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ABSTRACT

The goal of intrinsic image decomposition is to recover low level fea-
tures of images. Most of the studies tend to consider only reflectance
and shading, even though it is known that increasing the number of
intrinsics is beneficial for many applications. Existing intrinsic im-
age datasets are quite limited. In this study, a dataset is introduced
to provide a comprehensive benchmark to the field of intrinsic im-
age decomposition. IID-NORD contains a large number of scenes
and for each scene ground truth reflectance, shading, surface normal
vectors, light vectors and depth map is provided to allow detailed
decomposition. Moreover, diverse illuminants, viewing angles, and
dynamic shadows are used to prevent any bias. To the best of avail-
able knowledge, IID-NORD is the most comprehensive dataset in the
field of intrinsic image decomposition. IID-NORD will be available
on the first author’s o�cial webpage.

Index Terms— Intrinsic image decomposition, dataset, com-
puter graphics

1. INTRODUCTION

While the human visual system enables us to di�erentiate between
colors, estimate distances and perceive details of a scene under dif-
ferent illumination without any prior information, machines have dif-
ficulties in carrying out such tasks [1, 2]. For instance, in computer
vision systems e�ciency decreases due to detail loss in the presence
of over- and/or under-saturated regions, glare e�ect and reflection in
applications such as object detection and shape extraction [3]. More-
over, an ambiguity caused by light may disturb the pixel continuity
at edges, thus carrying out a segmentation task can be troublesome
for a machine system. Solutions to these problems can be proposed
through intrinsic image decomposition (IID) algorithms.

Low-level features of scenes can be represented individually and
each representation is called an intrinsic image [2]. There are several
types of intrinsic images such as the reflectance, distance, surface
normal, illumination, luminosity, and specularity [2]. Di�erent in-
trinsic images allow us to present details depending on distinct char-
acteristics of a scene more e�ectively, i.e. the perceived color of an
object can be easily extracted from the reflectance image [1]. More-
over, it is more meaningful to use the depth map to estimate distance
between objects in a scene [2].

In IID studies mostly the reflectance and shading components
are extracted to obtain beneficial information from an image. While
the reflectance image (R) provides us the albedo, which corresponds
to the ratio between total reflected and total incident illumination,
the shading image (S) can be defined as the element indicating the
interaction between the surfaces and illumination in a scene [2, 4].
The product of these two components form the input image (I) as
follows;

I(x, y) = R(x, y) � S(x, y) (1)

where x and y represent the pixel location.

Eqn. 1 is known as the so-called intrinsic image decomposition
problem, which is by nature under-constrained and has been studied
for more than four decades [5]. In order to solve this ill-posed prob-
lem, several algorithms have been proposed and a few of them also
considered extracting other intrinsic images such as depth and shape
to increase the usability of their methods [6, 7]. As it can also be de-
duced from the milestone study of Barrow et al. [2], it is important to
extract several intrinsic images from a scene to obtain the most possi-
ble information from an input. Therefore, rather than simplifying the
IID-problem by only taking the R and S components into account, as
many as possible intrinsic images should be obtained to benefit from
the low-level features in diverse applications.

A critical point in developing an IID algorithm, which can ex-
tract various intrinsic images of a scene is to access ground truth
information of all the low-level features aimed to be obtained by
the designed model. However, in the field of IID there are only a
few publicly available datasets, which contain a limited amount of
intrinsic images and also have other shortcomings. The MIT In-
trinsic Images Dataset [8] contains only 20 real objects, which do
not have a background. For each object an image captured under
di�erent lighting conditions is created to provide di�erent scenes.
The ground truth information contains the reflectance and shading
components as well as the binary mask, di�use component and
specularity information of the image. Since it is a small dataset it
is inadequate for utilization in neural networks-based algorithms.
Furthermore, considering it contains only images with a single ob-
ject without any background, this dataset is not su�cient for studies
aiming at developing a method applicable for real-world scenes. The
widely known MPI Sintel Flow Dataset [9] is in fact designed for
optical flow evaluation, but it is used in some IID studies as well [10].
It consists of a limited number of scenes extracted from a 3D fantasy
short-film called Sintel. Hence, it is not very suitable for real-world
applications. The Intrinsic Images in the Wild Dataset [11] is formed
with the help of human operators. It is a large-scale dataset, however
it is based on pairwise human ranking decisions and sparse anno-
tations, which makes the dataset subjective and limits the available
cues [12, 13]. Also, the rankings are only about albedo, hence this
dataset is insu�cient for full IID. In the Multi-illuminant Intrinsic
Image Dataset [14] real photos of 5 distinct scenes are captured
under complex multi-illuminant and multi-colored illumination con-
ditions, while shadows are also included in the scenes. This dataset
consists of challenging scenes with ground truths for reflectance,
shading, specularity, illumination and preliminary depth informa-
tion, yet it has shortcomings. The scenes either contain a very
limited background or no background at all, which causes a problem
for depth estimation tasks. Furthermore, the number of images is in-
adequate for machine learning-based IID methods. The Multi-view
Multi-illuminant Intrinsic Dataset [15] contains scenes with complex
multi-illuminants and multi views. Ground truths for raw depth, 3D



point cloud, reflectance and shading are provided for the images.
The dataset contains 600 high-resolution images, hence it is e�cient
for IID algorithms based on traditional methods, but not for neural
networks-based techniques. Furthermore, the scenes consist only of
a few objects and a partial background, which causes the evaluation
results of an IID algorithm on this dataset to be questionable for
real-world scenes. There are also other datasets created to train al-
gorithms in IID studies, which render 3D models and environmental
maps [12]. However, only the implementation of these datasets are
publicly available and carrying out a rendering operation for thou-
sands of images requires a high computational power, i.e. high-cost
hardware. Furthermore, the images contain only a single 3D model
in the foreground, which could be easily segmented, whereas the
environmental map serves as background.

For both low- and high-level computer vision tasks such as seg-
mentation and object classification, IID algorithms, which can ac-
curately extract intrinsic images are beneficial. However, when IID
methods are benchmarked or trained on datasets containing a single
object, very limited number of colors and smooth shadows, and hav-
ing no background information, then their e�ciency in real-world ap-
plications tends to decrease. All these mentioned limitations in exist-
ing IID datasets indicate that a comprehensive dataset containing var-
ious types of intrinsic images, textures, shadows and multiple objects
is required to enhance the models designed in this field. Thereupon,
in this study a new intrinsic image decomposition dataset called IID-

NORD, which contains both realistic and artificial scenes, is created
by utilizing computer graphics. In IID-NORD, ground truths for re-
flectance, shading, depth map, surface normal vectors, and light vec-
tor map are provided for a total of 128000 distinct scenes. To the
best of our knowledge, this is the most detailed publicly available
IID dataset in the literature, since it contains a high number of intrin-
sic images. Furthermore, IID-NORD contains scenes with various
shapes, textures, viewing angles, illuminants and dynamic shadows
to increase the diversity of the dataset. In order to demonstrate the
usability of the IID-NORD it is employed in several IID algorithms
and the results are provided in this work.

This paper is organized as follows. Section 2 explains the for-
mation of the dataset in detail. Section 3 presents the experimental
results of algorithms used to prove the usability of the dataset. Sec-
tion 4 gives a brief summary of the study.

2. THE DATASET

Obtaining a dataset for algorithms requiring a high amount of data
can be troublesome. An extreme amount of time and labor is needed
to form a large-scale dataset with real objects and generate ground
truth images for various cases. To avoid this excessive e�ort, any
possible human error and subjectivity, in this study, computer graph-
ics is used during data formation. All images are obtained via
designing an algorithm using the open source 3D graphics toolkit
called OpenSceneGraph (www.openscenegraph.com). The 3D ob-
ject models are gathered from the website 3D Warehouse (3dware-
house.sketchup.com). Some textures are taken from Pixabay (pix-
abay.com), others are created by the authors. Four di�erent rooms
(living room, bedroom, kitchen, garage) containing distinct objects
with random placement are rendered in order to avoid possible fitting
problems and bias in IID neural network models. As aforementioned,
five intrinsic images namely, reflectance, shading, surface normal
vectors, light vector map and depth map are provided in this dataset.

In total, 128000 scenes are rendered together with their intrinsics
and all images have a resolution of 965 ù 1600 pixels. An example
scene together with all of its intrinsic images is presented in Fig. 1.

Fig. 1: Example scene and its intrinsic images.

Fig. 2: Scenes (top) and corresponding depth maps (bottom).

First of all, the rooms in the scenes are designed with various
shapes to avoid any bias during the training phase of learning-based
IID methods. In particular, if all scenes would have the same shape as
in Fig. 1, then all the depth maps would have a white spot in the back
of the room, which would possibly cause a bias in learning-based
IID algorithms. In Fig. 2, rooms with di�erent shapes are presented
together with their depth maps. Apart from the shape of the scenes,
also di�erent viewing angles are used during rendering to increase
the diversity of the dataset (Fig. 3).

A large number of 3D objects with distinct shapes are gathered
to create scenes with various items. For each type of object several
versions are used to improve the variety in the dataset, i.e., for a lamp
4 di�erent lamp designs are used and the selected lamp is changed
in each consecutive render. Furthermore, to avoid any possible bias
during the utilization of the dataset in neural networks based IID al-
gorithms and to increase the diversity of the dataset, in each render
every object is randomly placed into the scene. This random place-
ment procedure allows the obtainment of various depth maps, which
can also be used in other research fields such as color constancy [16].

The textures are selected for each object individually and both
realistic and artificial textures are chosen for the 3D assets. Since
reflectance and shading are often constant in local regions instead of
the global scale, textures with sharp color changeovers are included
to the dataset [17]. Furthermore, colorful textures provide beneficial
features for di�erent IID studies [18]. Especially in Retinex-based
algorithms, where large gradient changes in chromaticity indicate re-
flectance changes, having a high number of colors in the scene is an
advantage [18]. In Fig. 3, scenes with both realistic and artificial
textures are demonstrated for di�erent rooms.

For each scene a single light source is positioned at di�erent loca-
tions, which enables the light vector maps to be more diverse. Instead
of directional lights, which cause the illumination and shadows to be
static, point light sources are used to obtain realistic illumination and
dynamic shadows, i.e., according to the position of the light source
the amount of light a particular point in a scene receives changes in
each render and the orientation of the shadows varies.

The main illuminant used during rendering of scenes is pure
white light, however di�erent illuminants are also employed since
they are usually ignored in other IID datasets. Lights with corre-
sponding values at 2000K , 3500K , 4800K , 5200K and 10000K on



Fig. 3: Example scenes with di�erent objects, textures and viewing
angles.

the color temperature curve (CTC) are used while rendering. These
illuminants are chosen since they can be commonly observed in nat-
ural scenes, but are non-canonical illuminants. The image formation
process with non-canonical light sources can be expressed as follows;

I(x, y) = R(x, y) � S(x, y) � E (2)

where E is the color of the non-canonical global light source.
Furthermore, to the best available knowledge, in existing IID

datasets, lights outside the CTC are not considered during scene cre-
ation although these lights can be commonly observed in diverse ap-
plications such as agriculture [19]. In this dataset, strong greenish
and purplish lights, which lie outside the CTC are used to render var-
ious scenes. In Fig. 4, the same scene is rendered under di�erent
illuminants on and outside the CTC.

Alongside creating natural illumination conditions in the scenes,
it is also important to obtain realistic shadows which vary accord-
ing to the light position. In this study, the Light Space Perspective
Shadow Maps (LiSPSM) [20] technique is preferred to create dy-
namic shadows in the scenes, since it mostly avoids aliasing artifacts,
which are common in other methods, such as uniform or perspec-
tive shadow mapping, due to quantization and perspective projec-
tion. While uniform shadow mapping presents fine results for dis-
tant objects and perspective shadow maps for close items, LiSPSM
distributes the perspective error throughout the scene and provides
satisfying outcomes for all objects. In Fig. 3, it can be observed that
the shadows change according to the light position in the scene.

Lastly, it is worth to mention that, aside from intrinsic image
decomposition studies, IID-NORD can be employed in various fields
including but not limited to color constancy, image segmentation,
shadow removal and depth estimation.

3. EXPERIMENTS

In this section, several existing IID studies and an image enhance-
ment method which includes an intrinsic image decomposition part
are investigated to evaluate the usability of IID-NORD and observe
the algorithms’ response to its challenges. The utilized algorithms
are briefly explained in the following. In the study of Shen et al. [21],
IID is formulated as an optimization problem relying on the assump-
tion that in a local image patch the neighboring pixels with similar
intensity values should have similar reflectance values. To obtain bet-
ter results, user scribbles are also added to the problem formulation.
Experiments are carried out on various images including the MIT In-
trinsic Images Dataset. In the study of Hauagge et al. [22], an ambi-
ent occlusion measure is computed via a statistical approach and used

Fig. 4: The same scene under distinct illumination.

Table 1: Statistical analysis of the algorithms on the subset of IID-
NORD.

Algorithm Shen Lettry Hauagge Ren
PSNR(dB) 10.236 8.338 10.237 8.634
SSIM 0.679 0.370 0.591 0.612

to derive the reflectance and illumination components of an image.
The ambient occlusion is estimated from a stack of images captured
under di�erent and unknown illumination. The experiments are car-
ried out on various scenes and the MIT Intrinsic Images Dataset. In
the unsupervised deep learning approach of Lettry et al. [13], an IID
algorithm trained on images pairs is proposed to obtain reflectance
and shading. The method takes two images of the same scene under
distinct illuminants and benefits from the fact that the reflectance is
constant in both images. Unlike most IID algorithms, this method
outputs a colored shading component. Both synthetic and real-world
data are used in this study. The work of Ren et al. [23] is in fact a low-
light enhancement method but it proposes an IID method within the
study, which relies on the illumination and reflectance estimation of
the Retinex model. The algorithm estimates a piece-wise smoothed
illumination and a noise-suppressed reflectance.

For the experiments, all the codes are taken from the o�cial web-
pages of the authors. The input requirements of the algorithms are
met and no optimization is carried out on the methods.

IID-NORD is a challenging dataset with complex scenes, multi-
ple colors and shadows, thus analyzing it only statistically would not
provide enough insight to its usability, since most of the state-of-the-
art intrinsic image decomposition algorithms face di�culty in real-
istic scenes with strong shadow casts. On the other hand, providing
only visual comparisons would lead to subjectivity. Therefore, both
quantitative analyses and visual comparisons are carried out in this
study. The statistical performance of the algorithms on IID-NORD
are presented by using the well-known error metrics; structural sim-
ilarity index (SSIM) and peak signal-to-noise ratio (PSNR). SSIM is
inspired from the human visual system and evaluates the structural
di�erences between the images and presents a score in range [0, 1],
where a score closer to 1 indicates a better result [24]. PSNR com-
putes the peak signal-to-noise ratio between the inputs in decibels
(dB), where a higher value indicates a superior outcome [25].

Intrinsic image decomposition algorithms can be employed in
various computer vision pipelines as a pre-processing technique
where they need to decompose complex scenes in to their intrinsic
features. However, one of the main problems in many existing IID



Fig. 5: Comparisons for methods of Lettry [13] and Shen [21]. (Left-
to-right) Input scene, ground-truth intrinsics, results of Lettry and
Shen.

Fig. 6: Comparisons for methods of Ren [23] and Hauagge [22].
(Left-to-right) Input scene, ground-truth reflectance, results of Ren
and Hauagge.

studies is their unsatisfying performance on images with multiple
objects, shadow casts and complex textures. Although in real-life
such features are commonly observed in captured images, they are
usually not addressed in the literature. Since IID-NORD contains
complex scenes it is not surprising that the intrinsic image decom-
position algorithms do not present state-of-the-art performance as
demonstrated in Table 1. It is important to note here that the statis-
tical results given in Table 1 are obtained by using images rendered
only under pure white light.

Figure 5 presents the outcomes for Lettry and Shen. Lettry out-
puts quite accurate shading components, while it appeared to have a
di�culty in eliminating the shadows in the reflectance image, which
is also pointed out by the authors in their study. This drawback is
also reflected to the statistical scores of the algorithm and the lowest
scores are obtained by Lettry. Since Lettry is a learning-based ap-
proach, it can be deduced that if its training set would contain com-
plex samples available in IID-NORD, then the outcomes would likely
be better. The outcomes of Shen present that it successfully obtains
most of the reflectance information, while also handling some of the
strong shadow casts. Moreover, the shading component is extracted
quite accurately apart from the fact that it contains the textures of the
scene.

In Fig. 6 example results are given for Hauagge and Ren. The
highest PSNR score is achieved by Hauagge, whose satisfying per-
formance can also be seen in its reflectance outputs. The complex
textures are handled well and noise is relatively low. In the outcomes
of Ren, the reflectance image contains blurred parts, yet the structures
are mainly well recovered. It is worth to stress that this method is a
part of a low-light enhancement pipeline. The reason behind using
it for the comparisons of this study is to demonstrate that IID can be
helpful in a variety of applications, hence the usability of IID-NORD
is not limited to the field of IID. For example, with slight modifi-
cations the images can be easily used in low-light enhancement or
saturation correction applications.

As aforementioned, ilumminants outside the CTC are not present
in IID datasets and usually di�erent lights are ignored during scene
formation. To point out this fact, example outcomes for inputs ren-
dered with an illuminant corresponding to 5200K and purplish light
outside the CTC are presented in Fig. 7. As it can be observed both
traditional and neural networks-based methods face a great challenge

Fig. 7: Comparisons of algorithms on di�erent illuminants. (Top-
to-bottom) Input scenes, ground truth reflectances, results of Let-
try [13], Shen [21], Ren [23] and Hauagge [22].

in extracting the reflectance images.
The ambiguous and less satisfying regions in the outcomes of the

IID methods show that various data is required to benchmark algo-
rithms. Furthermore, they lead to the conclusion that comprehensive
and detailed datasets are essential to develop robust IID methods,
which can be e�ciently used in real-life applications.

4. CONCLUSION

In this study, a large-scale intrinsic image decomposition dataset IID-
NORD is created to provide a comprehensive benchmark. While
forming IID-NORD, an open source 3D graphics toolkit is used to
avoid any possible human error and subjectivity. A total of 128000
images each with five intrinsic features: reflectance, shading, sur-
face normal vector, light vector map and depth map are rendered.
Di�erent room shapes and viewing angles, objects with distinct tex-
tures, and diverse illumination types are used to prevent possible bias
and fitting problems. Several existing intrinsic image decomposition
studies are evaluated on IID-NORD to analyze the usability of the
dataset. It is observed that IID-NORD challenges the state-of-the-
art intrinsic image decomposition methods, but also allows proper
decomposition.

To the best of our knowledge, IID-NORD is the most detailed
publicly available intrinsic image decomposition dataset, which is
considered to contribute not only to the field of intrinsic image de-
composition, but also to the studies in color constancy, shadow re-
moval, depth estimation and segmentation. As future work, the num-
ber of objects in the scenes will be increased and more complex
scenes will be created to improve the usability of the dataset. More-
over, multiple light sources will be added to the scenes.
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