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Abstract
A human observer is able to determine the color of ob-

jects independent of the light illuminating these objects. This
ability is known as color constancy. In the first stages of
visual information processing, data is analyzed with respect to
wavelength composition, orientation, motion and depth. With
this contribution, we investigate whether depth information
can help in estimating the color of the objects. We assume
that local space average color is computed in V4 through
resistively coupled neurons in order to estimate the color of
the illuminant. We show how this computational model can
be extended to incorporate depth information.

I. INTRODUCTION

Color is a product of the brain. Consider a scene with several
objects. Depending on the light which is illuminating the
scene, the irradiance measured by a sensor will vary. However,
a human observer will perceive approximately constant object
colors irrespective of the illuminant used (McCann, 2000;
McCann et al, 1976; Zeki, 1993). A color constancy algorithm
tries to mimic this ability and compute a color constant
descriptor which is independent of the illuminant (Ebner,
2007a).

Several different algorithms have been proposed to compute
a color constant descriptor (Brainard and Freeman, 1997;
Finlayson and Hordley, 2001; Finlayson et al, 2001; Forsyth,
1990; Funt et al, 1991; Geusebroek et al, 2001). It has also
been investigated whether color constancy can be learned
(Funt et al, 1996; Hurlbert and Poggio, 1988). Some re-
searchers have also tried to combine the output of several
color constancy algorithms (Cardei and Funt, 1999). Lu et al
(2009) have used a classifier to classify images into rough 3D
geometry models. The most suitable color constancy algorithm
(determined off-line on a larger data set) is used for each
geometrical structure to estimate the illuminant. A weighted
average of these estimates is taken as the illuminant estimate
for the entire image.

Color constancy algorithms take an image as input (as
measured by a sensor) and produce an output image. Some
algorithms only compute a color constant descriptor while
other algorithms try to estimate reflectance. A perfect algo-
rithm would compute spectral reflectance of the objects shown
in the image. However, this is not possible because usually we
have a locally varying illuminant and only three measurements

per pixel. Performance of color constancy algorithms has been
analyzed in several different studies (Barnard et al, 2002a,b;
Ebner, 2007a; Funt et al, 1998).

The problem of computing a color constant descriptor can
be greatly simplified by assuming that a uniform illuminant is
illuminating the scene. Given a three band input image, only
three values need to be determined. Buchsbaum (1980) has
put forward the gray world assumption. A requirement for the
method to work is that there are a sufficiently large number of
differently colored objects in the image. According to the gray
world assumption, the world is gray on average. Simply put, it
says that the average of each channel is a constant. This result
can be used to estimate the illuminant. Van der Weijer et al.
(2007) have put forward the gray edge hypothesis according
to which the average edge difference in a scene is achromatic.

For natural scenes, however, the illuminant is usually not
uniform. Several different color constancy algorithms have
been proposed for scenes with varying illumination (Barnard
et al, 1997). In this case, the illuminant needs to be estimated
locally for each image pixel. The original Retinex algorithm
of Land and McCann (1971) estimates the illuminant locally.
Several different variants of this method have been proposed
(Blake, 1985; Frankle and McCann, 1983; Funt et al, 2004;
Horn, 1974; Moore et al, 1991). Land (1986) also provides
a formulation of the Retinex theory where the difference
between the logarithm of the lightness for a small area (or
single pixel) and the logarithm of the lightness for an extended
area is computed. In order to compute the average over an
extended area, the receptors were assumed to be distributed
with a density which varies with 1

r2 as the distance r from the
current pixel increases. Gijsenij et al (2012) suggested patch
based illumination estimation followed by clustering of the
estimates and finally back-projecting the computed clusters to
obtain a local estimate of the illuminant.

Ebner (2009) has shown that the gray world assumption
can also be applied locally. The method is based on the
computation of local space average color which is used as
an estimate of the illuminant. In its original form, the method
assumes a grid of processing elements (one for each image
pixel). Each processing element computes local space average
color by exchanging data with neighboring elements. A variant
of this method may be used inside the human brain to arrive
at a color constant descriptor (Ebner, 2012). According to this
method, resistively coupled neurons in visual area V4 form a
resistive grid, which is used to estimate local space average
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color.
Another method tries to determine the illumination gradient

(Ebner, 2007b). Using this method, each processing element
averages the data in a direction perpendicular to the illumina-
tion gradient. This method works if the illumination gradient is
smooth as shown in Figure 1. The method does not work well
at a door which separates two rooms with different illuminants,
because the iso-illumination lines are not quite correct in the
corner of the door frame.

With this contribution, we investigate whether depth infor-
mation is helpful in estimating the illuminant locally. Depth
information is readily available in the human visual system.
The idea is that given a large depth discontinuity which
separates two objects in the image, it is quite likely that a
different illuminant is illuminating the two objects. Hence,
we should keep these two areas separate in estimating the
illuminant. For machine vision, there are numerous different
methods which can be used to obtain depth information (Horn,
1986; Jain et al, 1995; Szeliski, 2010). For our experiments, we
have used a Microsoft Kinect (Microsoft Corporation, 2011)
to obtain a depth map for the input images.

This article is structured as follows. In the next section,
we briefly summarize the color constancy algorithm based
on local space average color and how this algorithm can
be mapped to the human visual system. In Section II we
describe the human visual system and how this color constancy
algorithm can be mapped to it. In Section III we show how this
algorithm can be extended using depth information. Section IV
describes how we used the Microsoft Kinect to obtain RGB
images with an associated depth map. Section V describes the
experiments which illustrate how the algorithm works. Section
VI concludes this contribution.

II. A COMPUTATIONAL MODEL FOR COLOR VISION
BASED ON LOCAL SPACE AVERAGE COLOR

Let us first see how a color constant descriptor may be
computed by the brain. Ebner (2004) introduced a parallel
algorithm for color constancy based on local space average
color. This algorithm can also be mapped to what is known
about the human visual system (Ebner, 2007c). Local space
average color is assumed to be computed within visual area V4
of the brain using resistively coupled neurons. These neurons
form a resistive grid. Once local space average color has been
computed, a color constant descriptor can be computed by
subtracting local space average color from the color measured
by the retinal receptors. This algorithm and its mapping to the
visual system is illustrated in Figure 2.

Visual information processing of course starts with the reti-
nal receptors (Tovée, 1996). A review of cortical mechanisms
of color vision is given by Gegenfurtner (2003). The human
retina contains three types of receptors for color vision which
mainly respond to light in the red, green, and blue parts of
the spectrum (Dartnall et al, 1983; Dowling, 1987). So called
color opponent cells perform a rotation of the coordinate
system. After processing, the major axes are no longer red,
green and blue. They are bright-dark, yellow-blue and red-
green. The visual information is analyzed within the primary

visual cortex, area V1. Inside V1, we find cells whose optimal
stimulus is light of different wavelengths or oriented lines
(Livingstone and Hubel, 1984). Local space average color is
presumably computed in visual area V4 through resistively
coupled neurons which form a resistive grid.

For the explanation of how a color constant descriptor is
computed, we omit the rotation of the coordinate system. Let
us assume that these receptors are very narrow-band. This as-
sumption makes the theoretical derivation of the computation
of a color constant descriptor easier. Of course in reality, the
sensitivity of the retinal sensors is not narrow band and human
color constancy is known not to be perfect (McCann et al,
1976).

Let c(x, y) = [cr(x, y), cb(x, y), cg(x, y)] be the light
falling onto the retina for three wavelengths in the red, green
and blue part of the spectrum at position (x, y) of the retina.
The output of the retinal sensor c′(x, y) is assumed to depend
logarithmically on the incoming light (Herault, 1996; Land and
McCann, 1971). Therefore, we have c′i(x, y) = logci(x, y)
with i ∈ {r, g, b}. The light is assumed to be proportional
to the reflectance Ri(x, y) and the irradiance Li(x, y) at
the corresponding object point. Hence, we have ci(x, y) =
fRi(x, y)Li(x, y) for some f . Assuming that local space
average color a is an estimate of the illuminant (see Ebner
(2009)), i.e. ai(x, y) = logLi(x, y) + k, where k is a constant,
we obtain a color constant descriptor by subtracting local space
average color from the output of the retinal sensor.

c′i(x, y)− ai(x, y) = log ci(x, y)− ai(x, y) (1)
= log ci(x, y)− logLi(x, y)− k (2)

= log
fRi(x, y)Li(x, y)

Li(x, y)
− k (3)

= logRi(x, y) + k′ (4)

with k′ = log f − k.
Local space average color is computed through resistively

coupled neurons. Let ai(x, y) be the estimated value of local
space average color for channel i of a neuron whose receptive
field corresponds to position (x, y) of the retina, let N(x, y) be
the neurons to which the current neuron is resistively coupled
and let p be a small value larger than zero. The following two
update equations are executed iteratively to model the resistive
grid.

a′i(x, y) =
1

|N(x, y)|
∑

(x′,y′)∈N(x,y)

ai(x
′, y′) (5)

ai(x, y) =ci(x, y)p+ a′i(x, y)(1− p) (6)

The parameter p determines the area of support over which
local space average color is computed and depends on the
strength of the resistive coupling between neurons as detailed
in (Ebner, 2009). Over time, ai(x, y) converges to local
space average color. The time needed for convergence can be
reduced if this process is simulated on a sequential computer
by using successive over relaxation.

If we apply the algorithm to pre-stored images which use
the sRGB color space, then we first have to apply a gamma
correction to transform the RGB values to a linear color space.
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Fig. 1: (a) Image with smooth illumination gradient. (b) Illuminant estimate. (c) Estimated iso-illumination lines. (d) Output
image. Algorithm described by Ebner (2007a).
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Fig. 2: Processing of visual information starts with the retinal receptors. The signal from the retinal receptors is sent to area V1.
Color opponent cells perform a rotation of the coordinate system. Resistively coupled neurons in V4 are assumed to compute
local space average color. A color constant descriptor is obtained by subtracting local space average color from the signal
available from V1.

The parameter p depends on the size of the input image. We
can make it independent of the dimensions of the input image
by specifying the percentage sigma of the image over which
local space average color should be computed by setting

p =
1

σ2s2 + 1
(7)

where s = max{w, h} and w and h are the width and the
height of the input image.

III. IMPROVING COLOR CONSTANCY PERFORMANCE
USING DEPTH INFORMATION

Depth information is readily available inside the human
visual system. Processing of depth information can start with
so called ocular dominance columns located in V1 (Living-
stone and Hubel, 1984). With this contribution, we explore
how depth information may aid in the computation of a color
constant descriptor. Computing a color constant descriptor is
especially difficult if there are several different illuminants
in the scene. For natural scenes, we usually have multiple
illuminants.

Natural light may be falling through a window while artifi-
cial light may already have been turned on inside the building.
Consider a typical office scene with a desk lamp on top of a
desk. The objects on top of the desk are directly illuminated by
the desk lamp. However, the objects underneath the desk are
illuminated by indirect light which may have been reflected
multiple times by surrounding objects. Hence, two different
illuminants illuminate the floor and the objects on top of the
desk.

When we look at this desk, we see that a depth discontinuity
separates the top of the desk from the floor. However, when
we take an image of this scene with a standard digital camera
we have no depth information. The algorithm described above
would average across this depth discontinuity. However, it
would make more sense to keep the area on top of the table
separate from the area below the table. Given a stereo camera
which also provides a dense depth map in addition to a color
RGB image, we can make use of this depth information.

Another example is shown in Figure 3(a). The room, where
the camera is located, is illuminated by sunlight falling through
a window. The next room is illuminated by artificial light. The
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door frame separates the two illuminants. By modifying the
above algorithm, it is possible to keep the two areas separate.
All we need to do is to detect large depth discontinuities and
refrain from averaging across these depth discontinuities. Of
course it may occur that the same illuminant is present on both
sides of a depth discontinuity. However, treating the two areas
as separate areas is assumed to do no harm.

Figure 3(b) shows how our modified algorithm estimates
the illuminant. The edge separating the two areas was marked
manually. We don’t average across this edge. We have marked
only the left side of the door and the top of the door frame. On
the right hand side of the door we have a smooth illumination
gradient. Hence, this border is not marked.

To take depth discontinuities into account, we assume that
in addition to the linear RGB image ci(x, y), we also have a
dense depth map d(x, y) which specifies the distance of each
object point to the camera. The depth map as well as the
individual channels of the RGB image are assumed to have
the range [0, 1]. All we now have to do is to use a modified
neighborhood Ne(x, y) instead of the neighborhood N(x, y)
which is used in the algorithm above. Let ε be the depth
threshold. We do not want to average across pixels having
a larger depth difference than ε. Hence, the neighborhood
Ne(x, y) is defined as follows.

Ne(x, y) = {(x′, y′) ∈ N(x, y) with |d(x, y)−d(x′, y′)| ≤ ε}
(8)

In other words, neighboring pixel whose depth differs by more
than ε are excluded from the averaging. Only neighboring
color values with a depth difference smaller than ε are included
in the average.

An estimate of reflectance obtained with this method is
shown in Figure 3(c). This estimate was computed by dividing
the measured color ci(x, y) shown in Figure 3(a) by twice the
local space average color shown in Figure 3(b). It is clear
that this method is able to obtain a very good estimate of
the corresponding reflectance as both rooms now seem to be
illuminated by the same, standard, illuminant.

Figure 4 shows how our method compares to three other
methods: the standard gray world assumption, computation
of local space average color without depth information, and
anisotropic averaging along iso-illumination lines for two
sample images. Both images were taken with a Canon EOS
5D Mark III. Naturally, the gray world assumption performs
poorly in estimating the illuminant correctly. The proposed
method performs similarly to the computation of local space
average color in areas where no depth continuities are present.
The difference is largest in the vicinity of the depth disconti-
nuities.

Thus we see that the depth map provides important informa-
tion on locations in the image where local space average color
should be computed uniformly in all directions. If a depth
discontinuity is present, we better average only in a direction
perpendicular to the depth discontinuity. Even though lines
along which the illuminant is approximately constant can be
estimated from the input image Ebner (2007b), a depth map
makes it much easier to find directions along which the average
should be taken.

IV. ALIGNING THE DEPTH MAP WITH THE COLOR IMAGE

The algorithm, as described above, is able to work with
any dense depth map. For our experiments, we have used a
Kinect sensor. The advantage of this sensor is its low cost.
Unfortunately, the depth map provided by the Kinect is not
perfectly aligned with the color image. Hence it has to be
aligned by determining the extrinsic and intrinsic parameters
of the two Kinect cameras.

The Kinect has originally been developed for the Xbox
360 video game console (Microsoft Corporation, 2011). Kofler
(2011) is giving a detailed description of the Kinect. However,
due to its low cost and excellent depth map, it has become
popular in the scientific community. The Kinect can be used
for motion tracking. Due to its built in microphone array, it
can also be used for sound position tracking. The setup of the
Kinect sensor is shown in Figure 5. The horizontal bar, which
rests on a motorized tilt unit, contains: a RGB camera, a depth
sensor, and a multi-array microphone. Figure 5(b) shows a
sample image which has been taken with the Kinect’s color
camera. The depth map for this image is shown in Figure 5(c).

The Kinect sensor has been used in many different research
projects. Newcombe et al (2011), performed dense surface
mapping and tracking. Gabel et al (2012) have used it for full
body gait analysis. An analysis of this sensor for computer
vision applications is given by (Andersen et al, 2012).

The data of the Kinect sensor can be accessed through the
libfreenect package1. This package provides also sample code
which is available online. The color images have 8 bit per
channel while the depth images have 11 bit per pixel. The
depth map has to be aligned with the color image because the
intrinsics and extrinsics of the two sensors differ. The color
and the depth sensor are a small distance apart from each other
and they do not necessarily point into the same direction. Also,
the depth sensor only covers a smaller area compared to the
color sensor.

We have aligned the depth map with the color image using
stereo calibration (Kofler, 2011). The OpenKinect package
only provides depth data with a nonlinear correspondence to
distance (Andersen et al, 2012). We have used a formula given
by Burrus2 to transform the output of the Kinect depth map
draw to a distance d in meters.

d =
1.0

−0.0030711016 · draw + 3.3309495161
(9)

Another problem that we face using the Kinect sensor is that
even though depth information is estimated for most pixels,
for some pixels a depth value could not be estimated due to
occlusions. The Kinect sensor projects a laser grid which is
viewed by an infrared camera. Since the projector is located to
the left of the camera, certain areas may not be visible by the
camera. This always happens to areas on the left hand side of
a depth discontinuity. Hence, we iteratively fill in depth data
from the left hand side. In the description of this filling in
process, we will call pixels for which the Kinect sensor was
able to estimate a depth value “a valid depth value” while all

1http://openkinect.org
2http://burrus.name/index.php/Research/KinectCalibration
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(a) (b) (c)

Fig. 3: (a) Image with two illuminants and a depth discontinuity separating the two illuminants. The depth discontinuity has
been manually highlighted in red. (b) Illuminant estimate. (c) Output image.

other pixels are called “invalid depth values”. Before filling in,
we remove isolated valid depth values surrounded by invalid
depth values. These values are assumed to be outliers. Next,
we iterate nf times over the image. For each row of the depth
map, we iterate over all pixels from left to right. If a pixel
contains an invalid depth value, then we estimate the depth by
interpolating depth values from the top, upper left, left, lower
left and the bottom neighbors of this pixel. A weight of 1 is
used for the values from the top, left, and from the bottom.
A weight of 1/

√
2 is used for the diagonal pixels. After this

filling in process, we have a dense depth map which we need
for our algorithm.

V. EXPERIMENTS AND RESULTS

For our experiments, we have used an absolute depth
threshold ε = 0.1 for the entire image. We have used σ = 0.25
i.e. the area over which local space average color is computed
is roughly 50% of the image. We have obtained images of
size 640 × 480 from the Kinect. The color and the depth
image have to be aligned as described above. After alignment,
depth is undefined for some pixels at the border of the image.
Therefore, we crop the images to size 572 × 433 to remove
these border areas.

One of the main difficulties in testing the algorithm using
the Kinect is to find suitable scenes to shoot. The Kinect
offers a relatively small field of view, which is additionally
constrained by the range of the depth sensor. It only provides
usable depth information in the range from 0.8 to 3.5 meters
(Andersen et al, 2012). At a distance of 2m, the depth
resolution is only 1cm. Hence, it is not possible to shoot
scenes which extend over a significant area. Also, the use of
the infrared projection also limits the use in direct sunlight.
The color image of the Kinect is very noisy if little light is
available. We usually take the average of multiple images in
order to reduce noise.

Figure 6 shows the results for 4 sample scenes. Images 1,
2 and 4 show photographs where a door separates two rooms
which have been illuminated by different illuminants. Image 3
shows a single room where the background is illuminated by
a blueish light whereas the front is illuminated by a yellowish
light source. For all four images, depth discontinuities are

very helpful in separating the areas illuminated by different
illuminants from each other.

Comparison results for three other algorithms: the gray
world assumption (GW), computation of local space average
color (LSA), and the computation of anisotropic local space
average color along iso-illumination lines (Iso-LSA) are shown
in Figure 7, Figure 8, and Figure 9 respectively. Among these
three algorithms, the computation of anisotropic local space
average color along iso-illumination lines seems to perform
best. However, the iso-illumination lines are always smooth.
Therefore, the estimated illuminant is not quite accurate in the
corner of the door frames. The proposed method which uses
the depth discontinuities better separates the two illuminants.
This is especially clear when comparing the proposed method
with the computation of local space average color.

VI. CONCLUSION

For natural scenes, depth discontinuities are an important
cue to separate areas with different illumination. We have
extended the parallel algorithm based on local space average
color to take depth discontinuities into account. The algorithm
is based on a grid of processing elements modeling a resistive
grid. The resistive grid is modified based on the distance of
the corresponding object point to the observer. Only processing
elements with a similar distance are resistively coupled. This
allows us to estimate the illuminant separately for areas
separated by a depth discontinuity. The proposed method
can be used for robot vision systems for improved color
perception. Whether the human visual system actually uses
depth information in computing a color constant descriptor
remains to be shown.
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Fig. 5: (a) Kinect sensor. (b) RGB image (c) Depth map.
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