
Calculating the Credibility of Test Samples at Inference by a Layer-wise
Activation Cluster Analysis of Convolutional Neural Networks

Daniel Lehmann and Marc Ebner
Institut für Mathematik und Informatik, Universität Greifswald

Walther-Rathenau-Straße 47, 17489 Greifswald, Germany
{daniel.lehmann, marc.ebner}@uni-greifswald.de

Keywords: CNN, Out-of-Distribution Detection, Clustering.

Abstract: A convolutional neural network model is able to achieve high classification performance on test samples at in-
ference, as long as those samples are drawn from the same distribution as the samples used for model training.
However, if a test sample is drawn from a different distribution, the performance of the model decreases dras-
tically. Such a sample is typically referred to as an out-of-distribution (OOD) sample. Papernot and McDaniel
(2018) propose a method, called Deep k-Nearest Neighbors (DkNN), to detect OOD samples by a credibility
score. However, DkNN are slow at inference as they are based on a kNN search. To address this problem,
we propose a detection method that uses clustering instead of a kNN search. We conducted experiments with
different types of OOD samples for models trained on either MNIST, SVHN, or CIFAR10. Our experiments
show that our method is significantly faster than DkNN, while achieving similar performance.

1 INTRODUCTION

Convolutional neural network (CNN) models are typ-
ically chosen for solving image classification prob-
lems due to their high classification performance (He
et al., 2016; Krizhevsky et al., 2012). However,
at inference, a CNN model is only able to achieve
high performance on in-distribution samples. An in-
distribution sample is a sample drawn from the same
data distribution as the samples used for training the
model. An out-of-distribution (OOD) sample, on
the other hand, is a sample drawn from a different
data distribution than the samples used for training
the model. The model did not learn anything about
OOD samples during training. As a result, at in-
ference, the classification performance of the model
is severely decreased on OOD samples compared to
in-distribution samples (Lehmann and Ebner, 2021).
OOD samples can occur, for instance, when the im-
age object is shown in situations not seen during train-
ing, or when the image object itself does not appear
in the training data of the model. A model trained to
classify images of different types of whole apples will
most likely not perform well on images that only show
slices of those apples, or the model might incorrectly
classify images showing a different object (e.g., an or-
ange) as a certain kind of apple with high confidence
(Hendrycks et al., 2020). We refer to these types of

OOD samples as natural OOD samples. However, an
OOD sample can also be created artificially by an ad-
versary from an in-distribution sample. This type of
OOD sample is commonly referred to as an adver-
sarial sample (Biggio et al., 2013; Goodfellow et al.,
2015; Szegedy et al., 2014). Not only do CNN models
fail on OOD samples, but they also fail without any
warning. Sometimes these models predict an incor-
rect class for an OOD sample, even when a high soft-
max score has been obtained for that prediction (Gal,
2016; Hendrycks and Gimpel, 2017). As a result, us-
ing CNN models can be challenging in practice, es-
pecially for safety-critical applications (e.g., medical
diagnostics, autonomous driving).

In order to improve the reliability of CNN mod-
els, extensive research has been conducted to de-
fend a model against OOD samples (Machado et al.,
2021). A promising method was suggested by Paper-
not and McDaniel (2018): Deep k-Nearest Neighbors
(DkNN). Their method computes a credibility score
for a test sample at inference. The score expresses
how closely the sample resembles the training data
of the model. If the test sample is an in-distribution
sample, the score is high. If the test sample is an
OOD sample, the score is low. DkNN are based on
the following assumption: An in-distribution sample
of a certain class is close to other in-distribution sam-
ples of the same class in feature space across all lay-



ers of the model. An OOD sample, however, is typi-
cally close to in-distribution samples of one class at a
certain layer, while it is close to in-distribution sam-
ples of another class at a different layer. The DkNN
method computes the credibility of a test sample
at inference based on its k-nearest neighbors (kNN)
among the training samples in feature space (layer ac-
tivations) at each layer of the model. The class that
occurs most frequently among these kNN is deter-
mined (majority class). Finally, this information is
used to compute the credibility score. If the identi-
fied majority class is the same across all layers, the
computed credibility score is high. The test sam-
ple is most likely an in-distribution sample. If the
identified majority class varies widely across all lay-
ers, the computed credibility score is low. The test
sample is most likely an OOD sample. However,
the DkNN method has the following disadvantages
due to the kNN search: 1) All training samples must
be stored for inference, and 2) inference is slow as
a kNN search typically compares the test sample to
all training samples. To improve the runtime of the
DkNN method, Papernot and McDaniel (2018) use an
approximate kNN search based on locality-sensitive
hashing (Andoni and Indyk, 2006). An approximate
kNN search does not compare the test sample to all
training samples but only to a subset of the training
samples. However, this subset typically still contains
a large number of samples. Moreover, the DkNN
method performs the (approximate) kNN search not
only once to compute the credibility score but once
for each layer. As a result, the DkNN method is still
relatively slow at inference.

To address the disadvantages of the DkNN
method, Lehmann and Ebner (2021) proposed a
method that uses clustering instead of a kNN search.
Their method makes the same assumption as the
DkNN method: An in-distribution sample of a cer-
tain class is close to other in-distribution samples of
the same class in feature space across all layers of
the model. However, instead of comparing the test
sample to a large number of training samples, their
method determines in which cluster of the training
samples in feature space (i.e., layer activations) the
test sample falls to identify which training samples
are close to the test sample. This approach is sig-
nificantly faster at inference than the DkNN method.
Moreover, it does not require storing all training sam-
ples for inference. Their method only requires stor-
ing a clustering model (learned on the training sam-
ples), and a class distribution statistic of each identi-
fied cluster at each layer. To determine the majority
class of the training samples close to the test sample at
a given layer, Lehmann and Ebner (2021) use the class

distribution statistic of the cluster into which the test
sample falls (the cluster is identified through applying
the clustering model on the test sample beforehand).
However, Lehmann and Ebner (2021) did not aim to
propose a comparable method to DkNN but to show
that such a clustering-based approach can be used to
detect OOD samples as a first step. Therefore, the de-
tection rate of their method is not sufficient yet unfor-
tunately. Moreover, instead of computing a credibility
score, Lehmann and Ebner (2021) calculate a binary
value indicating if an OOD sample was detected. This
binary value is not directly comparable to the credibil-
ity score computed by the DkNN method.

We extend the method proposed by Lehmann and
Ebner (2021). Our method uses their clustering ap-
proach as a basis. Therefore, our method has the same
advantages over the DkNN method: 1) Our method is
faster than the DkNN method at inference, and 2) our
method does not require storing all training samples
for inference, as required by DkNN. Moreover, we
keep the following advantages of the DkNN method
and the method from Lehmann and Ebner (2021): 1)
The CNN model does not need to be retrained, and
2) applying our method does not require collecting or
generating OOD samples in advance. However, the
goal of our work is to compute a credibility score in-
stead of a simple binary value to detect OOD samples.
We examine if the information from the clusters can
be used to calculate the credibility score. The contri-
butions of our work are as follows: 1) We propose a
clustering-based method to compute the credibility of
a test sample at inference (regarding a given model)
and, 2) in extension of the initial experiments from
Lehmann and Ebner (2021), we perform a compre-
hensive comparison of our method with the DkNN
method in terms of runtime at inference on several
OOD test sets. Our experiments show that our method
is significantly faster than the DkNN method at infer-
ence, while achieving similar performance.

2 RELATED WORK

The activations from one or multiple layers have also
been shown to be useful for detecting OOD samples
in other studies. Lee et al. (2018b) calculate the pre-
diction confidence based on fitting a class-conditional
Gaussian distribution at each layer. Ma et al. (2018)
compute local intrinsic dimensionality estimates from
the layer activations to detect OOD samples. Li and
Li (2017) propose a cascade OOD detector based on
convolutional filter statistics. Cohen et al. (2020) sug-
gest an OOD detection method based on sample influ-
ence scores combined with a kNN model on the layer



activations. Sastry and Oore (2020) analyze layer ac-
tivations using Gram matrices. Chen et al. (2019b)
use layer activations to learn a meta-model that pro-
duces a confidence score for the model prediction.
Lin et al. (2021) suggest a multi-level OOD detec-
tion approach. Metzen et al. (2017) attach a subnet-
work at a particular layer as an OOD detector. Carrara
et al. (2019) use a layer activation-based kNN scoring
to detect OOD samples. However, none of these ap-
proaches use clustering for detecting OOD samples.
Huang et al. (2021) use clustering to detect OOD sam-
ples. They report that OOD samples are clustered in
feature space. To decide if a test sample is OOD, they
check if the distance of the test sample to the center
of the OOD cluster exceeds a certain threshold. Fur-
thermore, Chen et al. (2019a) also propose a method
based on clustering on the activations of the last fea-
ture layer of the model. However, they propose their
method not for detecting OOD samples at inference
but for detecting if the training set of the model was
poisoned. Besides approaches based on layer activa-
tions, a large number of other approaches have been
proposed to detect OOD samples, such as Baysian
Neural Networks (Gal and Ghahramani, 2016), ad-
justing the model to contain an additional output de-
tecting if a test sample is OOD (Grosse et al., 2017),
a method using a generative model (Meng and Chen,
2017), a method based on perturbing training sam-
ples combined with temperature scaling (Liang et al.,
2018), a method based on a special loss function (Lee
et al., 2018a), or a method based on self-supervised
learning (Hendrycks et al., 2019).

3 METHOD

A CNN-based model f is trained on a training dataset
containing N samples (xD,yD) to predict a class c
(c ∈ 1, ...,C) for a test sample xI at inference. How-
ever, if xI is an OOD sample, model f will most likely
not be able to make the correct class prediction for xI .
To detect if sample xI is an OOD sample, our method
calculates a credibility score credib(xI) ∈ [0,1] for xI .
This credibility score expresses how much xI resem-
bles the training data. If the credibility score is high,
sample xI closely resembles the training data. This
means that xI was most likely sampled from the train-
ing data distribution (i.e., xI is an in-distribution sam-
ple). If the credibility score is low, sample xI does
not resemble the training data. This means that xI

was most likely sampled from a distribution different
from the training data distribution (i.e., xI is an OOD
sample). Our method can be divided into two stages:
1) Before inference, we obtain several in-distribution

statistics, and 2) at inference, based on these statis-
tics, we calculate the credibility score credib(xI) for
sample xI .

3.1 Before Inference

For each layer l(l ∈ 1, ...,L) of model f , we calculate
a class distribution statistic Sl

D from the training data
in feature space of that layer. This step is adopted
from the method introduced by Lehmann and Ebner
(2021). In the following we describe the process of
obtaining these statistics: 1) We feed all N training
samples xD into model f . 2) At each layer l: (a) The
activations of each training sample xD are fetched. If
layer l is a convolutional layer (ConvLayer), the re-
ceived activations of each sample are cube-shaped. If
layer l is a linear layer, the received activations of
each sample are vector-shaped. (b) The activations
are flattened to vectors. As the activations of linear
layers are vector-shaped already, this step is only nec-
essary for ConvLayers. As a result, we receive an
activation vector al

xD of a layer-specific length Ml for
each of the N samples xD. (c) All N activation vec-
tors al

xD are concatenated to a matrix Al
D of shape

NxMl . (d) We aim to search for clusters in the acti-
vations. However, clustering methods usually do not
work well for high-dimensional data such as matrix
Al

D. Thus, we use dimensionality reduction to learn
a projection model rl from matrix Al

D of size NxMl

to a matrix rl(Al
D) of size Nx2. Lehmann and Ebner

(2021) showed that using PCA (Pearson, 1901) and
UMAP (McInnes et al., 2018) combined as projec-
tion model obtains the best results on CNN activation
data: First, reduce the dimensions from Ml to 50 using
PCA, and then, further reduce the dimensions from
50 to 2 using UMAP. (e) After projecting Al

D down
to rl(Al

D), we perform a cluster search on rl(Al
D).

To identify clusters we use the k-Means algorithm
(MacQueen, 1967) as recommended by Lehmann and
Ebner (2021). The parameter k of k-Means is deter-
mined by the Silhouette score. The Silhouette score
is a measure of how well a set of clusters is separated
based on the mean distance between samples of dif-
ferent clusters (inter-cluster distance) and the mean
distance between samples of the same cluster (intra-
cluster distance). As reported by Chen et al. (2019a),
the Silhouette score is best suited for assessing clus-
ters of CNN activation data. Among a range of po-
tential values for parameter k (e.g., C − 5, ...,C + 5)
the value, that results in the set of clusters achieving
the best Silhouette score, is selected. After applying
k-Means on rl(Al

D), we receive 1, ...,H l clusters and
the k-Means clustering model gl for layer l. (f) For



S
oftm

ax

C
o
nv1

C
o
nv2

C
on
v3

F
C

Class

9
8
7
6
5
4
3
2
1
0

Figure 1: Visualization of the activations of the MNIST training samples at the first layer (ConvLayer1) and the last layer
(FC-Layer) of the CNN model.

each cluster hl (hl ∈ 1, ...,H l), we calculate the per-
cental class distribution statistic Sl

D(h
l) of the training

samples in hl (i.e., for each class c: What percentage
pl

hl (c) of samples of the cluster hl is of class c?).

Sl
D(h

l) =

{(
c, pl

hl (c)
) ∣∣∣∣ c ∈ 1, ...,C

}
pl

hl (c) =
|(xD

hl ,yD
hl ,y==c)|

|(xD
hl ,yD

hl )|

(1)

However, to avoid outliers among the 1, ...,C classes
in hl we only keep the classes c whose occurrence in
cluster hl is greater than a specified threshold t (e.g.,
pl

hl (c) must be greater than t = 0.05). The set of class
distribution statistics Sl

D(h
l) of all found clusters hl

at layer l forms the class distribution statistic Sl
D of

that layer. 3) For each layer l, the class distribution
statistic Sl

D, the projection model rl , and the clustering
model gl are stored for the second stage of our method
at inference (section 3.2) according to the method in-
troduced by Lehmann and Ebner (2021).

In extension of the method from Lehmann and
Ebner (2021), we additionally calculate a layer score
wl for each layer l. We use these layer scores to com-
pute the credibility score in the second stage of our
method at inference (section 3.2). A layer score wl

reflects the type of the calculated class distribution
statistic Sl

D of the found clusters at that layer. As
pointed out by Zeiler and Fergus (2014), lower lay-
ers of a model detect low-level features (e.g., simple
shapes, edges), while higher layers of a model de-
tect high-level features (e.g., complex shapes, object
parts). Low-level features are typically shared among
different classes. An image of a class baseball player

and an image of a class soccer player, for instance,
share certain low-level features (e.g., simple shape
features of the body and face, the sportswear, or the
playing field in the background). Thus, at lower lay-
ers, samples of different classes are typically close to
each other in feature space (as shown in Figure 1). As
a result, the class distribution statistics Sl

D(h
l) at lower

layers tend to contain a large number of classes that
are rather uniformly distributed. This type of class
distribution is reflected in a low layer score. High-
level features, in contrast, are rather class-specific. As
a result, the class distribution statistics Sl

D(h
l) tend to

contain a small number of classes that show a rather
imbalanced distribution. This is caused by the ob-
jective of model training to find a linearly separable
representation of the different classes throughout the
layers of the model. Samples of the same class tend
to get closer to each other, while samples of differ-
ent classes tend to get farther apart from each other
(as shown in Figure 1). Thus, at the final layer L,
each class distribution statistic SL

D(h
L) typically con-

tains a majority class with at least 90% occurrence in
the cluster hL. This type of class distribution is re-
flected in a high layer score. To calculate the layer
scores we propose a simple method: 1) For each layer
l: (a) From all class distribution statistics Sl

D(h
l) we

get the class with the highest and the class with the
second-highest occurrence. (b) We calculate the ab-
solute difference between the percentage of the high-
est and the second-highest class. As a result, we ob-
tain a score wl

hl for each cluster hl . (c) To obtain the
layer score wl

U of layer l we take the average of these
cluster scores wl

hl . 2) Finally, we normalize all layer
scores wl

U (i.e., their sum should be 1 ). As a result,
we obtain the final layer scores wl for each layer l.



After obtaining the class distribution statistic Sl
D

for each layer l from the training data, as suggested
by Lehmann and Ebner (2021), we additionally deter-
mine a cluster distribution statistic Sl

T for each layer l
from a held-out test set. This test set has also been
sampled from the same distribution as the training
data, but the model f has not seen its samples (xT ,yT )
during training. Similar to Papernot and McDaniel
(2018), we use this test set to calibrate the credibility
score at inference (section 3.2). Therefore, we refer
to this test set as calibration set in the following. Cal-
culating the cluster distribution statistic Sl

T for each
layer l from the calibration set requires the follow-
ing steps: 1) For each layer l: (a) We determine the
activation matrix Al

T in the same way as the activa-
tion matrix Al

D of the training data. (b) The projection
model rl and the clustering model gl are applied on
matrix Al

T . As a result, for each calibration sample xT

we obtain the cluster hl
xT into which xT falls. (c) For

each class c, we calculate the percental cluster distri-
bution statistic Sl

T (c) of the calibration samples (i.e.,
for each cluster hl : What percentage pl

c(h
l) of sam-

ples of class c is in cluster hl?).

Sl
T (c) =

{(
hl , pl

c(h
l)

) ∣∣∣∣ hl ∈ 1, ...,H l
}

pl
c(h

l) =
|(xT

hl ,yT
hl ,y==c)|

|(xT ,yT
y==c)|

(2)

The set of cluster distribution statistics Sl
T (c) of all

classes c at layer l forms the cluster distribution statis-
tic Sl

T of that layer. 2) For each layer l, the cluster
distribution statistic Sl

T is stored for the second stage
of our method at inference (section 3.2).

3.2 At Inference

At inference, we calculate the credibility score
credib(xI) ∈ [0,1] of sample xI . For calculating the
credibility score we use the class distribution statis-
tic Sl

D (from the training data), the cluster distribution
statistic Sl

T (from the calibration data), the layer score
wl , the projection model rl , and the clustering model
gl of each layer l (all were obtained in the first stage of
our method, as described in section 3.1). Calculating
the credibility score credib(xI) of sample xI requires
the following steps: 1) For each layer l: (a) We de-
termine the activation vector al

xI in the same way as
the activation vectors al

xD of the training samples (as
described in section 3.1). (b) The projection model rl

and the clustering model gl are applied on vector al
xI .

As a result, we obtain the cluster hl
xI into which xI

falls. (c) From the class distribution statistic Sl
D(h

l
xI )

of cluster hl
xI we get the set of classes cset l(xI) that

are located in hl
xI . 2) After obtaining the set of classes

cset l(xI) from each layer l, we determine the inter-
section cset(xI) of cset l(xI) over all layers 1, ...,L. If
cset(xI) is empty, we assume that sample xI is prob-
ably an OOD sample (as shown in Figure 2). This
follows from our assumption: An in-distribution sam-
ple of a certain class is close to other in-distribution
samples of the same class in feature space across all
layers of the model. In this case, cset(xI) must con-
tain one class at least. An OOD sample, in contrast,
is typically not close to in-distribution samples of the
same class across all layers. Thus, if cset(xI) is empty,
we return credib(xI) = 0. However, if cset(xI) is not
empty, we continue. 3) We assume that one of the
classes in cset(xI) may be the true class of xI . There-
fore, we calculate the credibility score credib(xI ,cxI )
of xI for each class cxI in cset(xI): (a) For each layer
l, we determine the probability of the class cxI be-
ing located in cluster hl

xI . To obtain a calibrated ver-
sion of this probability we use the cluster distribution
statistic Sl

T (cxI ) from the calibration set (the probabil-
ity can be obtained through Sl

T (cxI )(hl
xI )). We use the

probability to express the credibility. A high prob-
ability means that a sample of class cxI is close to
a large number of calibration samples of the same
class in feature space of layer l. Thus, the sample is
probably an in-distribution sample (i.e., the credibil-
ity should be high). If any of the probabilities across
layer 1, ..,L is 0, however, we assume sample xI is
probably an OOD sample. Again, this follows from
our assumption that an in-distribution sample of a cer-
tain class is close to other in-distribution samples of
the same class in feature space across all layers of the
model. Thus, if any of the probabilities among layers
1, ...,L is 0, this assumption is violated, and we return
credib(xI) = 0. However, if all probabilities are non-
zero, we continue. (b) To obtain the total credibility
score credib(xI ,cxI ) for class cxI , we take the average
of the probabilities Sl

T (cxI )(hl
xI ). However, the proba-

bilities of the lower layers are typically low in general
because the clusters at lower layers contain a large
number of classes that are rather uniformly distributed
(as described in section 3.1). Thus, we put less em-
phasis on the lower layers by taking a weighted av-
erage of the probabilities Sl

T (cxI )(hl
xI ) using the layer

scores wl as weights. 4) To obtain the total credibil-
ity score credib(xI) of the sample xI , we choose the
highest credibility score among all classes cxI :

credib(xI) = max
cxI

credib(xI ,cxI ) (3)



max

classes = [red, blue] 

credib(x2, red)

credib(x2, blue)

Softmax

Layer 1

Layer 2

x1

Softmax

Layer 1

Layer 2

x2

classes = Ø 

credib(x1) = 0

x1 is OOD!

credib(x2)

x1

x1

x2

x2

Figure 2: We check which classes are present in the cluster of the training samples into which the test sample falls at each
layer. If there is no common class across all layers, we assume it is an OOD sample (left). Otherwise, we calculate the test
sample credibility for each of the common classes, and use the maximum as the final credibility of the test sample (right).

Our algorithm (in Python) for calculating the credibil-
ity score credib(xI) is shown below:

// get potential classes of x_i
cset = []
for l in range(0,L):

a = getActivations(x_i, l)
h = getCluster(r(l), g(l), a)
cset_l = getClasses(s_d(l, h))
cset = intersect(cset, cset_l)

// check if class set is empty
if cset is empty:

return 0 // x_i is OOD!

// get credbility score
credibList = []
for c in cset:

for l in range(0,L):
prob = getProb(s_t(l, c))
if prob == 0:

return 0 // x_i is OOD!
credibList.append(prob * w(l))

return max(credibList)

4 EXPERIMENTS

4.1 Experimental Setup

We conducted several experiments to test our method
in comparison to the DkNN method proposed by Pa-
pernot and McDaniel (2018). The objective of the
experiments was to compare the runtimes at infer-
ence and also the performance of both methods. The
experiments were conducted on the MNIST dataset

(60,000 training samples, 10,000 test samples) (Le-
Cun et al., 2010), the SVHN dataset (73,257 training
samples, 26,032 test samples) (Netzer et al., 2011),
and the CIFAR10 dataset (50,000 training samples,
10,000 test samples) (Krizhevsky, 2009). However,
before we could carry out any experiment, we first
had to train a model on the respective training set
of each dataset. For MNIST and SVHN, we chose
the same CNN architecture for the model as Paper-
not and McDaniel (2018). The architecture for both
datasets consists of the following layers: ConvLayer1
(filters: 64, kernel size: 8, stride: 2) - ConvLayer2
(filters: 128, kernel size: 6, stride: 2) - ConvLayer3
(filters: 128, kernel size: 5) - fully-connected out-
put layer (size: 10). Each ConvLayer uses ReLU as
activation function. To train the model on MNIST,
we used the following training parameters: 6 training
epochs, Adam optimizer, learning rate (LR) of 0.001,
kaiming uniform weight initialization. Our MNIST
model achieves a performance of 99.04% accuracy
on the MNIST test dataset. To train the model on
SVHN, we used the following training parameters: 18
training epochs, Adam optimizer, base LR of 0.001,
multi-step LR-schedule (step at epoch: (10,14,16),
gamma: 0.1), kaiming uniform weight initialization.
Our SVHN model achieves a performance of 89.95%
accuracy on the SVHN test dataset. For CIFAR10,
which was not used for the experiments conducted by
Papernot and McDaniel (2018), we chose a 20-layer
ResNet architecture for the model as used by Zhang
et al. (2019). To train the model on CIFAR10, we
used the following training parameters: data augmen-
tation (mixup, random horizontal flip, random crop),



200 training epochs, SGD optimizer, base LR of 0.1,
cosine-annealing LR-schedule, fixup weight initial-
ization (Zhang et al., 2019). Our CIFAR10 model
achieves a performance of 92.47% accuracy on the
CIFAR10 test dataset.

After training a model for each dataset, we fed
an in-distribution test set as well as different types of
OOD test sets to each model and calculated the cred-
ibility for the samples of each test set. The credibil-
ity score should be high for in-distribution samples
and low for OOD samples. For both, our method and
the DkNN method, we used a calibration set size of
750 samples. This size was also used by Papernot and
McDaniel (2018) in their experiments. The calibra-
tion samples were randomly selected from the test set
of each dataset. As in-distribution test set, we used
the test set of each dataset excluding the samples that
were used for the calibration set. As OOD test set,
we used a natural OOD test set (section 4.2) as well
as different types of adversarial test sets (section 4.3).
The adversarial test sets were created from the test set
of each dataset excluding the samples used for the cal-
ibration set. For MNIST and SVHN, we used the ac-
tivations of all layers to calculate the credibility score
using our method as well as the DkNN method (Con-
vLayers: activations after ReLU). For CIFAR10, we
selected the following layer activations to calculate
the credibility score using our method as well as the
DkNN method: the first ConvLayer activations (af-
ter ReLU), the output activations from the 3 ResNet
blocks, the Global-Average-Pooling layer activations,
and the fully-connected output layer activations. Ad-
ditionally, we needed to select a value for the param-
eter t of our method. We chose the following values
for t: 0.01, 0.05, and 0.1. Finally, in each experiment,
we calculated the mean credibility of the samples of
the test set and measured the calculation runtime at
inference.

4.2 Natural OOD Samples

We evaluated the performance of our method in com-
parison to the DkNN method on natural OOD sam-
ples. In section 4.1, we trained a model for the
MNIST, SVHN, and CIFAR10 dataset. To test the
performance of both, our method and the DkNN
method, we fed a respective natural OOD test set into
each of these models. Each OOD test set contains
samples that have not been drawn from the same dis-
tribution as the samples used for training the model.
We used the following natural OOD test sets: the
KMNIST test dataset (Clanuwat et al., 2018) for the
model trained on MNIST (10,000 test samples, test
performance: 7.59% accuracy), the CIFAR10 test

dataset for the model trained on SVHN (10,000 test
samples, test performance: 9.24% accuracy), and the
SVHN test dataset for the model trained on CIFAR10
(26,032 test samples, test performance: 9.35% ac-
curacy). For each OOD test set, we calculated the
mean credibility score of all test samples using (a) our
method and (b) the DkNN method. The results of our
tests are shown in Table 1.

Table 1: Mean credibility scores of our method compared
to DkNN for in-distribution samples (Testset) and natural
OOD samples (OOD). For in-distribution samples a higher
score is better, while for OOD samples a lower score is bet-
ter.

Dataset Method Testset OOD
MNIST DkNN 0.799 0.081

Ours (t = 0.01) 0.889 0.164
Ours (t = 0.05) 0.882 0.124
Ours (t = 0.1) 0.880 0.124

SVHN DkNN 0.501 0.146
Ours (t = 0.01) 0.702 0.427
Ours (t = 0.05) 0.635 0.233
Ours (t = 0.1) 0.451 0.145

CIFAR10 DkNN 0.526 0.221
Ours (t = 0.01) 0.844 0.565
Ours (t = 0.05) 0.749 0.452
Ours (t = 0.1) 0.353 0.150

Table 2: Runtimes at inference of our method compared to
DkNN (in seconds) for in-distribution samples (Testset) and
natural OOD samples (OOD). A lower runtime is better.

Dataset Method Testset OOD
MNIST DkNN 304.4 242.3

Ours (t = 0.01) 24.1 28.3
Ours (t = 0.05) 24.4 28.6
Ours (t = 0.1) 23.3 28.9

SVHN DkNN 1137.7 315.0
Ours (t = 0.01) 79.1 39.6
Ours (t = 0.05) 83.4 39.7
Ours (t = 0.1) 77.5 42.9

CIFAR10 DkNN 680.8 1850.3
Ours (t = 0.01) 155.5 400.8
Ours (t = 0.05) 143.0 405.9
Ours (t = 0.1) 152.5 400.1

As shown in Table 1, for t = 0.01 and t = 0.05, we
obtain a higher credibility score on the in-distribution
samples compared to DkNN. However, the DkNN
method achieves a lower credibility score on the OOD
samples. Increasing parameter t to t = 0.1 improves
our method on OOD samples. We even achieve a
slightly lower credibility score than DkNN on the
OOD test set for the SVHN and CIFAR10 model.



Table 3: Mean credibility scores of our method compared to DkNN for in-distribution samples (Testset) and adversarial
samples (FGSM, BIM, PGD, PGDDLR). For in-distribution samples a higher score is better, while for OOD samples a lower
score is better.

Dataset Method Testset FGSM BIM PGD PGDDLR
MNIST DkNN 0.799 0.136 0.085 0.087 0.070

Ours (t = 0.01) 0.889 0.237 0.207 0.152 0.178
Ours (t = 0.05) 0.882 0.179 0.165 0.124 0.154
Ours (t = 0.1) 0.880 0.173 0.166 0.122 0.152

SVHN DkNN 0.501 0.237 0.309 0.296 0.215
Ours (t = 0.01) 0.702 0.571 0.655 0.636 0.563
Ours (t = 0.05) 0.635 0.387 0.500 0.473 0.362
Ours (t = 0.1) 0.451 0.226 0.289 0.273 0.198

CIFAR-10 DkNN 0.526 0.176 0.180 0.220 0.285
Ours (t = 0.01) 0.844 0.314 0.523 0.573 0.651
Ours (t = 0.05) 0.749 0.177 0.442 0.461 0.539
Ours (t = 0.1) 0.353 0.043 0.025 0.031 0.152

Table 4: Runtimes at inference of our method compared to DkNN (in seconds) for in-distribution samples (Testset) and
adversarial samples (FGSM, BIM, PGD, PGDDLR). A lower runtime is better.

Dataset Method Testset FGSM BIM PGD PGDDLR
MNIST DkNN 304.4 273.8 286.8 287.3 281.6

Ours (t = 0.01) 24.1 26.6 27.5 28.1 31.2
Ours (t = 0.05) 24.4 26.0 28.6 28.8 28.1
Ours (t = 0.1) 23.3 27.5 28.3 28.5 29.2

SVHN DkNN 1137.7 1054.8 1195.0 1230.7 1288.2
Ours (t = 0.01) 79.1 83.2 85.9 77.8 87.5
Ours (t = 0.05) 83.4 85.7 82.0 90.2 90.4
Ours (t = 0.1) 77.5 88.6 92.4 90.4 88.9

CIFAR-10 DkNN 680.8 738.9 784.6 796.1 736.4
Ours (t = 0.01) 155.5 177.2 166.1 170.3 166.5
Ours (t = 0.05) 143.0 162.4 164.3 164.1 155.4
Ours (t = 0.1) 152.5 177.5 164.9 169.3 165.4

However, the credibility score for the in-distribution
samples is lower compared to DkNN in this case.
Nevertheless, the main objective of our experiments
was to examine whether our method is faster than the
DkNN method at inference. Therefore, we also mea-
sured the runtimes at inference of both, our method
and the DkNN method, for each OOD test set. The
result are shown in Table 2. As shown in the table, our
method is significantly faster than the DkNN method.

4.3 Adversarial Samples

Similar to our experiments for natural OOD samples
in section 4.2, we also evaluated the performance
of our method in comparison to the DkNN method
on adversarial samples. We created the adversarial
test sets from the respective in-distribution test set of
each dataset (MNIST, SVHN, CIFAR10) using the
Python library torchattacks (Kim, 2020). To create

the adversarial samples from the MNIST test dataset,
we used the following methods: FGSM (Goodfellow
et al., 2015) (ε = 0.25, test performance: 8.05% accu-
racy), BIM (Kurakin et al., 2017) (ε = 0.25, α = 0.01,
i = 100, test performance: 0.04% accuracy), PGD
(Madry et al., 2018) (ε = 0.2, α = 2/255, i = 40, test
performance: 2.46% accuracy), and PGDDLR (Croce
and Hein, 2020) (ε = 0.3, α = 2/255, i = 40, test per-
formance: 0.85% accuracy). To create the adversarial
samples from the SVHN test dataset, we used the fol-
lowing methods: FGSM (ε = 0.05, test performance:
2.72% accuracy), BIM (ε = 0.05, α = 0.005, i = 20,
test performance: 0.79% accuracy), PGD (ε = 0.04,
α = 2/255, i = 40, test performance: 2.42% accu-
racy), and PGDDLR (ε = 0.3, α = 2/255, i = 40,
test performance: 3.48% accuracy). To create the
adversarial samples from the CIFAR10 test dataset,
we used the following methods: FGSM (ε = 0.1,
test performance: 13.21% accuracy), BIM (ε = 0.1,



α = 0.05, i = 20, test performance: 0.84% accuracy),
PGD (ε = 0.3, α = 2/255, i = 40, test performance:
0.93% accuracy), and PGDDLR (ε = 0.3, α = 2/255,
i = 40, test performance 28.0% accuracy). We fed the
test samples of each adversarial test set into the re-
spective model. Then, we calculated the mean cred-
ibility score of all test samples using (a) our method
and (b) the DkNN method. The results of our tests
are shown in Table 3. As shown in the table, we ob-
tain similar results as from our experiments in sec-
tion 4.2. A higher credibility score is obtained on in-
distribution samples compared to DkNN for t = 0.01
and t = 0.05. However, the score on adversarial OOD
samples is also higher. Again, increasing parame-
ter t to t = 0.1 improves our method on adversarial
OOD samples. We even slightly outperform DkNN
on the adversarial test sets for the SVHN and CI-
FAR10 model. However, as in section 4.2, the cred-
ibility score for the in-distribution samples is lower
compared to DkNN in this case. Nevertheless, the
main objective of our experiments was to examine
whether our method is faster than the DkNN method
at inference. Therefore, we also measured the run-
times at inference of both, our method and the DkNN
method, for each adversarial OOD test set. The re-
sults are shown in Table 4. As shown in the table, our
method is significantly faster than the DkNN method.

5 CONCLUSION

In section 1, we stated the two goals of our research
study. Our first goal was to examine if information
from clusters of the layer activations of a model can
be used to compute the credibility of a test sample at
inference (regarding that model). In section 4, our
experiments show that this cluster information can
be used for the credibility calculation. Our method
computes meaningful credibility scores. The calcu-
lated credibility scores are significantly higher for in-
distribution samples than for OOD samples. Our sec-
ond goal was to perform a comprehensive comparison
of our method with the DkNN method in terms of run-
time at inference. We performed the comparison on a
natural OOD test set (section 4.2) and several adver-
sarial test sets (section 4.3) for the MNIST, SVHN
and CIFAR10 dataset. The results of our comparison
show that our method is significantly faster than the
DkNN method. This is an important result. A method
for detecting OOD samples must be fast at inference
in order to be practical. Moreover, our method almost
achieves the performance of DkNN. The parameter t
of our method is crucial. For t = 0.01 and t = 0.05,
our method performs worse than the DkNN method

on OOD samples but better on in-distribution sam-
ples. Increasing t to t = 0.1 improves the performance
of our method on OOD samples. We achieve a similar
or sometimes even slightly better performance than
DkNN for t = 0.1. However, the performance of our
method on in-distribution samples of SVHN and CI-
FAR10 decreases in this case. In future work, we aim
to further improve the performance of our method.

REFERENCES

Andoni, A. and Indyk, P. (2006). Near-optimal hashing al-
gorithms for approximate nearest neighbor in high di-
mensions. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 459–
468. IEEE.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013). Evasion
attacks against machine learning at test time. In Block-
eel, H., Kersting, K., Nijssen, S., and Železný, F., editors,
ECML PKDD, pages 387–402, Berlin - Heidelberg, Ger-
many. Springer.

Carrara, F., Falchi, F., Caldelli, R., Amato, G., and Be-
carelli, R. (2019). Adversarial image detection in deep
neural networks. Multimedia Tools and Applications,
78(3):2815–2835.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B. (2019a).
Detecting backdoor attacks on deep neural networks by
activation clustering. In Espinoza, H., Ó hÉigeartaigh,
S., Huang, X., Hernández-Orallo, J., and Castillo-Effen,
M., editors, Workshop on SafeAI@AAAI, volume 2301 of
CEUR Workshop, Honolulu, HI, USA. ceur-ws.org.

Chen, T., Navratil, J., Iyengar, V., and Shanmugam, K.
(2019b). Confidence scoring using whitebox meta-
models with linear classifier probes. In Chaudhuri, K.
and Sugiyama, M., editors, AISTATS, volume 89, pages
1467–1475, Naha, Japan. PMLR.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A.,
Yamamoto, K., and Ha, D. (2018). Deep learning for
classical japanese literature. ArXiv, abs/1812.01718.

Cohen, G., Sapiro, G., and Giryes, R. (2020). Detecting
adversarial samples using influence functions and nearest
neighbors. In CVPR, pages 14441–14450, Seattle, WA,
USA. IEEE.

Croce, F. and Hein, M. (2020). Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-
free attacks. In ICML, volume 119, pages 2206–2216.
PMLR.

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis,
Univ of Cambridge.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In Balcan, M. and Weinberger, K., editors,
ICML, volume 48, pages 1050–1059, New York, NY,
USA. PMLR.

Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explain-



ing and harnessing adversarial examples. In Bengio, Y.
and LeCun, Y., editors, ICLR, San Diego, CA, USA.

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and
McDaniel, P. (2017). On the (statistical) detection of ad-
versarial examples. ArXiv, abs/1702.06280.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR, pages 770–
778, Las Vegas, NV, USA. IEEE.

Hendrycks, D. and Gimpel, K. (2017). A baseline for de-
tecting misclassified and out-of-distribution examples in
neural networks. In ICLR, Toulon, France.

Hendrycks, D., Mazeika, M., Kadavath, S., and Song,
D. (2019). Using self-supervised learning can improve
model robustness and uncertainty. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R., editors, NeurIPS, volume 32, pages
15637–15648, Vancouver, CA. CAI.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and
Song, D. (2020). Natural adversarial examples. ArXiv,
abs/1907.07174.

Huang, H., Li, Z., Wang, L., Chen, S., Dong, B., and
Zhou, X. (2021). Feature space singularity for out-of-
distribution detection. In Espinoza, H., McDermid, J.,
Huang, X., Castillo-Effen, M., Chen, X. C., Hernández-
Orallo, J., Ó hÉigeartaigh, S., and Mallah, R., edi-
tors, Workshop on SafeAI@AAAI, volume 2808 of CEUR
Workshop. ceur-ws.org.

Kim, H. (2020). Torchattacks: A pytorch repository for
adversarial attacks. ArXiv, abs/2010.01950.

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical report, Univ of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q., editors, NIPS, volume 25, pages
1097–1105, Lake Tahoe, NV, USA. CAI.

Kurakin, A., Goodfellow, I. J., and Bengio, S. (2017).
Adversarial examples in the physical world. In ICLR,
Toulon, France.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist
handwritten digit database. ATT Labs [Online],
http://yann.lecun.com/exdb/mnist, 2.

Lee, K., Lee, H., Lee, K., and Shin, J. (2018a). Train-
ing confidence-calibrated classifiers for detecting out-of-
distribution samples. In ICLR, Vancouver, CA.

Lee, K., Lee, K., Lee, H., and Shin, J. (2018b). A simple
unified framework for detecting out-of-distribution sam-
ples and adversarial attacks. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R., editors, NeurIPS, volume 31, page 7167–7177,
Montreal, CA. CAI.

Lehmann, D. and Ebner, M. (2021). Layer-wise activation
cluster analysis of cnns to detect out-of-distribution sam-
ples. In Farkas, I., Masulli, P., Otte, S., and Wermter,
S., editors, Proc of the 30th Int Conf on Artificial Neu-
ral Networks ICANN 2021, Lecture Notes in CS, pages
214–226, Berlin, Germany. Springer.

Li, X. and Li, F. (2017). Adversarial examples detection

in deep networks with convolutional filter statistics. In
ICCV, pages 5775–5783, Venice, Italy. IEEE.

Liang, S., Li, Y., and Srikant, R. (2018). Enhancing the re-
liability of out-of-distribution image detection in neural
networks. In ICLR, Vancouver, CA.

Lin, Z., Roy, S. D., and Li, Y. (2021). Mood: Multi-level
out-of-distribution detection. In CVPR, pages 15308–
15318. IEEE.

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,
Schoenebeck, G., Houle, M. E., Song, D., and Bailey, J.
(2018). Characterizing adversarial subspaces using local
intrinsic dimensionality. In ICLR, Vancouver, CA.

Machado, G. R., Silva, E., and Goldschmidt, R. R. (2021).
Adversarial machine learning in image classification: A
survey toward the defender’s perspective. ACM Comput.
Surv., 55(1):1–38.

MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Cam, L.
M. L. and Neyman, J., editors, Berkeley Symp on Math
Stat and Prob, volume 1, pages 281–297. Univ of Calif
Press.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2018). Towards deep learning models resis-
tant to adversarial attacks. In ICLR, Vancouver, CA.

McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform manifold approximation and projection for di-
mension reduction. ArXiv, abs/1802.03426.

Meng, D. and Chen, H. (2017). Magnet: A two-pronged
defense against adversarial examples. In SIGSAC, page
135–147, Dallas, TX, USA. ACM.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B.
(2017). On detecting adversarial perturbations. In ICLR,
Toulon, France.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. (2011). Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning.

Papernot, N. and McDaniel, P. (2018). Deep k-nearest
neighbors: Towards confident, interpretable and robust
deep learning. ArXiv, abs/1803.04765.

Pearson, K. (1901). LIII. On lines and planes of closest fit
to systems of points in space. London, Edinburgh Dublin
Philos Mag J Sci, 2(11):559–572.

Sastry, C. S. and Oore, S. (2020). Detecting out-of-
distribution examples with gram matrices. In ICML, vol-
ume 119, pages 8491–8501. PMLR.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. (2014). Intriguing
properties of neural networks. In Bengio, Y. and LeCun,
Y., editors, ICLR, Banff, CA.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In Fleet, D., Pajdla, T.,
Schiele, B., and Tuytelaars, T., editors, ECCV, number
PART 1 in Lecture Notes in CS, pages 818–833, Zurich,
CH. Springer.

Zhang, H., Dauphin, Y. N., and Ma, T. (2019). Fixup initial-
ization: Residual learning without normalization. ArXiv,
abs/1901.09321.


