
i.e. Ci(l) =

⋃

p∈V Ci(l)
Ci−1(p). Obviously, each Voronoi cell contains a ball of

radius 4i/2 and is contained in a ball of radius 4i, since the set of landmarks Li

form a 4i maximal independent set. Hence, each cluster on level i is contained
in a ball of radius

∑i
j=0 4j ≤ 4i+1/3 and each cluster contains a ball of radius

4i/2 −
∑i−1

j=0 4i ≥ 4i/6. Thus, we have constructed an HFD.

3.3 A Characterization of Metrics of Bounded Doubling Dimension

We say an HFD has degree d if the tree induced by the hierarchy has maximal
degree d. The following theorem gives a characterization of metrics with bounded
doubling dimension in terms of such HFDs.

Theorem 1. A metric (X, d) has bounded doubling dimension if and only if all
hierarchical fat decompositions of (X, d) have bounded degree.

Proof: First, suppose metric (X, d) has bounded doubling dimension. Fix
an arbitrary HFD for (X, d) and pick a cluster C. Since C is fat, it is contained
in a ball of radius r1 and it is the union of fat clusters {C1, C2, . . . , Cl}. Each of
them contains a ball of radius r2. The ratio of the two radii r1 and r2 is bounded
by a constant due to the definition of an HFD. Then, by the Packing Lemma 3
cluster C cannot contain more than a constant number of clusters from the level
below. Hence, each HFD has bounded degree.

On the other hand, suppose (X, d) has no bounded degree. Then there exists
a ball B(x, r) = {y|d(x, y) ≤ r} that cannot be covered by a constant number
of balls of half the radius r. We can construct an HFD, which has no bounded
degree as follows. Consider an HFD constructed as in Section 3.2, where the set
of landmarks always contains the point x. Consider the minimal cluster C that
contains ball B(x, r) and consider the set of children clusters {C1, C2, . . . , Cl} of
C that are all contained in a ball of radius r/2. Due to the definition of an HFD
the difference in the levels of these clusters is bounded by a constant. Since,
the number of children clusters is not bounded, the HFD cannot have bounded
degree.

There are metrics however, that admit an HFD with bounded degree but do
not have bounded doubling dimension. The following metric is such an example.
Consider the complete binary tree of depth l and each edge from level i − 1
to level i having weight 1

2i as in Figure 3. Let p be a node which is connected
to all leaves with edge weights 1

2l . The shortest path metric induced by this
graph does not have a bounded doubling dimension but admits an HFD with
bounded degree. We can place 2l disjoint balls of radius 1

2l+1 , each having a leaf

as its center, inside a ball of radius 1
2l with center p. Hence, the metric cannot

have bounded doubling dimension for arbitrary large l (Packing Lemma). On
the other hand, it is easy to see that the metric has an HFD of degree 2.
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An HFD with bounded degree immediately implies a well-separated pair
decomposition (WSPD) of linear size in the number of input points. We just
sketch the main idea here.

The construction follows closely the lines of [2]. If we replace in their con-
struction the fair split tree by our hierarchical fat decomposition, we get the
same bounds, apart from constant factors. All we need to show is that if a
ball B of radius r is intersected by the surrounding balls of a set of clusters
S = {C1, C2, . . . , Cl} with Cj ∩ Cj = ∅ for i 6= j and the parent of each cluster
Ci has a surrounding ball of radius larger than r/c for a constant c, then the set
S can only contain a constant number of clusters. But this is certainly true. The
packing lemma 3 assures that there are just a constant number of clusters whose
surrounding balls intersect a large ball B whose radius is larger by a constant.
And as the HFD has bounded degree, these clusters have constant number of
children clusters S = {C1, C2, . . . , Cl} all together. If we eliminate all clusters
in the HFD that just have one children cluster we get that the number of well-
separated pairs is linear in the number of input points and depends only on the
constant c and the doubling dimension.

3.4 Optimizing Energy-Efficiency in Low-Dimensional Metrics

In the following we will briefly sketch how the algorithm presented in Section
2 can also be applied for metrics of bounded doubling dimension. Furthermore
we show how an old result ([4]) can also be partly adapted from the Euclidean
setting.

Energy-Efficient k-hop Broadcast The algorithm presented in Section 2
for broadcasting in the plane can be generalized to metrics with bounded dou-
bling dimension. Obviously, the Structure Lemma 1 still holds since the triangle
inequality holds. Now, instead of placing a planar grid, we construct an HFD for
the nodes as in Section 3.2. The level of the decomposition where each cluster is
contained in a ball of radius r = ∆/2 replaces the grid in the approximation al-
gorithm. As the metric has bounded doubling dimension, the HFD has bounded
degree. Hence, there is just a constant number of clusters in the decomposition
of this level. We can solve this instance in the same way as for the planar case.

Energy-Efficient k-hop paths In [4] the authors considered the problem of
computing an (1 + ǫ) energy-optimal path between a nodes s and t in a network
in R

2 which uses at most k hops. Again, as in Section 2, the assumption was that
the required energy to transmit a message over Euclidean distance d is dδ, for
δ ≥ 2. Using a rather simple construction where the neighborhood of the query
pair s and t was covered using a constant number of grid cells (depending only
on k, δ, ǫ) such queries could be answered with a (1 + ǫ) guarantee in O(log n)
time. Similarly to the bounded-hop broadcast, we can replace this grid by a
respective level in a HFD. For bounded doubling dimension we then know that
there are only a constant number of relevant grid cells and the algorithm can
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be implemented as in the Euclidean case. In [4] the construction was further
refined by using a WSPD to actually precompute a linear number of k-hop
paths which then could be accessed in O(1) time for a query (independent of
k, δ, ǫ). Generalizing this refinement is the focus of current research.

4 Computing HFDs in Shortest-Path Metrics

In wireless sensor networks, the employed network nodes are typically low-
capability devices with simple computing and networking units. In particular,
most of these devices do not have the ability to adjust the transmission power
but always send within a fixed range. The graph representing the pairs of nodes
that can communicate with each other is then a so-called unit-disk graph (UDG),
where two nodes can exchange messages directly iff they are at distance of most
1. Typically UDGs are considered in the Euclidean setting, but they can be
looked at in any metric space. Due to the fixed transmission power, saving en-
ergy by varying the latter is not possible. Still, indirectly, energy can be saved by
for example better routing schemes which yield shorter (i.e. fewer hops) paths.
In the following we briefly discuss how HFDs can be used to provide such ef-
ficient routing schemes. We first show how in case of unweighted graphs like
UDGs, HFDs can be efficiently computed and then sketch how the structure of
the HFDs can be exploited to allow for routing schemes with near-optimal path
lengths using small routing tables at each node.

4.1 A Near-Linear Time Algorithm

Consider an unweighted graph G = (V,E). All shortest paths define a shortest-
path metric on the set of vertices. If the metric has bounded doubling dimension
we can construct an HFD with bounded degree efficiently by employing the
generic approach described in Section 3.2. At level i we need to construct an 4i-
independent maximal set of nodes Li, the landmarks. This can be done greedily
using a modified breadth-first search algorithm on the original graph G. At the
same time we can compute the corresponding Voronoi diagram. We pick an ar-
bitrary node n1 and add it to the set Li. In a breadth-first search we successively
compute the set of nodes that have distance 1, 2, . . . until we computed the set
of nodes at distance 4i. We mark each visited node as part of the Voronoi cell
of node n1 and store its distance to n1. From the set of nodes at distance 4i we
pick a node n2 and add it to Li. Starting from node n2 we again compute the
set of nodes that have distance 1, 2, . . . to the node n2. Similarly, if a node is
not assigned to a Voronoi cell, we assign it to n2. If it has been assigned already
to some other node but the distance to the other landmark is larger than to the
current node n2, we reassign it to the current node. We do this until no new
landmark can be found and all nodes are assigned to its Voronoi cell.

We might visit a node or an edge several times, but as the metric has bounded
doubling dimension, this happens only a constant number of times. Thus, the
running time is O(m + n) for one level and O((m + n) logn) for the whole
construction of the HFD as there are O(log n) levels.
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4.2 Hierarchical Routing in Doubling Metrics

The HFD constructed above implicitly induces a hierarchical naming scheme for
all nodes of the network by building IP-type addresses which reflect in which
child cluster of each level a node v is contained (remember that there are always
only a constant number of children of each cluster). For example if v is contained
in the top-most cluster 4, in the 2nd child of that top-most cluster and in the 5th
child of that child, its name would be 4.2.5. Clusters can be named accordingly
and will be prefixes of the node names. We now install routing tables at each node
which allow for almost-shortest path routing in the network: For every cluster C
with diameterD we store at all nodes in the network which have distance at most
O(D/ǫ) from C a distance value (associated with the respective address of the
cluster and a pointer to the predecessor on the shortest path to the cluster) to
the boundary of C in the node’s routing table. Now, when a message needs to be
routed to a target node t and is currently at node p, p inspects its routing table
and looks for an entry which is a as large as possible prefix of the target address.
p then forwards the message to the adjacent neighbor which is associated with
this routing table entry. A simple calculation shows that this yields paths which
are at most a (1 + ǫ) factor longer than the optimal shortest path For the size
of the routing table first consider an arbitrary node v and clusters of diameter
at most D. Clearly there are at most O((1/ǫ)O(α)) many such clusters which
have distance less than O(D/ǫ) from v and have hence created a routing table
entry at v. Overall there are only logn levels and each routing table entry has
size O(log n) (since the maximum distance is n). Hence the overall size of the
routing table of one node is O((1/ǫ)O(α) log2 n).
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