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Abstract. Convolutional neural network (CNN) models are widely used
for image classification. However, CNN models are vulnerable to out-of-
distribution (OoD) samples. This vulnerability makes it difficult to use
CNN models in safety-critical applications (e.g., autonomous driving,
medical diagnostics). OoD samples occur either naturally or in an ad-
versarial setting. Detecting OoD samples is an active area of research.
Papernot and McDaniel [43] have proposed a detection method based
on applying a nearest neighbor (NN) search on the layer activations of
the CNN. The result of the NN search is used to identify if a sample
is in-distribution or OoD. However, a NN search is slow and memory-
intensive at inference. We examine a more efficient alternative detection
approach based on clustering. We have conducted experiments for CNN
models trained on MNIST, SVHN, and CIFAR-10. In the experiments,
we have tested our approach on naturally occurring OoD samples, and
several kinds of adversarial examples. We have also compared different
clustering strategies. Our results show that a clustering-based approach
is suitable for detecting OoD samples. This approach is faster and more
memory-efficient than a NN approach.

Keywords: CNN ➲ Out-of-Distribution Detection ➲ Clustering.

1 Introduction

Convolutional neural network (CNN) models have increasingly been used for
image classification due to their great performance [18, 25]. However, a high
performance is only obtained on in-distribution samples. The performance can
drastically decrease in the presence of out-of-distribution (OoD) samples. In-
distribution samples are samples that are drawn from the training distribution
of the model. OoD samples, in contrast, are drawn from a distribution that is
different from the training distribution. Distributions different from the training
distribution can occur either naturally (e.g., objects presented in environments or
occlusions not seen during training) [21] or in an adversarial setting (in the latter
case OoD samples are usually referred to as adversarial examples) [3, 16, 47]. The
vulnerability of CNN models to OoD samples makes it difficult to use CNNs in
safety-critical applications (e.g., autonomous driving, medical diagnostics).
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Fig. 1. 2D-Projections (created by UMAP) of the activations of the MNIST training
data at the first convolutional layer (ConvLayer 1) and the output layer (FC-Layer) of
the CNN (CNN setup as described in section 4.1)

In safety-critical applications, the reliability of CNN models can be improved
by using a confidence estimate of the predictions made by the model. This con-
fidence estimate should be high for in-distribution samples and low for OoD
samples. A naive approach to obtain such an estimate is to use the softmax
scores of the network output. Unfortunately, the softmax scores do not provide
a reliable confidence estimation [14, 19]. To find a better confidence estimate, ex-
tensive research has been conducted. For instance, a promising approach, named
Deep k-Nearest Neighbors (DkNNs), was proposed by Papernot and McDaniel
[43]. Their method is based on the assumption that in-distribution samples of
the same class are usually close together in feature space at each network layer.
OoD samples, in contrast, can be close to in-distribution samples of a different
class at each network layer. Hence, at inference, they check if an incoming sam-
ple is in-distribution or OoD (regarding a trained model) by using a k-nearest
neighbor (kNN) search: When the sample is fed into the model, at each layer
they identify the majority class of the kNNs of that sample among the training
samples of the model (in feature space of that layer). They calculate a confidence
estimate (credibility) using this majority class from each layer. If the majority
class is the same among all layers, the confidence of the prediction will be high.
If the majority class varies heavily between the different layers, the confidence of
the prediction will be low. However, DkNNs have the following disadvantages: 1)
Inference is slow because a kNN search requires comparing the incoming sample
to a high number of training samples. DkNNs use an approximate kNN approach
based on local-sensitive hashing [43]. An approximate approach is faster than a
naive kNN search (i.e., compare with every sample), but it still requires many
comparisons. Additionally, their method does not perform a kNN search only
once but for each layer. This can be time-consuming for large training sets in
particular. 2) To be able to perform a kNN search they need to store the whole
training set for inference.
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To address these issues we examine an alternative approach based on cluster-
ing. We state the following research question: Can we perform a cluster analysis
at each layer instead of a kNN search to detect OoD samples? A clustering-based
approach has the following advantages over DkNNs: 1) Inference is faster. In-
stead of comparing the incoming sample to a high number of training samples,
we simply apply a cluster model (learned from the training set) on the incoming
sample at each layer and compare the result to the cluster statics of the training
set. 2) For inference we do not need to keep the whole training set but only the
clustering model of each layer and the cluster statics of the training set. 3) In
contrast to a kNN search, clustering should be able to better handle lower layers.
Lower layers try to detect low-level features [49]. However, low-level features are
not necessarily class-specific (e.g., a soccer player and a baseball player share
some low-level features like shape features of the person, the sportswear, or the
grass in the background). As a consequence, at lower layers samples of different
classes are usually heavily mixed (illustrated in Figure 1). A kNN search only
tries to identify the majority class among the kNNs of a sample. At lower lay-
ers, this majority class does not need to be the same as the class of the sample
(even if the sample is in-distribution). Our clustering-based approach, in con-
trast, tries to keep the information about all classes in the cluster by calculating
a class distribution statistic of that cluster (i.e., what fraction of the samples in
the cluster belongs to a certain class?). Besides these advantages, our approach
keeps the following favorable properties of DkNNs: 1) OoD samples do not have
to be generated for our detection approach. This would be difficult because we
do not know all possible OoD samples in advance that can occur in practice. 2)
The CNN model for which we want to detect OoD samples does not have to be
re-trained. Our contributions are as follows: 1) We examine if a clustering-based
approach is suitable to detect OoD samples for CNN models. 2) We compare
different clustering strategies for the proposed approach.

2 Related Work

There have been other studies that also propose to use hidden layer activations
for detecting OoD samples. Cohen et. al. [9] use a kNN approach in combination
with sample influence scores to detect OoD samples. Crecchi et. al. [10] suggest
using the hidden layer activations to learn a kernel density estimator for OoD
detection. Li and Li [30] use convolutional filter statistics to learn a cascade-
based OoD detector. Metzen et. al. [39] propose to add a detector subnetwork
at a hidden layer of the CNN. Chen et. al. [6] use the hidden layer activations to
train a meta-model that computes the confidence of the model prediction. Huang
et. al. [22] have observed that OoD samples concentrate in feature space. They
propose to use a threshold on the distance to the center of the concentrated OoD
samples to decide if an incoming sample is also OoD. However, in contrast to
our approach, these methods are either computationally more expensive [9, 43],
require OoD samples to create the OoD detector [22, 30, 39], or are more complex
[6, 10]. None of these methods uses clustering to detect OoD samples. Chen et.
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al. [5] have proposed an approach based on clustering. They try to identify if a
training set was poisoned to trigger backdoor attacks on CNN models trained on
this dataset. In contrast, we detect if an incoming sample, during inference, is an
OoD sample for the trained CNN model. Moreover, Chen et. al. apply clustering
only on the last hidden layer. We apply clustering on multiple hidden layers.

A number of other approaches to detect OoD samples (especially adversarial
examples) have been suggested. There are approaches that detect OoD samples
based on generative models [29, 38, 45], using a special loss function [28, 42],
Baysian Neural Networks [4, 15], characterizing the adversarial subspace [33],
self-supervised learning [20], energy scores [32], techniques from object detection
and model interpretability [7], augmenting the CNN with an additional output
for the confidence estimate [12, 17], or by perturbing the training images [31, 48].

3 Method

A CNN model f is trained using a training dataset (XD, Y D) to classify samples
XI into one of C classes at inference. However, the model f can fail to predict
the correct class for a sample xI ∈ XI , if the sample xI is an OoD sample.
To detect if xI is OoD, we perform a layer-wise cluster analysis of the CNN
model activations of xI . Our approach is based on the work of Nguyen et. al.
[41]. Nguyen et. al. apply clustering on the layer activations to visualize different
features learned by each neuron of the model. In contrast, we use clustering to
detect if a sample is OoD regarding the model f . Our approach is organized into
two phases: 1) Before inference, at each layer L, we learn a clustering model gL
from the layer activations of the training data (XD, Y D) of f . 2) At inference,
at each layer L, we apply the learned clustering model gL on the activations
of sample xI . As a result, at each layer L, we obtain the cluster KL

xI in which
sample xI falls. Finally, based on the cluster KL

xI at each layer L, we determine if
xI is OoD or in-distribution. In the following, we describe both phases in detail.

Before Inference: 1) XD has N training samples xD. All N samples xD are
fed into model f . 2) At each (specified) layer L: (a) We fetch the activations of
each sample xD. At convolutional layers (ConvLayers), the activations of each
sample xD are in cube form. At linear layers, the activations of each sample
xD are in vector form. (b) We transform the activations of each sample xD into
vector form. However, we only need to do this for ConvLayers as the activations
of linear layers are in vector form already. In either case, we obtain N vectors
AL

xD (one for each sample xD) of length ML. We concatenate all N vectors AL
xD

to a matrix AL of size N × ML. (c) We need to project the activation matrix
AL from N × ML down to N × 2 using dimensionality reduction. This is a
necessary preprocessing step for clustering as clustering usually does not work
well in high dimensions [5]. As a result, we obtain the projected activation matrix
pL(A

L) of size N × 2 and the projection model pL. (d) We try to find clusters in
the projected activation matrix pL(A

L). As a result, we obtain 1, ..., kL clusters
and the clustering model gL. (e) For each found cluster KL

i (i ∈ 1, ..., kL), we
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calculate a cluster statistic SL(KL
i ) expressing how much each of the C classes

c1, ..., cC is represented in cluster KL
i at layer L in % (cfracL

KL
i
(cj)).

SL(KL
i ) =

{(
cj , cfrac

L
KL

i
(cj)

) ∣∣∣∣ cj ∈ c1, ..., cC

}

cfracLKL
i
(cj) =

|(xD, yDy==cj )|
|(xD, yD)| , ∀ (xD, yD) ∈ KL

i

(1)

3) Finally, we store the projection model pL, the cluster model gL and the cluster
statistic SL(KL

i ) for each found cluster KL
i of each layer L.

At Inference: 1) The sample xI is fed into the model f . 2) At each (specified)
layer L: (a) We fetch the activations of the sample xI . At ConvLayers, the acti-
vations of xI are in cube form. At linear layers, the activations of xI are in vector
form. (b) We transform the activations of sample xI to vector form. Again, we
only need to do this for ConvLayers as the activations of linear layers are already
in vector form. As a result, we obtain an activation vector AL

xI of size 1 ×ML.
(c) We apply the projection model pL (that was learned from the training data
(XD, Y D) before inference) on the activation vector AL

xI . As a result, we obtain a
projected activation vector pL(A

L
xI ) of size 1×2. (d) We apply the cluster model

gL (that was learned from the training data (XD, Y D) before inference) on the
projected activation vector pL(A

L
xI ). As a result, we determine to which cluster

KL
xI the sample xI at layer L belongs (among the clusters 1, ..., kL identified in

the training data (XD, Y D) before inference). (e) We identify all classes that
are in the cluster KL

xI using the cluster statistic SL(KL
xI ) for cluster K

L
xI . How-

ever, we only consider those classes cj (j ∈ 1, ..., cC) whose occurrence (in %)
in the cluster is higher than a given threshold t (i.e., cfrac of class cj in cluster
KL

xI must be greater than t) resulting in a modified cluster statistic S′L(KL
i ).

This threshold t is necessary as there are usually outliers in the training dataset
(XD, Y D). Hence, some clusters contain only very few samples of a certain class
(i.e., the occurrence of that class is low). As a result, we obtain a set of classes
csetL(xI) for the sample xI at layer L whose occurrence in cluster KL

xI is greater
than a given threshold t. If xI is an in-distribution sample, the class of xI will
probably be one of the classes in csetL(xI).

csetL(xI) =

{
cj

∣∣∣∣ cj ∈ S′L(KL
xI )

}

S′L(KL
xI ) =

{(
cj , cfrac

L
KL

xI
(cj)

) ∣∣∣∣ cj ∈ c1, ..., cC ∧ cfracLKL
xI
(cj) > t

}} (2)

3) The set csetL(xI) does most likely not contain the same classes at each layer L.
The set usually contains more classes at lower layers than at higher layers. This
is caused by the type of feature each layer L tries to detect. Lower layers detect
low-level features. Low-level features are typically not class-specific (e.g., a soccer

ICANN2021, 175, v2 (final): ’Layer-wise Activation Cluster Analysis of CNNs to Detect . . . 5



6 D. Lehmann, M. Ebner

player and a baseball player share some low-level features like shape features of
the person, the sportswear, or the grass in the background). As a consequence,
at lower layers, training samples of different classes are usually close together
(illustrated in Figure 1). Hence, the identified clusters at lower layers contain
training samples of several different classes as well. Higher layers, in contrast,
detect high-level features. High-level features are typically class-specific. The
higher the layer, the more class-specific the features it detects. As a consequence,
at higher layers, training samples of the same class are located increasingly close
together, whereas training samples of different classes are located increasingly
far apart (illustrated in Figure 1). Hence, the identified clusters at higher layers
only contain few classes. The clusters at the final layer ideally contain only one
class [49]. This is not surprising. The goal of training a neural network-based
classification model is to find a feature representation at the final layer of the
network that is linearly separable (usually by softmax) regarding the different
classes. As a result, the set csetL(xI) contains more classes at lower layers than
at higher layers. However, if xI is in-distribution, all csetL(xI) must contain at
least one common class. This follows from our assumption: If a sample is in-
distribution, it will usually be close to other in-distribution samples of the same
class at each layer L. If a sample is OoD, it might be close to in-distribution
samples of a different class at each layer L. Thus, we take the intersection of the
class sets csetL(xI) of each layer L to obtain the overall class set cset(xI) for
the sample xI .

cset(xI) =
⋂

L

csetL(xI) (3)

Finally, we determine if the sample xI is OoD or in-distribution using this overall
class set cset(xI) for xI : If the class set cset(xI) is empty, it will probably be
OoD. If the class set cset(xI) is not empty, it will probably be in-distribution.

detector(xI) =

{
1 , if cset(xI) = ∅
0 , otherwise

(4)

4 Experiments

4.1 Experimental Setup

We have conducted several experiments to find out if a clustering-based approach
(as described in section 3) is suitable to detect 1) natural OoD samples (section
4.3), and 2) adversarial examples (section 4.4). To find clusters in the activations
of the training data in each layer (before inference), we need to 1) transform the
activations into vector form (only ConvLayers), 2) project the activations of all
samples to 2D, and 3) search for clusters in the projected activations. For each of
the 3 steps, we can use several techniques. Our base configuration is based on the
clustering method introduced by Nguyen et. al. [41]. To transform the activations
of ConvLayers into vectors, we simply flatten the activations (this approach was
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also used by Papernot and McDaniel [43]). Then, we concatenate the activation
vectors of all samples into a matrix and normalize this matrix (subtract the
mean and then divide by the standard deviation). The normalization serves as
preprocessing step for projecting the activations. To project the activations, we
use a combination of PCA [44] and UMAP [37]. First, we project the activations
down to 50D using PCA. Then, we project the activations in 50D further down to
2D using UMAP. Theoretically, using UMAP directly should give better results
because UMAP is a non-linear dimensionality reduction technique. However, the
activation matrix is usually too large to apply UMAP directly. Thus, we project
the matrix down to 50D using a linear method (PCA) first. A similar approach
is also used by Nguyen et. al. [41]. Finally, we search for clusters in the projected
activations using k-Means [35]. The value for k was chosen based on the best
silhouette score [46] of the identified clusters corresponding to k. The silhouette
score is a metric to evaluate how well clusters are separated using the mean intra-
cluster distance and the mean inter-cluster distance. We use the silhouette score
to evaluate the identified clusters because, according to Chen et. al. [5], it works
best for evaluating clusters in CNN activations. Finally, the found clusters in
each layer are used for detecting natural OoD samples and adversarial examples
as described in section 3. Based on our base configuration, we have also tested
alternative strategies to identify clusters in layer activations (section 4.2).

All experiments have been conducted using models trained on the MNIST
[27] (60,000 training samples), SVHN [40] (73,257 training samples), and CIFAR-
10 [24] (50,000 training samples) dataset. For MNIST and SVHN, we have used
the same CNN model architecture as Papernot and McDaniel [43]: 3 consecutive
ConvLayers using ReLU as activation function followed by a fully-connected out-
put layer. The CNN model for MNIST was trained using the following training
parameters: 6 epochs, learning rate (LR) of 0.001, Adam optimizer (test perfor-
mance: 99.04% accuracy). The CNN model for SVHN was trained using the fol-
lowing training parameters: 18 epochs, base LR of 0.001, multi-step LR-schedule
(gamma: 0.1, steps: (10,14,16)), Adam optimizer (test performance: 89.95% ac-
curacy). We have used the activations from all ConvLayers (after ReLU) and the
fully-connected layer for detecting OoD samples. For CIFAR-10 (not used by Pa-
pernot and McDaniel [43]), we have used a 20-layer ResNet model (using fixup
initialization) introduced by Zhang et. al. [50]. The ResNet model was trained
using the following training parameters: data augmentation (random crop, ran-
dom horizontal flip, mixup), 200 epochs, base LR of 0.1, cosine-annealing LR-
schedule, SGD optimizer (test performance: 92.47% accuracy). We have used the
activations from the first ConvLayer (after ReLU), the output activations of the
3 ResNet blocks, the activations from the Global-Average-Pooling layer, and the
fully-connected output layer for detecting OoD samples.

4.2 Comparing Clustering Approaches

Besides our base configuration (described in section 4.1), we have also examined
alternative clustering strategies to find clusters in the activations of the train-
ing data at each layer. We have exchanged either the clustering algorithm, the
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projection technique, or the method to transform ConvLayer activations into
vector form. We have tested the following approaches: 1) Clustering algorithm:
DBScan [13] (we also tried OPTICS [2] and Agglomerative Clustering [1], but
both did not give sufficient results). 2) Projection: (a) a combination of PCA
and parametric t-SNE [34] (the original t-SNE cannot be used for our method as
it does not learn a model that we can apply to incoming samples at inference),
(b) only PCA. 3) Transforming ConvLayer activations: pooling the ConvLayer
activations using a kernel of (2,2) followed by flattening the pooled activations
(through pooling we may obtain a small translational invariance). All cluster-
ing strategies have been evaluated by the median silhouette score over all used
layers. The results of our experiment are shown in Table 1.

Table 1. Silhouette scores of tested configurations (best score: 1, worst score: -1)

DBScan kMeans

MNIST 0.699 0.733

SVHN 0.535 0.59

CIFAR10 0.319 0.677

PCA tSNE UMAP

MNIST 0.423 0.432 0.733

SVHN 0.349 0.369 0.59

CIFAR10 0.378 0.382 0.677

Pool Flat

MNIST 0.721 0.733

SVHN 0.561 0.59

CIFAR10 0.657 0.677

4.3 Natural OoD Sample Detection

We have conducted an experiment to find out if our clustering-based approach is
suitable for detecting naturally occurring OoD samples. Before inference, we have
identified the clusters in the activations of the training data for each (specified)
layer of the model using our base configuration (described in section 4.1). From
the identified clusters we computed the cluster statistics for each (specified)
layer. At inference, we have used the cluster statistics to check if samples are
in-distribution or OoD. As in-distribution samples, we have used the test set
of the dataset the CNN model was trained on: MNIST (10,000 test samples),
SVHN (26,032 test samples), CIFAR-10 (10,000 test samples). As OoD samples
we have used a test set that is different from the dataset the CNN was trained
on: the KMNIST [8] test set (10,000 test samples, 7.59% test accuracy) for
the MNIST model, the CIFAR-10 test set for the SVHN model (9.24% test
accuracy), the SVHN test set for the CIFAR-10 model (9.35% test accuracy).
We have applied our approach to each in-distribution and OoD dataset to receive
the OoD detection rate for the dataset (i.e., how many samples of the dataset
were recognized as OoD in %?). The threshold t was set to t = 0.01, t = 0.05
and t = 0.1. The results of the experiment are shown in Table 2.

4.4 Adversarial Sample Detection

Similar to our experiment in section 4.3, we have also conducted an experiment
to find out if our clustering-based approach is suitable for detecting adversarial
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examples. We have generated the adversarial examples (using the library tor-
chattacks [23]) from the test set of the dataset the CNN model was trained on:
MNIST, SVHN, CIFAR-10. The following methods to create the adversarials
for MNIST have been used: FGSM [16] (ϵ = 0.25, 8.05% test accuracy), BIM
[26] (ϵ = 0.25, α = 0.01, i = 100, 0.04% test accuracy), PGD [36] (ϵ = 0.2,
α = 2/255, i = 40, 2.46% test accuracy), PGDDLR [11] (ϵ = 0.3, α = 2/255,
i = 40, 0.85% test accuracy). The following methods to create the adversar-
ials for SVHN have been used: FGSM (ϵ = 0.05, 2.72% test accuracy), BIM
(ϵ = 0.05, α = 0.005, i = 20, 0.79% test accuracy), PGD (ϵ = 0.04, α = 2/255,
i = 40, 2.42% test accuracy), PGDDLR (ϵ = 0.3, α = 2/255, i = 40, 3.48% test
accuracy). The following methods to create the adversarials for CIFAR-10 have
been used: FGSM (ϵ = 0.1, 13.21% test accuracy), BIM (ϵ = 0.1, α = 0.05,
i = 20, 0.84% test accuracy), PGD (ϵ = 0.3, α = 2/255, i = 40, 0.93% test
accuracy), PGDDLR (ϵ = 0.3, α = 2/255, i = 40, 28.0% test accuracy). We have
applied our approach to each adversarial set to receive the adversarial detection
rate for the dataset (i.e., how many samples of the dataset were recognized as
adversarial examples in %?). The threshold t was set to t = 0.01, t = 0.05 and
t = 0.1. The results of the experiment are shown in Table 2.

Table 2. OoD detection rates of our detection method (using the threshold t) in %
for in-distribution samples (Testset), natural OoD samples (OOD) (MNIST: KMNIST,
SVHN: CIFAR-10, CIFAR-10: SVHN), and several adversarial examples (FGSM, BIM,
PGD, PGDDLR)

MNIST SVHN CIFAR10

t 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Testset 3.6 5.4 5.94 1.35 19.67 42.56 4.24 19.62 63.69

OOD 81.11 86.89 86.97 12.46 70.16 81.61 22.16 42.9 83.87

FGSM 72.29 80.01 80.67 4.98 50.5 71.17 35.77 76.64 95.27

BIM 75.52 81.50 81.54 3.04 37.35 63.76 15.39 45.32 97.25

PGD 81.70 86.61 86.74 3.86 40.58 65.7 14.02 43.56 96.53

PGDDLR 77.46 83.46 83.67 5.84 53.89 75.14 15.84 39.32 84.03

The best detection results, in relation to the false positive rates on in-
distribution samples, have been reached using a threshold of t = 0.05. However,
our results are not directly comparable to DkNNs as DkNNs compute a credibil-
ity score (e.g., mean scores MNIST-Test = 0.799, MNIST-FGSM= 0.136, SVHN-
Test = 0.501, SVHN-FGSM = 0.237) and not a binary value. Additionally, we
measured the inference times on the test sets and the FGSM adversarial examples
using (a) our method (MNIST-Test: 32 sec, MNIST-FGSM: 31 sec, SVHN-Test:
83 sec, SVHN-FGSM: 77 sec, CIFAR10-Test: 145 sec, CIFAR10-FGSM: 142 sec),
and (b) DkNNs (MNIST-Test: 296 sec, MNIST-FGSM: 255 sec, SVHN-Test:
1217 sec, SVHN-FGSM: 1120 sec, CIFAR10-Test: 783 sec, CIFAR10-FGSM: 825
sec). Our method was significantly faster than DkNNs.
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5 Conclusion

In section 1, we stated the following research question: Can we perform a cluster
analysis at each layer of the CNN instead of a kNN search to detect OoD samples?
Our experiments (section 4) have shown that our approach is able to detect OoD
samples at a higher rate than the false positive rate for in-distribution samples.
As a result, an approach based on clustering is suitable to detect OoD sam-
ples. Furthermore, our experiment (section 4.2) has shown that the projection
technique has a crucial influence on the cluster quality. This is not surprising
because without a good projection we cannot find good clusters. Best results
were obtained using UMAP. This also corresponds to what we have observed
visually. Using UMAP typically results in more dense clusters compared to t-
SNE or PCA. However, by taking the intersection of the classes in the identified
clusters of each layer, we have used a quite simple method to decide if a sample is
OoD. Hence, the detection rates for SVHN and CIFAR-10 are often low. The low
detection rates may be caused by noise in the data. Some form of calibration is
probably needed. We have shown that clustering can be used for OoD detection.
It is faster, more memory-efficient, or less complex than other state-of-the-art
approaches. In future work, we plan to devise a refined clustering-based OoD
detector obtaining improved detection rates. Moreover, the detector should not
only give us a yes/no answer, if a sample is OoD or not. To be comparable to
DkNNs, our method should compute a credibility score instead.
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