
Evolving Game State Features from Raw Pixels

Baozhu Jia(B) and Marc Ebner

Institut für Mathematik und Informatik,
Ernst Moritz Arndt Universität Greifswald,

Walther-Rathenau-Strasse 47, 17487 Greifswald, Germany
{baozhuj,marc.ebner}@uni-greifswald.de

Abstract. General video game playing is the art of designing artificial
intelligence programs that are capable of playing different video games
with little domain knowledge. One of the great challenges is how to cap-
ture game state features from different video games in a general way. The
main contribution of this paper is to apply genetic programming to evolve
game state features from raw pixels. A voting method is implemented
to determine the actions of the game agent. Three different video games
are used to evaluate the effectiveness of the algorithm: Missile Command,
Frogger, and Space Invaders. The results show that genetic programming
is able to find useful game state features for all three games.

Keywords: Genetic programming · General video game playing ·
Voting method

1 Introduction

All types of games, including video games and board games, provide a testbed
for artificial intelligence research. AI technology has developed successful game
players for many games, including go and chess. In 1996, Deep Blue [12] became
the first computer to win a chess game against the world champion Garry Kas-
parov. In 2016, AlphaGo [18] beat Lee Sedol in a five-game match. This was
the first time that a computer Go program beat a 9-dan professional Go player.
These examples show that a computer program can be better than a human
being in certain specific areas. Some would even argue that the program has a
higher intelligence for this particular area than the human player. However, usu-
ally games where computers have become good players are no longer considered
to require intelligent behaviour.

The success of these AI technologies has inspired researchers to explore
machines with more general-purpose intelligence. The computer program is no
longer limited to play one specific game, instead knowledge can be transferred
to another game. General Video Game Playing (GVGP) is the design of artifi-
cial intelligence computer programs that can play many different video games.
Therefore, the computer program should be game-independent and use as little
game specific knowledge as possible during the learning process.

c⃝ Springer International Publishing AG 2017
J. McDermott et al. (Eds.): EuroGP 2017, LNCS 10196, pp. 52–63, 2017.
DOI: 10.1007/978-3-319-55696-3 4

Evolving Game State Features from Raw Pixels 53

The main contribution of this paper is using genetic programming [9,10] to
evolve game state features. A voting based method is used to determine the
behaviour of the game agent, i.e. direction of motion and shooting behaviour.
During the learning process, the only game knowledge used in this paper are
game screen grabs and game scores. This knowledge is obtained from the game
engine and then passed on to the learning algorithm.

In order to evaluate the efficiency of the algorithm, three different video
games are used to evaluate the algorithms: Frogger, Missile Command and Space
Invaders. All games run on the general video game engine [2]. We compare our
results with another genetic programming algorithm [8] which uses handcrafted
game state features. The results show that the algorithm which uses evolved
game state features from raw pixels performs better than the algorithm which
uses handcrafted features.

This paper is organised as follows. Section 2 briefly introduces previous work.
Section 3 describes the game engine and games which are used to evaluate the
algorithm. Section 4 presents how genetic programming is used to evolve visual
features. The results are shown in Sect. 5. Section 6 gives the conclusion.

2 Related Research

The General Game Playing Competition [4] has been organised every year by
AAAI since 2005. This competition focuses on turn-taking board games whose
rules are not known. Monte Carlo tree search [3,13,14] has shown its powerful
search ability in general game playing.

Bellemare et al. [1] created an Arcade Learning Environment which provides
a platform to evaluate general, domain-independent AI technology. Naddaf [16]
introduced two model free AI agents to play Atari 2600 console games in his
master’s thesis. One AI agent uses reinforcement learning while the other uses
Monte Carlo tree search. Two handcrafted game state features are introduced.
Hausknecht [6,7] presented a HyperNeat-based general video game player to
play Atari 2600 video games. It uses a high-level game state representation.
HyperNeat is said to be able to exploit geometric regularities.

In 2015, DeepMind [15] presented a Deep Q-Network which combines deep
learning and reinforcement learning to play Atari 2600 video games, achieving
human-level game play in many games. Deep Q-Network did so with minimal
prior knowledge, receiving only visual images (raw pixels) and game scores as
input. Guo et al. [5] trained both a neural network and a deep neural network
with the action choice returned from Monte Carlo tree search as ground truth.
Monte Carlo tree search is assumed to make correct decisions if it has enough
searching depth. In 2016, AlphaGo [18] created by DeepMind has beaten Lee
Sedol, a top-level Go player. AlphaGo relies on two different components: A tree
search procedure and convolutional neural networks to guide the tree search. Two
convolutional neural networks are trained: one is a policy neural network and
the other is a value neural network, which are also trained using Reinforcement
Learning.

54 B. Jia and M. Ebner

GVG-AI [2] is another platform to test the general AI technology. Based on
this platform, General Video Game AI Competition has been held every year
since 2014. This competition explores the problem of creating controllers for
general video game playing. Perez et al. [17] put forward a knowledge-based Fast
Evolutionary Monte Carlo tree search method, where the reward function adapts
to the knowledge and distance change. Jia et al. [8] presented a video game player
based on genetic programming. Three handcrafted game state representations
were used. Three trees were evolved based on Genetic Programming whose values
were used to determine the game agent’s movement in the horizontal/vertical
direction and the shooting behaviour.

3 Materials

3.1 Games

The games used to evaluate the algorithm in this paper are run on the GVG-AI
game engine. This game engine is able to run many games similar to old Atari
2600 games. We test our video game player on three different games: Space
Invaders, Frogger and Missile Command. Screen grabs from the three games are
shown in Fig. 1. Space Invaders is a classic arcade game. An alien invasion is
coming in from above. The player has to control a small gun which is able to
shoot vertically at the incoming space ships. Frogger is a classic game where a
small frog needs to cross a road. The player essentially needs to move from the
bottom of the screen to a goal position located at the top of the screen. The game
agent has to watch out for cars while crossing the road. In Missile Command,
the player needs to use smart bombs to destroy incoming ballistic missiles. The
player needs to decide at what location the next smart bomb will explode. A
smart bomb will destroy all incoming missiles within a certain radius.

3.2 Handcrafted Game State Features

In our previous work, we presented a method which combines handcrafted game
state features and Genetic Programming in order to play different video games.
We first identify the positions of all objects shown in the game screen. Five
different object classes are distinguished. For each class, we inform the game
avatar about the position of the nearest object as illustrated in Table 1. The
game state is represented by four terminal symbols Xi, Yi, Di, and Ai with i ∈
{1, . . . 5}. The position of the nearest object is available as x- and y-coordinates,
via symbols Xi and Yi. The distance to the nearest object is available through
Di and the angle is given by Ai.

Three trees T1, T2 and T3 are evolved by taking the game state features as
input to determine the behaviours of the avatar. Among them, the value of T1
and T2 determine the avatar’s moving direction in the horizontal and vertical
direction, as illustrated in Fig. 2. The value of T3 determines whether the avatar
will release a shooting action as illustrated in Table 2.

Evolving Game State Features from Raw Pixels 55

(a) Space Invaders

(b) Frogger

(c) Missile Command

Fig. 1. Three games created using the game engine GVG-AI.

Table 1. Terminal symbols [8]

Terminal symbol Description

Xi x coordinate of the nearest object for
class i relative to avatar

Yi y coordinate of the nearest object for
class i relative to avatar

Di Euclidean distance between avatar and
the nearest object for class i

Ai Angle between vector pointing from self
to the nearest object and the horizontal
axis

56 B. Jia and M. Ebner

T1 Value

T2 Value

no

action

Down

Left Right

Up
Upper right

Lower right

Upper left

Lower left

(-10,0)

(0,10)

(0,-10)

(10,0)

Fig. 2. The moving direction of the avatar depends on the value of tree 1 and tree 2.

Table 2. Depending on the value of tree 3, the button will be pressed or not.

Value of tree 3 Actions

[0, ∞) Press button

(−∞, 0) No action

4 Evolving Video Game State Visual Features Using
Genetic Programming

4.1 Evolving Game State Features

It is a great challenge for a game player to find the proper game state features,
especially for games with complex game play. In this paper, we use genetic
programming [9,10] to evolve the game state visual features.

The computer programs evolved by genetic programming are traditionally
represented as tree structures. Trees can be easily evaluated in a recursive man-
ner. We used the ECJ package [11] to evolve the playing strategies in this paper.
In our work, the game engine communicates with ECJ via the TCP/IP protocol.
For each step, the game engine sends the game screen grab to ECJ. The evolved
program then computes and returns back to game engine the actions which will
be executed by the avatar. Once the game ends, irrespective of whether the game
is won or lost, the game scores are passed on to ECJ, and are used to compute
the fitness of the program.

The terminal set, that we have used for our experiments, is described in
Table 3. All terminals return an object of type Image. Each terminal returns one
channel of the down-scaled game screen grab: red channel, green channel, blue
channel, yellow channel and grey channel. The red, green and blue channels are

Evolving Game State Features from Raw Pixels 57

readily available from the screen grab. The other channels are computed from
this data. During the learning process, the game screen grab is passed on to ECJ
from the game engine. The size of the down-scaled screen grab is one sixteenth
of its original size.

The elementary functions are shown in Table 4. From this table, we see that
all the arguments and return values of these functions have the type Image. We
have used arithmetic functions, such as addition, subtraction, multiplication and
division. It should be noted that a protected division is used here.

They are used to combine features from different channels. We also applied
a Gaussian filter and a non-local-maxima suppression function. If the latter two
functions are applied in sequence, objects will be reduced to points, i.e. the local
maxima. The attenuation function can be used to put an emphasis on objects
close to the avatar. The attenuation function is a exponential function, whose
value will attenuate with the object’s distance to avatar. It can be used to put
an emphasis on objects close to the avatar. The return value of the tree is an
image which has the same size as the input image.

For each experiment, we perform 10 runs with different initialisation of the
random seed. For each run, a population with 200 individuals is evolved for
up to 100 generations. Crossover is applied with the probability 0.4. Mutation
is applied with the probability 0.4. Reproduction is applied with the probability
0.2. Tournament selection is of size 3 is used as strategy. The ramped half-and-
half tree building method (HalfBuilder) is used to initialise the first population
of individuals.

Table 3. Terminal symbols I

Terminal Return type Description

imageGray Img Gray image

imageR Img Red channel

imageG Img Green channel

imageB Img Blue channel

imageY Img Yellow channel

4.2 Voting for Actions

As described in the previous section, the return value of the genetic programming
tree is an image. We search the resulting image in order to locate the position
of the maximum value (Vmax) and the minimum value (Vmin). The point having
the maximum value is regarded as the goal position of the game, i.e. a location
on the screen that is of positive interest. The point having the minimum value is
regarded as the position of a potential threat to the game avatar. The behaviour
of the game avatar will be determined by these two points. It should always move
towards the goal. However, it should also keep an eye on the potential threat.
Once the location of the potential threat enters a certain area surrounding the
avatar, then the avatar will move away from the threat. In this paper, we combine

58 B. Jia and M. Ebner

Table 4. Function set

Function Output type Description

add(Img a, Img b) Img o(x, y) = a(x, y) + b(x, y)

subtract(Img a, Imgb) Img o(x, y) = a(x, y) − b(x, y)

multiply(Img a, Img b) Img o(x, y) = a(x, y) · b(x, y)
divide(Img a, Img b) Img If b(x, y) ̸= 0 then

o(x, y) = a(x, y)/b(x, y), otherwise
o(x, y) = 0

gaussian(Img a) Img Gaussian smoothing with standard
deviation 1.1

attenuation(Img a) Img Attenuates the image data i(x, y)
depending on its distance to the avatar.
o(x, y) = i(x, y) · exp−distance/50

nlms(Img a) Img Non local maximum suppression with
neighbourhood of 5 × 5

gate(Img a, Img b, Img c) Img If a(x, y) > 0 then o(x, y) = b(x, y),
otherwise o(x, y) = c(x, y)

max(Img a, Img b) Img If a(x, y) > b(x, y), then o(x, y) = a(x, y),
otherwise o(x, y) = b(x, y)

min(Img a, Img b) Img If a(x, y) < b(x, y), then o(x, y) = a(x, y),
otherwise o(x, y) = b(x, y)

upper(Img a) Img Keeps only values in the uppermost 25%.
Let the pixel range be [Vmin, Vmax]. If
i(x, y) ≥ Vmax − 0.25(Vmax − Vmin) then
o(x, y) = i(x, y), otherwise o(x, y) = 0

lower (Img a) Img Keeps only values in the lowest 25%. If
i(x, y) ≤ Vmin + 0.25(Vmax − Vmin) then
o(x, y) = i(x, y), otherwise o(x, y) = 0

the two behaviours by voting. If one action helps to move towards the goal, it
will get a reward +1. Whereas, if the action will cause a threat to avatar, it will
get a punishment score −5, if the action helps move away from the threat, it will
get a reward +2 (Table 5). If neither happens, then the value will remain the
same. The action with the largest value will be the one used to determine the
direction of motion. The maximum value also determines the action of button,
which will be pressed if and only if Vmax > Vthreshold. There are 18 actions which
are same with the actions listed in Fig. 2 and Table 2.

Table 5. Avatar behaviour.

Avatar behaviour Action scores

Avatar moves towards goal Score +=1

Avatar moves away from threat Score +=2

Avatar is threatened Score −=5

Evolving Game State Features from Raw Pixels 59

5 Results

Figure 3 illustrates a sample tree which is used to extract game state features
for Frogger. The input images are all extracted from down-scaled screen grabs.
The return value of the tree is also an image, which is shown in Fig. 4. We search
for the maximum and minimum points in the returned images. The two points
are overlaid on the original screen grab. The maximum is marked with a green
rectangle and the minimum point is marked with a red rectangle. In the Figure,
we can see that the point having the maximum value is the desired home location
of the frog. The point having the minimum value is the most dangerous car to
the avatar.

Figure 5 shows the fitness of the best individual for these three games. We
conduct 10 runs for each experiment. The average fitness of the best individual
for each game is shown with a bold line. This algorithm is compared with our
previous results using hand crafted features. Figure 6 shows the average best fit-
ness for the two algorithms. The comparison is shown in Table 6. Mann Whitney
U Test is used to compare the average best fitness in generation 9, 19 and 99. As
shown in Table 7 the final results in generation 99 are not significantly different.

divide()

divide() nlms()

divide() imageGray

imageY nlms()

nlms()

attenuation()

gaussian()

imageR

attenuation()

imageGray

Fig. 3. A sample GP tree for extracting game state features of Frogger.

60 B. Jia and M. Ebner

(a) Original screen grab

(b) Output image

(c) Maximum and Minimum points

Fig. 4. Extracted game state features for Frogger. (a) the original screen grab. (b)
output image from the sample GP tree. (c) maximum and minimum points overlaid
on the original screen grab.

However, the algorithm using evolved game state visual features performs sig-
nificantly better than the algorithm with hand crafter features for the games
Frogger and Space Invaders. In other words, this algorithm is able to find good
solutions faster than the original algorithm.

Evolving Game State Features from Raw Pixels 61

(a) Space Invaders (b) Frogger (c) Missile Command

Fig. 5. Best fitness for the three games. For each experiment, we perform 10 runs with
different random seeds.

(a) Space Invaders (b) Frogger (c) Missile Command

Fig. 6. Comparison of the average best fitness between the two algorithms.

Table 6. Average scores over 10 runs obtained from the three games: Space invaders,
Frogger, and Missile command. The maximum possible scores are: Space Invaders:90,
Frogger:54 and Missile Command:24.

Game Average score

GP+Handcrafted features Evolved features+Voting

Space invaders 89 ± 2.84 90 ± 0

Frogger 51.3 ± 8.54 54 ± 0

Missile command 24 ± 0 24 ± 0

Table 7. Comparison of the average best fitness using Mann Whitney U Test in gener-
ation 9, 19 and 99. fE is the average best fitness for the algorithm using evolved game
state features. fH is the average best fitness for the algorithm using handcrafted game
state features.

Games Hypothesis p value

Gen = 9 Gen = 19 Gen = 99

Space Invaders Ho : fE = fH , H1 : fE > fH 0.0024 0.36 0.35

Frogger Ho : fE = fH , H1 : fE > fH 0.02 0.22 0.36

Missile Command Ho : fE = fH , H1 : fE > fH 0.42 0.38 0.5

62 B. Jia and M. Ebner

6 Conclusion

In this work, we have used genetic programming to evolve the game state features
from the raw pixels. The input image is provided as individual color channels.
These color channels are processed to generate one output image. From the
output image, two locations (maximum response and minimum response) are
extracted. These locations correspond to a desired goal position and a position
where a possible threat is located. A voting method is used to generate a move-
ment action for the avatar from these two locations. Three different video games
are used to evaluate our algorithm. The results show that this algorithm is able
to find a good strategy faster when compared to an algorithm using hand crafted
features.

References

1. Bellemare, M., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279
(2012)

2. Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.: GVG-AI Competi-
tion. http://www.gvgai.net/index.php

3. Finnsson, H., Bjornsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
pp. 259–264 (2008)

4. Geneserech, M., Love, N.: General game playing: overview of the AAAI competi-
tion. AI Mag. 26, 62–72 (2005)

5. Guo, X., Singh, S., Lee, H., Lewis, R., Wang, X.: Deep learning for real-time atari
game play using offline monte-carlo tree search planning. Adv. Neural Inf. Process.
Syst. 27, 3338–3346 (2014)

6. Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: HyperNEAT-GGP: a
HyperNEAT-based atari general game player. In: Genetic and Evolutionary Com-
putation Conference(GECCO) (2012)

7. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution app-
roach to general atari game playing. IEEE Trans. Comput. Intell. AI Games 6,
355–366 (2013)

8. Jia, B., Ebner, M., Schack, C.: A GP-based video game player. In: Genetic and
Evolutionary Computation Conference(GECCO) (2015)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

10. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
The MIT Press, Cambridge (1994)

11. Luke, S.: The ECJ Owner’s Manual, 22nd edn. (2014)
12. Campbell, M., Hoane, A.J., Hsu, F.H.: Deep blue. Artif. Intell. 134, 57–83 (2002)
13. Mehat, J., Cazenave, T.: Monte-Carlo Tree Search for General Game Playing.

Technical report, LIASD, Dept. Informatique, Université Paris 8 (2008)
14. Mehat, J., Cazenave, T.: Combining UCT and nested monte-carlo search for single-

player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 225–228
(2010)

Evolving Game State Features from Raw Pixels 63

15. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves,
A., Riedmiller, M., Fidieland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D.: Human-level control through deep rein-
forcement learning. Nature 518, 529–533 (2015)

16. Naddaf, Y.: Game-independent AI agents for playing atari 2600 console games.
Master’s thesis, University of Alberta (2010)

17. Perez, D., Samothrakis, S., Lucas, S.: Knowledge-based fast evolutionary MCTS for
general video game playing. In: Proceedings of IEEE Conference on Computational
Intelligence and Games, pp. 68–75 (2014)

18. Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529, 484–489 (2016)

