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Abstract—If one had a full understanding of consciousness
then it should be possible to create artificial consciousness. It is
frequently argued that qualia are subjective and are impossible
to re-create artificially. However, qualia are grounded in reality
and therefore are not arbitrary. We show this for the quale
color. The perceived color corresponds to a three-dimensional
value that describes the spectral reflectance function of an object.
Perceived color is comparable across individuals. Given this result
for color, it is presumed that this also holds for other qualia like
pain, hunger or love. According to the theory presented here,
an assembly of neurons processes perceptions and is in charge
of communicating this information to other members of the
peer group. This assembly corresponds to conscious information
processing. The job of this assembly is (a) to analyze what the
body experiences (internal and external), (b) to keep a record of
it, and (c) to explain these experiences to members of the peer
group.

I. INTRODUCTION

The question of how consciousness is created is probably
one of the most pressing research questions of all time. Every
human being has a first hand knowledge of what consciousness
is. It could (very briefly) be summarized as awareness of
internal and external existence. We are still unable to fully
understand what it takes to create consciousness. However, in
recent years considerable progress has been achieved.

Color perception is of paramount importance to understand-
ing of consciousness. Many philosophical arguments have
been exchanged on this subject. In particular, it is of great
interest to know whether my color perception of “red” is the
same as your color perception of “red”. We will argue here that
this is indeed the case. Results from human visual processing
and the area of color constancy support this view. The human
brain estimates the reflectance function of an object and we
argue that the quale color is due to the mathematical structure
of the space of reflectance as represented inside our brains.

Another important question is whether consciousness has
any causal power. With reference to Libet’s experiments (Libet
et al., 1983)) one could argue that consciousness has no causal
power because the experience of conscious will occurs after
a readiness potential has been measured. However, conscious-
ness does not lack causal power. The main evolutionary use
of consciousness is communication between peers. This com-
munication can occur verbally or non-verbally (by signalling
with the body or by writing on a piece of paper). Somewhere
in the brain there must be an assembly of neurons in charge of
storing action plans, i.e. a kind of “todo list” for the body. The
neural assembly which is in charge of conscious perception
presumably enters plans like uttering something or writing
down a sentence into this “todo list”.

If consciousness is assumed to insert plans into a planning
section of the brain, a feedback loop is created because actions
can also be perceived. This feedback loop is a second feedback
loop akin to the feedback loop for normal unconscious behav-
ior. Due to the additional processing, it is a slower loop. So
there are two feedback loops. One loop is used for immediate
behavior such as walking or catching a ball. The second
feedback loop is much slower than the first. It is a result of an
individual communicating with peers and also with him or her-
self. For both loops, behavior is (computationally) determined
by the environment and the internal state of the individual.
For many activities that require real time reactive behavior
consciousness probably lacks immediate causal power because



the conscious feedback loop is executed much slower than the
unconscious feed back loop. Lacking immediate causal power
it is not meant to imply that consciousness has no causal
power. The conscious feedback loop with its evolutionary
purpose (communicating with peers) did not evolve to carry
out immediate control of the organism. Immediate control of
the organism is carried out by the unconscious control loop.

According to the theory presented here, an assembly of
neurons in the brain is in charge of consciousness. The job
of this assembly is (a) to measure/analyze what the body
experiences (internal and external), (b) to keep a record of it,
and (c) to explain these experiences to members of the peer
group. We argue that all problems that one may have with what
consciousness is or seems to be, will go away if one views it
like this. This contribution will review evidence supporting this
view from consciousness research. We explain how the brain
estimates reflectance and then assigns labels, i.e. color names
to these estimates. This in depth description of the quale color
leads to implications for machine consciousness. We will see
that there is great support for this view on consciousness.

II. EVOLUTIONARY ADVANTAGE

The primary objective of an organism is survival. In other
words, the body (controlled by the brain) behaves in a way
that is reasonable for the environment. Our body and mind is
a product of evolution (Darwin, 1996; Maynard Smith, 1993;
Dennett, 1995; Cairns-Smith, 1996; Pinker, 1997)). In order
for an organism to reproduce, it of course needs to survive long
enough to be able to reproduce its DNA. It is not necessary that
every individual reproduces. However, if the average fitness
of a species is below 1 for a sufficiently long time, i.e. less
than one offspring is created per individual on average, it will
become extinct. Consciousness, like many other traits confers
an evolutionary advantage. Graziano et al. (2019)) also asserts
that consciousness is socially useful. If consciousness had no
evolutionary advantage, then it would never have arisen in the
first place.

Interestingly, sometimes we are consciously addressing the
task at hand while at other times, we seem to do things auto-
matically, as if on auto-pilot (Hameroff, 2010)). While on auto-
pilot, consciousness still exists but is addressing things that are
not of immediate concern to the behavior of the individual (like
solving complex mathematical problems). The mind can attend
either to internal issues or to external issues. The internally
directed attention is associated with the so called default mode
network whereas externally directed attention is associated
with the dorsal attention network (Benedek et al., 2016)).
According to the view presented here, the auto-pilot mode is
actually the normal mode of operation. In other words, con-
sciousness is not required once the body has learned to carry
out a certain task. Consciousness only takes notes of important
occurrences. That’s why it appears as if we consciously carry
out a certain task while in reality we are only taking notes
when something interesting (learning a new task) happens.
So, control and perception, i.e. consciousness/communication,

are two separate issues. The separate processing of perception
vs action is well established (Goodale and Milner, 1992)).

On top of this auto-pilot mode of operation we have,
as an add-on, communication. We can communicate using
various methods: language, sign language, drawings, written
texts (Stangor et al., 2019; Cohn, 2012)). We could write a
message on a piece of paper and hand it to somebody. We can
also communicate non-verbally via body language. The com-
munication center is equivalent to the homunculus (Dennett,
1991)). It “perceives” (or rather processes data from) external
or internal events. It is observing what the organism is doing. It
will be specified below what this “observing” exactly entails.
According to this view, an organism without consciousness
(and hence without any means of communicating), is perfectly
fit to survive and reproduce. However, consciousness or rather
the communication center provides an evolutionary advantage.

With consciousness, plans and experiences can be commu-
nicated to peers. Suppose one individual of a group of people
is hungry. This individual separates from the group to get some
fruit from a tree. Before he leaves the group, this individual
can tell other persons who also belong to the group that he is
hungry (conscious perception of empty stomach) and inform
others that he will go to get some food. This has the benefit
that the group will know what he is about to do. The peers
will wait for his return. The plan to go and get something
to eat has been formed by the unconscious brain (probably
because his stomach is empty and there is no food located
nearby). The person might say “I am hungry. I will go and eat
a banana”. The information “hungry” has been gathered via
processing the internal state of the body. “I will go and eat
a banana” is a statement about what the body is about to do
next, i.e. the plan that is about to be carried out by the body.
The person might go to some place where the others cannot
see him. He might climb a banana tree to get a banana. But
while doing this, he might fall off the tree and hurt himself.
If he does not return to the group, his peers know where to
look for him. They know what he was about to do or rather
in this case where he had gone. This information will help in
locating him faster in case of an accident. Otherwise his peers
would have to look everywhere in order to find him. This is
clearly important and provides an evolutionary advantage.

Let us consider a second example. If one person goes into
the woods to get something, he might spot a dangerous animal
like a tiger. He could then run back to his peers and say
something like “I have seen a tiger approaching the camp.”
Again, this provides an evolutionary advantage because his
peers are warned and are able to take precautionary actions
like fleeing or preparing for a fight. He will also be able to
tell whether he has found food and whether there is more
where he found it so that others may get it too.

III. THE EVIDENCE FOR ADD-ON OF CONSCIOUSNESS

The ability to communicate provides an evolutionary ad-
vantage. What is the evidence that consciousness (or rather
our communication center) is an add-on? Experiments con-
ducted by Libet et al. (1983)) have shown that the experience
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Fig. 1. Theory of mind mechanism is developed in children by the age of about 4 years (Leslie, 1994)).

of conscious will occurs after a readiness potential can be
measured. Participants were asked to perform a self-initiated
move of a finger. Libet et al. were able to measure the onset
of a readiness potential some 500ms before the finger actually
moved. On average, participants were aware of wanting to
move the finger some 200ms before the finger moved. They
were aware of moving the finger approx. 90ms before the
finger moved. Apparently, the sequence of events is (1) we
are able to measure a readiness potential in the brain, (2) then
we are aware of wanting, (3) then we are aware of moving
and (4) then the finger moves. This may seem puzzling at
first sight. How can we measure that the finger is about to be
moved before the person has consciously planned to move the
finger? The answer to this is quite simple. The brain creates
plans and carries them out and we only become consciously
aware of it after the fact. This is not surprising at all assum-
ing that conscious processing requires a sufficiently complex
amount of computation. Hence, by the time the computation
is complete, a readiness potential can be measured.

According to Wegner (2002)), experience of will is merely
a feeling that occurs to a person and conscious will is an
experience, not a cause. Wegner lists several reasons for this
view. Among them are the experiments conducted by Libet
et al. as describe above. Apparently, a small (ca. 30s) time
window prior to an action exists. If an action is to be felt as
willed, it has to appear within this time window. Graziano et al.
(2019)); Graziano (2020)) also argues in the same direction.
The brain/person only believes to have subjective conscious
experience. This experience arises due to the self descriptive
models built by the brain.

The theory-of-mind mechanism (Leslie, 1994)) also sup-
ports this view. Humans are able to perceive mind and causal
agency in others. When we observe other people or animals

we are able to take their point of view (Fig. 1). If we look at an
inanimate object such as a piece of rock on the street, we know
that it does not have a mind of its own. Let us consider two
persons, Alice and Bob. Both are located in front of a table.
Alice may put an object into a basket container. Bob witnesses
this action. Then Alice leaves the room and Bob moves the
object from the basket to the box without Alice noticing this.
If one is questioned where Alice will look for the object, it is
clear that Alice will look for the object inside the container
she originally put the object, i.e. for this example she would
look into the basket. We are able to recall the state of mind
Alice is in once she has returned and can use this information
to tell where she will search for the object. Children are able
to attribute the false belief to Alice and are able to predict her
behavior by about 4 years. This theory-of-mind mechanism
may also be at work in determining causal agency in our
own body. Graziano et al. (2019)) also suggest that the human
claim to have a conscious mind depends on the theory-of-mind
network.

Split brain experiments show that one half of the brain
seems to interpret what the other half is doing (Gazzaniga
et al., 1977; LeDoux et al., 1977; Gazzaniga, 1989, 1995,
2014; Wolman, 1995)). Gazzaniga and LeDoux (1978)) con-
ducted experiments where they showed an image composed
of two parts (left half one scene | right half another scene)
to a person whose corpus callosum had been cut. The corpus
callosum provides long range connections between the left and
right hemispheres of the brain. For instance, a snow scene (a
house and a car covered by a lot of snow) could be seen on the
left hand side and a chicken claw could be seen on the right
hand side Fig. 2(b). What is seen inside the left visual field
is fed into the right hemisphere of the brain and what is seen
inside the right visual field is fed into the left hemisphere of



the brain Fig. 2(a). The retinal receptors measure the incident
light. The axons of the retinal receptors send their signals to
the lateral geniculate nucleus (Zeki, 1993; Tovée, 1996)). On
the way to the lateral geniculate nucleus, the axons from the
left eye covering the right visual field remain within the left
hemisphere while the axons from the right eye covering the
right visual field cross over to the left hemisphere. In other
words, what happens in the right field of view is fed into the
left hemisphere of the brain. Similarly, information from the
left visual field is fed into the right hemisphere of the brain.

The snow scene is processed by the right hemisphere while
the chicken claw is processed by the left hemisphere. The
person was given another set of images and was asked which
images fit the visual scene. The left hand is controlled by the
right hemisphere, while the right hand is controlled by the left
hemisphere. The subject picked the shovel with the left hand
and the chicken with his right hand. The shovel is an excellent
match for the snow scene. It can be used to get rid of the snow
and provide easy access to both the house and the car. The
chicken is also a good match for the chicken claw. Then the
subject was asked why he had made this choice. The person
said that the chicken is an obvious fit for the chicken claw.
With respect to the shovel the subject said that it is useful
to clean out the chicken shed. What happened here? Well,
the two hemispheres of the brain were not able to exchange
information because of the cut corpus callosum. The language
center is located inside the left hemisphere. It had access to the
chicken claw and was therefore able to select the chicken with
the right hand. However, the language center did not have any
information about the snow scene. Apparently, the language
center simply made up a plausible story on why the shovel
had been chosen.

This points to an after the fact mechanism, i.e. the body
behaves in a certain way or performs a certain action and the
language area creates an interpretation of why and what was
performed. Even well learned actions seem to be stored and ac-
cessed in association with their verbal symbolic codes (Franz
et al., 2000)). This also points to a mapping between the two,
i.e. language and action. Even though callosotomy leads to a
breakdown of functional integration ranging from perception
to action, this breakdown is not absolute. Response selection
and action control seem to remain unified (de Haan et al.,
2020)). Essentially conscious perceptual processing is affected
most while some information such as good continuation of
lines, apparent motion required for unconscious immediate
processing is not affected. This may be the result of subcortical
(unconscious) processing.

Experiments where people take ownership of rubber hands
also support this view. Ehrsson et al. (2004)) placed a life-
sized rubber hand in front of the subject where the hand would
normally rest. The subject’s real hand is hidden beneath a
table or similar obstruction where it cannot be seen. Tactile
stimuli are applied (using two paintbrushes) to both, the rubber
hand as well as the subject’s real hand Fig. 3(a). When the
brush strokes are applied in synchrony, most subjects have
the experience that the rubber hand is their own hand. They

take ownership of the rubber hand and “feel” that the rubber
hand senses the touch. According to Ehrsson et al. multi-
sensory integration in a body-centered reference frame is
the underlying mechanism of self-attribution. Ehrsson et al.
(2007)) provided neurophysiological evidence that the rubber
hand is incorporated into a central representation of the body.
They used fMRI to measure anxiety levels of a person when
the rubber hand was threatened with a needle (Fig. 3(b)).
Subjects experienced an urge to withdraw the hand when it
was threatened. Again, this points to a consciousness as a kind
of interpreter of what is happening.

IV. QUALIA

But what about Qualia? Qualia is a term that is used to refer
to instances of subjective, conscious experience (Chalmers,
1996)). Chalmers asks “Is the character of a phenomenal
information space settled by the structure of the space?” With
this contribution, I am arguing that this is indeed the case for
color. Given that it is the case for the quale “color”, it is very
likely that this also holds for other types of qualia.

The seemingly hard problem of consciousness is the prob-
lem of explaining why subjective conscious experience ex-
ist. However, Qualia is nothing mysterious. Our subjective
conscious experience is comparable across individuals be-
cause we are a product of evolution (Darwin, 1996; Dennett,
1995)). Even though each brain is unique, its “software” or
rather “wetware” is similar. Subjective, conscious experience
is grounded in reality and we use it to communicate with each
other. In other words, there is no hard problem of conscious-
ness (Tomasik, 2015)). The view that conscious states of the
brain have an adaptive relationship to our surrounding is also
shared by Tononi (2004)).

Let us address color perception first. Researchers in the area
of consciousness frequently assume that it is impossible to
know how a certain person experiences colors. Is the “redness”
that I experience when I look at a ripe strawberry the same
“redness” that you experience when you look at the same
piece of fruit? Colors, like other perceptions, appear to be,
at first sight, subjective experiences. Philosophers might argue
that my experience that I have when I look at a strawberry
and perceive “red” corresponds to the experience that you
have when you look at leaves of a tree and experience
“green” and vice versa. I.e., when I look at green leaves, I
actually have the same perception that you have when you
look at a red strawberry. I will argue below, that this type of
red/green exchange is physically impossible. Color perception
is comparable across individuals. The perception I have when
I see a “red” object is the same perception that you have when
you see a “red” object. This is a necessity because you and I
are embedded into the same environment and we perceive the
same object. We talk about the same object. So why is color
perception comparable across individuals? It is comparable
because humans estimate reflectance when looking at objects
(Ebner, 2007)). Reflectance is a physical quality of the world.
What we experience (the quale color) is the mathematical
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Fig. 3. (a) Brush strokes are applied to a rubber hand by an experimenter. The rubber hand is also threatened with a needle. (b) Experimental set up. The
rubber hand is placed inside the field of view while the real hand is hidden (Ehrsson et al., 2007)).

structure of the space of reflectance as represented inside our
brains.

We all (with some exceptions) have three kinds of receptors
for color perception in the retina (Dowling, 1987; Zeki, 1993;
Tovée, 1996)). The cones respond to light in the red, green
and blue parts of the spectrum. The cones measure light that
is reflected from an object. Unfortunately, this light varies with
the illuminant. We can model the measurement made by the
cones (Ebner, 2007, 2012)). Let Si(x, y, λ) be the absorbance
curves of cone type i with i ∈ {red, green, blue} at position
(x, y) of the retina. The sensitivities are shown in Fig. 7(a). Let
L(λ) be the energy emitted by the light source for wavelength
λ. Some of the light is absorbed by the surface while the
remaining light is reflected by the object. Let R(x, y, λ) be
the amount of light for wavelength λ that is reflected by
the surface which is imaged at position (x, y) of the retina.
This reflectance function can be measured for any given
object. Fig. 4 shows idealized reflectance functions of three
different objects. Objects with a surface that is described by
reflectance function Rr(λ) appear red to an observer. Objects

with reflectance function Rg(λ) appear green and objects with
reflectance function Rb(λ) appear blue to an observer. Fig. 5
shows reflectance functions of three color patches from an IT8
calibration target. Actual reflectance functions are of course
not as steep as the ones shown in Fig. 4.

Assuming a Lambertian surface which reflects light equally
in all directions, then the measurement ci(x, y) of cone i at
position (x, y) of the retina is given by (Ebner, 2007, 2012))

ci(x, y) = G(x, y)

∫
Si(x, y, λ)R(x, y, λ)L(λ)dλ. (1)

We will also refer to this measurement of the cones as

cCone = [cr(x, y), cg(x, y), cb(x, y)]. (2)

Let us simplify this equation by assuming that each sensor i
responds only to a single wavelength λi. The cones of course
do not have a narrow band response. But suppose we had such
a type of sensor. Then we obtain

ci(x, y) = G(x, y)Ri(x, y)Li (3)
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Fig. 5. (a) IT8 calibration target made by Wolf Faust (www.coloraid.de) (b) Normalized reflectance function of patches L17, L18, L19.

where Ri(x, y) is the reflectance of the object whose light is
reflected onto position (x, y) of the retina for wavelength λi
and Li is the energy emitted by the light source for wavelength
λi. For a non-uniform illuminant, we obtain

ci(x, y) = G(x, y)Ri(x, y)Li(x, y). (4)

Hence, the retinal sensors are only able to measure
the product between the illuminant L(x, y) =
{Lr(x, y), Lg(x, y), Lb(x, y)} and the reflectance
R(x, y) = {Rr(x, y), Rg(x, y), Rb(x, y)}. Unfortunately, the
illuminant varies throughout the day. The color distribution
of daylight depends on the time of day.

Fig. 6 illustrates this process. An image consisting of several
differently colored patches is illuminated by four types of
illuminants. The original image is shown on the left hand side.
Also shown are the spectral color distributions of four illumi-
nants. The cone responses are also shown. The cone responses
vary with the illuminant. These measurements cannot be used
for object recognition. Only edge information would be useful.
However, color is an important cue in nature. Color can be
used to identify ripe fruit on a tree (cherries, apples) or in a
field (strawberries). In order make use of color information,
one has to estimate the spectral reflectance distribution of the
object. What we refer to as “color” is essentially an estimate
of reflectance. Color is a product of the brain. Cells in visual
area V4 of the visual cortex have been found to correlate
with reflectance of viewed objects (Zeki, 1993, 1999; Zeki
and Bartels, 1999)). On the right hand side of Fig. 6, we see

the color estimated by neural processing that simulates the
response of cells in V4.

Reflectance could be computed easily if the spectral power
distribution of the irradiance at each object position were
known. If Li(x, y) is known, then we can divide the measure-
ment ci(x, y) = G(x, y)Ri(x, y)Li(x, y) by Li(x, y) to obtain
the product of G(x, y)Ri(x, y). Given a frontally oriented
surface with Ri(x, y) = 1 with i ∈ {r, g, b}, i.e. a uniformly
maximally reflecting surface (in other words a white surface),
then ci(x, y) = Li(x, y) is an estimate of the illuminant at
that point. This method is known as the white patch algorithm.
Another option is to average over a sufficiently large number
of measurements for different objects (Buchsbaum, 1980)).
Assuming that the object reflectances Ri(x, y) are evenly
distributed in the range [0, 1], then the average reflectance
E[R] will be 1

2 . If G(x, y) = cosα(x, y) where α is the
orientation of the surface to the viewer, then the average
E[G] of a number of such surfaces with α ∈ [0, 1] will
be approximately 0.84. Assuming that surface orientation is
independent from surface reflectance, we obtain for a uniform
illuminant Li∑

x,y

ci(x, y) =
∑
x,y

G(x, y)Ri(x, y)Li (5)

=E[G]E[R]Li =
0.84

2
Li (6)

Thus, the illuminant can be estimated by averaging over the
measurements from the retinal receptors: Li = f

∑
x,y ci(x, y)
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for some constant f . A simple rescaling of the measurement ci
after division by

∑
x,y ci(x, y) suffices to remove the constant

factor. This is known as the gray world algorithm (Buchsbaum,
1980)). If we average locally, we estimate the illuminant
locally for each pixel, i.e.

Li(x, y) = f

∫
g(x, y)ci(x, y)dxdy (7)

for some kernel function g(x, y) (Ebner, 2007)). A Gaussian
function works fine.

Instead of using the average over all measurements or just
the maximum per band, one can also estimate the illuminant
from edge information (van de Weijer and Gevers, 2005;
van de Weijer et al., 2007; Cheng et al., 2014)). The expected
absolute value of color differences across color boundaries

E[|Ri(patch1)−Ri(patch2)|] (8)

is also a constant. Let Ri(patch1) be a uniform random
variable describing the reflectance of patch 1 and Ri(patch2)
be a uniform random variable describing the reflectance of the
second patch then we obtain E[|Ri(patch1)−Ri(patch2)|] =
1
3 for Ri ∈ [0, 1]. Thus, color differences may as well be used
to estimate the illuminant because color differences, shading
and illumination are all independent.

All of these methods can be summarized by the following
computation (van de Weijer et al., 2007)):

Li(x, y) = f

(∫ ∣∣∣∣ δnδxn cσi (x)

∣∣∣∣p dx)1/p

(9)

where cσi is an image smoothed with a Gaussian with standard
deviation σ and x = (x, y). For p = 1 and n = 0 this method
is equivalent to the gray world algorithm. For p = ∞ and
n = 0 this method is equivalent to the white patch algorithm.
We obtain the gray edge algorithm for n = 1. Instead of



smoothing image pixels (or derivatives of image pixels) over
an extended area, one may also select pixels or derivatives
based on certain criteria. This is what artificial neural net or
similar learning based approaches are able to do (Cheng et al.,
2015; Bianco et al., 2015; Barron, 2015; Bianco et al., 2015,
2017)).

If the illuminant L̃i(x, y) ≈ Li(x, y) is approximated
correctly, then we can compute a color corrected output image
oi(x, y):

oi(x, y) =ci(x, y)/L̃i(x, y) (10)

=G(x, y)Ri(x, y)Li(x, y)/L̃i(x, y) (11)
≈G(x, y)Ri(x, y) (12)

Algorithms that compute an output image that is independent
of the illuminant, i.e. a shaded reflectance image are known as
color constancy algorithms in the computer vision community
(Ebner, 2007)). Color constancy algorithms work well given
narrow band receptors or alternatively if narrow band light
sources are used to display the color corrected images. If this
is the case, then a simple rescaling of the color channel suffices
to remove the influence of the illuminant. However, the above
methods are not directly applicable to the human visual system
because the cone sensitivities are not narrow band.

Fig. 7(a) shows the cone sensitivities. The three curves
overlap considerably. For instance, it is quite impossible to
excite the cone in the middle which responds to the green part
of the spectrum without also exciting at least one other cone.
This overlap makes it difficult to uniquely classify colors. In
order for our visual system to be most useful to the organism
it needs to estimate reflectance. We have three types of cones
that respond to incoming light to various degrees. Therefore,
we have three degrees of freedom to estimate reflectance. Our
color constant descriptor cV4 that is presumably computed
in V4 is essentially a three component vector that can be
mapped back to describe the reflectance function of an object
in view. Let M−1 be this mapping and let d be scale factors of
reflectance basis functions. Then we have d = M−1cV4. Note
that this is just a high level mathematical model describing
the underlying processing done by the neural architecture. The
entire process carried out by the neurons very likely consists
of multiple stages until a color is given a label (D’Zmura and
Lennie, 1986; Dufort and Lumsden, 1991; Gegenfurtner, 2003;
Akbarinia, 2017)).

Fig. 7(b) shows three basis spectral functions to describe
object reflectance overlaid on top of the cone sensitivities.
These basis functions Ri(λ) with i ∈ {r, g, b} were found
using optimization. The three component vector d describes
the strength of the respective reflectance function. The overall
reflectance function of the object is then given as

R(λ) = drRr(λ) + dgRg(λ) + dbRb(λ). (13)

The boundaries (where one function transitions to the next) of
the three reflectance basis functions are positioned such that
the colors red, green, blue excite one receptor strongly and
the other two hardly at all, and for the colors yellow, cyan

and magenta two receptors are maximally excited while the
third receptor is hardly excited. Let c1 be the response of the
receptor that responds maximally, let c2 be the response of
the receptor that has a mid range activation and let c3 be the
response of the receptor that has the lowest activation. The
objective function (maximization) was the sum of c1 − c2 for
red d = [1, 0, 0], green d = [0, 1, 0] and blue d = [0, 0, 1] and
c2−c3 for yellow d = [1, 1, 0], cyan d = [0, 1, 1] and magenta
d = [1, 0, 1]. The resulting basis functions are the ones shown
in Fig. 7(b). They are exactly the same as the ones shown in
Fig. 4.

Given the response of the cones ci(x, y), we would like to
compute cV4 and thereby obtain a description of the object
reflectance function via the components d. Fig. 8(b) shows
the response of the cones to a color image consisting of
the 9 different color patches (black, red, green, yellow, blue,
magenta, cyan, white and gray) under a white illuminant (flat
spectrum). The color descriptors are shown in Fig. 8(a). Tab. 9
lists the actual responses of the cones. For a green object, the
cone responding mainly to light in the red part of the spectrum
is also excited. For an object with a color of cyan, all three
receptors are excited. Classifying colors based on the cone
measurements is quite difficult even without the influence of
an illuminant.

However, the visual system processes the data measured
by the cones using a color opponency mechanism (Tovée,
1996)). Such color opponent cells are found in the retina
(Yin et al., 2009)), the lateral geniculate nucleus and area V1.
Color opponent cells respond mostly to one type of cone in
the center while activation of another type of cone inhibits
the cell. This allows the cell to compute color differences.
Double opponent color cells also exist. Double opponent color
cells combine the output of two types of color opponent cells.
The cone measurements can be considered as measurements
along a three axis coordinate system (red, green and blue).
Each component describes the presence or absence of light in
the red, green or blue parts of the spectrum. However, these
measurements do not correspond to reflectance. The color
opponent cells transform the coordinate system to a coordinate
system with the three axes: dark-bright, red-green, blue-yellow.
This is frequently modeled as an addition of all three channels
for the dark-bright channel, as a subtraction between red and
green for the red-green channel and as an addition of red and
green and a subtraction of blue for the blue-yellow channel
(Akbarinia, 2017; Ebner, 2007, 2012)).

cOp =

 achromatic
red− green

yellow− blue

 =

 1 1 1
1 −1 0

0.5 0.5 −1

 cCone (14)

=M · cCone (15)

Several different variants of this transform have been proposed
(Pridmore, 2020; Gao et al., 2013)). Within this coordinate
system, color can now be processed independently from
brightness information. Only two of the components contain
color information. This transformation can be considered as a
rotation of the coordinate system (Land, 1986)).



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 350  400  450  500  550  600  650  700  750

P
e
rc
e
n
ta
g
e

Wavelength (nm)

Stockman and Sharpe (2000)

L
M
S

 0

 0.2

 0.4

 0.6

 0.8

 1

 350  400  450  500  550  600  650  700

V
a
lu
e

Wavelength

Refectance Basis Functions

Cone R
Cone G
Cone B

Refectance Basis Function R
Refectance Basis Function G
Refectance Basis Function B

(a) (b)
Fig. 7. (a) Cone sensitivities. Data from Stockman and Sharpe (2000)). (b) Optimized reflectance basis functions.
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Fig. 8. (a) Color descriptors for 9 different colored patches. (b) Cone response
to the different object patches shown on the left.

Color Name d cCone

black [0, 0, 0] [0.01, 0.01, 0.01]
red [1, 0, 0] [0.47, 0.24, 0.01]
green [0, 1, 0] [0.49, 0.68, 0.08]
yellow [1, 1, 0] [0.96, 0.92, 0.08]
blue [0, 0, 1] [0.04, 0.08, 0.92]
magenta [1, 0, 1] [0.51, 0.32, 0.92]
cyan [0, 1, 1] [0.53, 0.76, 1.00]
white [1, 1, 1] [1.00, 1.00, 1.00]
gray [0.5, 0.5, 0.5] [0.50, 0.50, 0.50]

Fig. 9. Color names and corresponding cone responses. Minimum cone
response is 0.01. This limit is used to model sporadic firing.

Apart from separating color from brightness information,
estimating reflectance becomes easier within the rotated co-
ordinate system. The two components red and green become
untangled. Suppose for a moment, that cV4 uses a coordinate
system with axes dark-bright, red-green, blue-yellow where
[∗, 0, 1] corresponds to “red”, [∗, 1, 0] corresponds to “green”,
[∗, 0, 0] corresponds to “blue” and [∗, 1, 1] corresponds to “yel-
low”. Colors within this coordinate system can be classified a
lot easier than the cone responses shown in Tab. 9.

The function of color opponent cells have also been modeled
to develop color constancy algorithms (Gao et al., 2013,
2015; Akbarinia, 2017)). Indeed, the transformation carried
out by the color opponent cells are quite helpful for estimating
reflectance. As explained above, we can simply rescale all
color bands independently using the maximum excitation per

color channel if the receptors are quite narrow band. Then
we can obtain an estimate of d, i.e. the scale factors of
reflectance basis functions. The result is shown in Fig. 10. This
method works well if the receptors are narrow band. The mean
squared error between the output and the estimate of the scale
factors of reflectance basis functions is very small (0.006) in
this case. Rescaling does not work well if the receptors are
relatively broad band (mean squared error of 2.327). If the
cone measurements are transformed using matrix M and then
a rescaling operation is applied, the mean squared error drops
to 1.094.

We can also use artificial evolution to search for a suitable
color transform. A (100,500) evolution strategy (Rechenberg,
1994; Schwefel, 1995)) with step size adaptation was used
to optimize all 9 parameters of the color transformation
matrix Mevo. A single step size parameter was used for all
9 parameters. The parameters used to perform this optimiza-
tion are shown in Tab. 11. The optimization function is the
mean squared error between M−1

evocV4 and the ground truth
reflectance scaling factors for the patch shown in Fig. 8(a).
The root mean squared error was computed over 5 illuminants
(white, red, green, blue and yellow). The best result of this
optimization (10 runs) is the following matrix.

Mevo =

 0.178 −0.140 −1.985
−0.993 1.475 −0.025
−1.606 1.988 −0.027

 (16)

This matrix also features red-green color opponent behavior.
The mean squared error drops to 0.619. This shows that color
opponent computation helps in computing reflectance scaling
factors. In nature, the fitness function is of course given via
survival. Individuals capable of estimating reflectance are more
fit to find ripe fruit and therefore have higher chances of
survival.

Once the visual system is capable of estimating the re-
flectance function for various objects, language is able to
assign a label to the different reflectance functions as shown
in Fig. 9. Parsimonious ellipsoids might be used to classify the
response of neurons in V4 and thereby attach color names to
different responses of these neurons (Akbarinia, 2017)). The
color labels shown in Fig. 9 are reflectance function descriptors
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MSE 0.006 2.327 1.094 0.619
Fig. 10. A checkerboard pattern from Fig. 8(a) is illuminated by four different illuminants (left column). The response of narrow band cones to this stimulus
is shown in the second column. The third column shows the result of a simple rescaling to the range [0, 1]. Rescaling works fine if the spectral sensitivities
of the cones were narrow band. However, human cones are not narrow band. In this case, rescaling does not work (columns 4 and 5). Introducing a so called
color opponent transformation improves computation of reflectance descriptors (columns 6 and 7). Column 7 shows the result of the reflectance descriptor
computation when the color transformation is evolved. At the bottom, the mean squared error between the output and the actual reflectance descriptors are
shown.

Parameter Value
number of parents µ 100
number of offspring λ 500
initial value of step size τ 0.01
number of generations 1000
initial value range xi [−2, 2]
initial value range δ [0.001, 0.1]
mutation N(0, δ)
step size adaptation eN(0,τ)

crossover two point
Fig. 11. Evolution strategy parameters.

that maximally separate colors (or rather reflectance descrip-
tors) from one another. Of course human color names refer
to certain objects of the environment, i.e. ripe fruit. Not all
colors are equally important. Human color naming appears to
go through a unique sequence with red being the first color
after white and black (Berlin and Kay, 1999)). It is likely that
colors are added to a language depending on the amount of
evolutionary advantage they provide.

Someone might say: “This is a red ball”. We assign the
label “red” to a reflectance spectrum that reflects most of
the light in the red part of the spectrum when viewed under
white light. Therefore, color perception is not subjective.
It is comparable across individuals because the label “red”
corresponds to a physical, objectively measurable quantity of

the world. Given the above, we argue that the experience of
one person’s “redness” cannot be the same as another person’s
“greenness”. “Red” and “green” cover different parts of the
visible spectrum. Therefore, the perceptions for “red” and
“green” differ. They don’t differ in an arbitrary way. “Red”
represents reflecting mostly light in the red part of the visible
spectrum while “green” represents reflecting mostly light in
the green part of the visible spectrum. Internally, we use a
representation based on just three values. A representation
of cV4 = [∗, 0, 0] corresponds to “red” (object reflects light
mostly in the low range of the visible spectrum) and a rep-
resentation of cV4 = [∗, 1, 1] corresponds to “yellow” (object
reflects light mostly in the low and mid range of the visible
spectrum). A representation of cV4 = [∗, 1, 0] corresponds to
“green”.

Only one question remains. Might it be possible that some
persons have an inverted perception of the visible spectrum?
Since humans only have three types of receptors, humans
are only able to estimate reflectance roughly. The internal
representation used by the brain is based on the measurements
of the three types of cone receptors. That’s why only three
types of primary light sources (with the appropriate spectral
characteristics) suffice to produce any (or rather most) color
sensation. That’s why computer monitors or projectors work.
That’s why we perceive a full color scene that looks perfectly
realistic when we go and see a movie.

So might your experience of d = [1, 0, 0] correspond to
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Fig. 12. (a) Reflectance function R1(λ) (b) flipped reflectance function R2(λ) = R1(1140−λ). Could it occur that two different observers have the same
color perception when looking at flipped stimuli? I.e., observer A has one color sensation when observing R1 while observer B has exactly the same color
sensation when observing R2.

my experience of d = [0, 0, 1]? The internal representation in
our brains describe a one-dimensional function (reflectance).
Let us assume for the sake of argument that the visible spec-
trum ranges from exactly 380nm to 760nm. The wavelength
exactly in the middle of this range is 570nm. Theoretically,
we could flip the representation of the reflectance function
around 570nm. We could hypothesize that one person’s in-
ternal representation, i.e. “color” of the reflectance function
R1(λ) = δ(λ−400) is identical to the internal representation,
i.e. color sensation, when another person is observing an object
with R2(λ) = δ(λ − 740) (see Fig. 12). In general, the
perception of R(λ) of one person would be identical to the
perception of R(760 − (λ − 380) = R(1140 − λ) of another
person.

However, this is not possible, because the cone that responds
strongly to light in the middle part of the spectrum, the
“green” cone, peaks at a wavelength of approximately 530nm.
Fig. 9 shows the normalized absorption characteristics. The
cone responding to longer wavelengths peaks at approximately
560nm. The cone responding strongly to shorter wavelengths
peaks at approximately 420nm. The peaks of the cone respond-
ing to light in the middle part of the spectrum and the one
responding to light in the long part of the spectrum are quite
close to each other. The “green” cone is not placed half way in
between the other two cones. Hence, it is impossible to invert
a spectrum and then hope to obtain an inversion of the internal
representation. This is not possible because the “middle” cone
is not centered in between the other two cones.

Chalmers (1996)) posed the question: “Is something with
the approximate character of our color experiences the only
way that visual color information might have been projected
into phenomenology, or is there a different way entirely?” All
of the above shows that color perception is not something
that is arbitrary and subjective to a person. Color perceptions
are comparable across observers (at least those with normal
vision) because what we perceive as “color” is the approxi-
mation of a one dimensional function (reflectance).

Indeed, our perceptions have been shaped by natural se-
lection (Hoffman et al., 2015)). Using object reflectance in-
stead of the reflected light provides an obvious evolutionary

advantage. The reflected light varies with the spectral power
distribution of the illuminant whereas the reflectance function
does not. Hence, it makes sense to estimate this reflectance
function. Humans who are able to reliably recognize ripe
strawberries in a field or cherries on a tree are better adapted to
their environment and will find more food than others who do
not have this ability. The estimate of the reflectance function
allows us to guide our behavior in a better way. Hence, the
genes of humans who are able to estimate the reflectance
function of objects will have better chances of surviving and
this trait will dominate future generations.

Now that we understand what we call “color” is an internal
representation of a one-dimensional function, one could argue
that color perception might not require consciousness. Other
kind of perceptions might show that the hard problem of
consciousness does exist. This kind of argument is reminiscent
of the early days of artificial intelligence research when some
abilities like playing chess were assumed to require intelligent
behavior. Today, computer programs like Deep Blue or Deep
Fritz are able to play like a champion (Nilsson, 2010)).
However, these programs do not possess a general form of
intelligence. Playing chess is no longer considered a difficult
problem. It seems that once a problem has been solved,
it is no longer assumed to require intelligent behavior. In
consciousness research one could argue that color perception is
not a “quale” but other types of perception, object perception,
perception of words or feelings like love or pain are. Once
one realizes that color perception is not subjective, then a
similar argument can be made about other modalities like
feelings. Feelings are not arbitrary. They exist and are shared
across humans because we have the same evolutionary history
(Ekman, 1993; Shariff and Tracy, 2011)). They provide a
measurement of the internal state of an individual. Individuals
are trying to avoid behavior that leads to pain (Kováč, 2012)).
Obviously, individuals that avoid pain have a better chance at
surviving and hence reproducing.

As we obtain a better grasp of the processing that is involved
in color perception or registration of internal states of an or-
ganisms, i.e. feelings, we will see that (over time) the mystery
of consciousness slowly disappears. Consciousness arises (as



a necessity) out of the processing that is carried out by the
organism. If an artificial machine were to carry out similar
processing, then it would also lead to conscious perception
of the environment and its internal states. Implications for
machine consciousness will be discussed below.

V. PERCEPTION OF THE ENVIRONMENT

When we perceive our environment, we are able to name
things. In other words, we attach labels to objects. In this
respect, perception works exactly as expected. If we bring a
visual stimulus in front of our eyes, we can react to it. We are
able to name the object in front of our eyes and we are able
to describe its properties. The brain appears to have separate
processing paths with respect to action and perception (Milner
and Goodale, 2006)). We perceive objects relative to the head
with a single screen view Fig. 13(a). That’s because we speak
about things relative to the head. However, we perceive our
environment via two eyes. In theory, humans could look at two
different objects at the same time with one eye focusing on
one object and the other eye focusing on another object Fig.
13(b). Interestingly, horses seem to be able to see two things
at once, i.e. separately with their eyes. If a trainer teaches a
horse something, the horse needs exposure to what is being
taught twice. Once with the left eye and once with the right
eye (Williams, 2004)). Horses communicate vocally and non-
vocally with their peers.

The retinal receptors within the eye are not uniformly
distributed. Most of the cones are located in the fovea, i.e.
the center of the retina. The resolution is much higher in the
fovea compared to the periphery. This non-uniform resolution
is illustrated in Fig. 14(b). The original input is shown in Fig.
14(a). When the visual information reaches visual area V1, the
striate cortex, in the back of the brain, a log polar transform has
been applied (Schwartz, 1977, 1980; Cavanagh, 1978, 1984)).
The log polar transform of the cone measurements is shown
in Fig. 14(c). Because of this transform, a rotation of the
object leads to a horizontal shift of the visual information in
V1. If the observer moves towards or away from an object,
then the visual information in V1 is translated vertically. The
log polar mapping leads to a rotation and scale invariant
representation of the visual data. This is helpful for visual
recognition (Wallace et al., 1994)).

Only a small portion of the visual field is perceived with
high acuity at any point in time. The eyes constantly per-
form saccades (Fuchs, 1967; Land, 1999; Gibaldi and Banks,
2019)). They attend to different aspects of the scene in front
of us. Fig. 15(a) shows how the eye attends to different parts
the scene. What arrives at V1 is a sequence of images from
different parts of the scene. Fig. 15(b) shows the non-uniform
measurements of the retinal receptors.Fig. 15(c) illustrates
how this data is processed by the brain. The non-uniform
measurements are transformed to a log space representation in
V1. However, we are not aware of the non-uniform distribution
of the retinal receptors in the eye, nor are we aware of
the saccades that the eyes perform. Fig. 15(d) shows how
the scene is consciously perceived. The scene appears to be

taken with a monocular camera attached to the head. It is
a first person view. The scene is perceived relative to the
head. We communicate information about what has happened
in our environment to our peers. This single screen view is
necessary from a communication point of view. If one person
were speaking about separate perceptions of the two eyes as
illustrated in Fig. 13(b) then this would make communication
considerably more complicated.

The single screen view arises as a necessity for any organ-
ism with a receptor sensor array that is capable of commu-
nicating with its peers. How the sensor array is arranged is
irrelevant. Visual perception has to be like this because we
are able to call out colors for any small region of our visual
field. In theory, we could also perceive our environment like
a depth map (Yang and Pollefeys, 2003)) where each point of
the visual “screen” represents the distance from the observer’s
eyes to the object as shown in Fig. 16. However, this is not
how we perceive our environment. We are able to estimate
distances to every point in our field of view using stereo vision.
We are able to tell our peers about distances to various objects
inside our field of view. The observed scene appears “three-
dimensional” to an observer because again this is how space
is structured. Indeed, the perception of the observed scene
does not change when one eye is closed. Distances can be
estimated using a variety of cues. Stereo vision is only one
option to estimate distances. Distances can also be estimated
from focus (Nayar, 1992; Favaro and Soatto, 2008)) or from
motion parallax (Wexler and van Boxtel, 2005; Rogers, 2009;
de la Malla et al., 2016)) to name but a few.

What about auditory experiences? We consciously perceive
words or sounds but we are not consciously aware of individ-
ual frequencies making up these sounds. We do not perceive
these sounds as a bar graph where the height of the bar signals
the strength of the frequency as shown in Fig. 17(a). We do
not perceive sounds as a dot matrix in our visual field where
the brightness or color of the dot signals the strength of the
frequency as in a spectrogram as shown in Fig. 17(b). In
theory, it would be possible for us to perceive sounds in this
way. Actually, humans are able to identify words by looking at
a spectrogram (Zue and Cole, 1979)). So why do we perceive
sounds or visual input in the way we do? The answer to this
question is: Because we use what we consciously perceive
in order to communicate with others. We are able to identify
things that we hear. It is also language based. We can recognize
a wide range of auditory stimuli and react to them. Audio
information from our peers is transformed into meaningful
words and sentences.

Like color, words and sentences are a product of the brain.
When listening to someone speak, we can hear the individ-
ual words of a sentence (Dennett, 1991; Studdert-Kennedy,
1981)). It appears as if someone says one word after the
other. However, this is not visible in a waveform recording
of a spoken sentence. Early approaches in natural language
processing tried to recognize short audio sequences and map
this information to phonemes which were then mapped to full
sentences (Nilsson, 2010)). Modern approaches are based on



(a) (b)
Fig. 13. (a) Single screen view. (b) Two eyes perceiving different parts of the scene.

(a) (b) (c)
Fig. 14. (a) Visual perception of a scene. (b) Non-uniform measurements by the retinal receptors. (c) Log polar mapping of the data shown in (b).

(a)

(b) (c) (d)
Fig. 15. (a) Visual perception of a scene. The eye constantly executes saccades where the eye jumps from one interesting location to another. (b) Non-uniform
measurements by the retinal receptors. (c) Log polar transformation of the sequential data. The right part of the visual field is fed into the left hemisphere
and vice versa. (d) Conscious perception. It feels as if a cinematic representation exists.



(a) (b)
Fig. 16. (a) Visual perception of a scene. (b) Depth Map. Pixels that are closer to the camera appear brighter.
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Fig. 17. (a) Frequency distribution of a short audio sequence. (b) Spectrogram of a short audio sequence. The color of each pixel visualizes the gain of each
frequency.

deep convolutional neural networks (Saon et al., 2017; Zhang
et al., 2019; Passricha and Aggarwal, 2020)).

VI. CONSCIOUSNESS AND LANGUAGE

Consciousness seems to be intertwined with language. Its
primary role is to serve communication between individuals.
Qualia exist because being able to communicate them to oth-
ers provides an evolutionary advantage. We perceive objects
within our visual field relative to the orientation of our head.
This information is then stored and can also be communicated
to others during perception or at a later time. The same holds
for the perception of audio as well as feelings, sounds or
smells.

The appearance of a mental visual image is a result of the
visual information processing. If someone holds a photograph
into the visual field of a person then this person can recognize
the contents of the photograph. If the photograph shows a
particular person, then this photograph mimics the light that
is reflected of that particular area much in the same way as
if the person were actually standing there. Similarly, if one
were to use a projector and project a photograph of a person
onto a screen then the pixels on the screen reflect the same
light (actually the same relative intensities in the red, green and
blue parts of the spectrum) that would be reflected if the person

were actually standing at the position of the screen. This visual
mental image arises because we process information relative
to the head and we use light responsive sensors to measure
incident light. If one is to change the number of different cone
receptors, then this has no impact on the general arrangement
of the mental visual image. Only the reflectance estimate per
“pixel” improves. With a single receptor, one is able to discern
brightness differences. With two color receptors, reflectance
can be estimated for two function support points. Using three
receptors, we have three function support points. The more
support points we have, the better we are at distinguishing
object reflectances.

Tetrachromats like birds are assumed to have the same
mental image as humans except that they can distinguish more
“colors” per pixel or, expressed in another way, can determine
object reflectance better than humans. Birds have four recep-
tors that are almost uniformly distributed between the range
300 nm and 700 nm. Compared to human vision, birds have
an additional receptor which responds in the ultraviolet part of
the spectrum. Experiments indicate that birds see ultraviolet
wavelengths as distinct colors (Goldsmith, 2006)). In other
words, this fourth receptor is used to obtain a better reflectance
estimate and birds are able to distinguish more colors than



humans. Thus, four receptors result in four function support
points and so on.

Color perception arises out of the necessity to represent
information of a two or higher dimensional value (here surface
reflectance) per pixel. The quale “color” is a result of the
mathematical structure of the problem. Due to the relationship
between color and reflectance, color is not arbitrary as shown
above. Feelings are also not arbitrary but have a certain
purpose. Feinberg (2001)) also suggests that meaning and
purpose are created by the brain. Feelings are a product of
evolution (Ekman, 1993; Shariff and Tracy, 2011)).

The next obvious question is “Who else is conscious?”.
According to this theory, any organism capable of commu-
nicating with others is a conscious being. Communication is
possible using language but also through other means, e.g.
bees are known to perform a dance to inform their peers about
the direction and distance to flowers (Dyer and Seeley, 1991;
Sherman and Visscher, 2002)). They also are able to remember
task related information (Koch, 1991)). Some birds have been
shown to recognize themselves in a mirror (Prior et al., 2008))
and some are known to use tools (Weir et al., 2002; Holzhaider
et al., 2010)) are probably conscious too. Some crows appear
to have the cognitive capacity to manufacture objects from
a mental template (Jelbert et al., 2002)). Organisms which
have no means of communicating are definitely not conscious.
However, most organisms are probably able to communicate
with their peers in one way or another and are therefore
conscious.

VII. MACHINE CONSCIOUSNESS

Is it possible to build artefacts that are able to consciously
perceive their environment? According to the integrated in-
formation theory this seems to be possible (Tononi, 2004,
2008)). All of the above points to consciousness being a
communication system. So how can we create machine con-
sciousness? It seems that all that is required is an embodied
robot. Suppose we add a communication system to such a
robot, that is able to communicate future plans and important
events that have happened in the past. Such a robot would be
indistinguishable from a conscious human being (provided that
its communication system would be as elaborate as the human
system). The robot needs memory to store (1) intentions or
plans, (2) actions (information about where, when, and what
did the robot do) and (3) internal as well as external percepts
(who, where, when and what happened). The communication
system would have access to this memory and would be
able to communicate plans, actions and percepts to others.
The schematic diagram is shown in Fig. 18(a). Such a robot,
equipped with a standard camera, would be able to see
colors in much the same way that we do (because the quale
color arises out of the three-dimensional space of reflectance
function descriptors) provided that the communication system
has access to a simulated version of the neurons in V4 as
described above.

Many have argued that a recurrent flow of information
is important to create consciousness. The human mind can

be illustrated as having two feedback loops as shown in
Fig. 18(b). A fast acting unconscious control system and a
second feedback loop for conscious perception and control.
The second loop could be an evolutionary add-on to the
existing control loop. It appears that the earliest evolutionary
functions of vision were action-oriented and not perception
oriented (Milner and Goodale, 2006)).

So where is the difference between the two loops? Both have
a recurrent flow of information. With respect to the integrated
information theory, one could argue that the second slower
loop operates on just the right time scale and contains the
neural assemblies that end up having a high value of Φ as
defined by the integrated information theory (Tononi, 2012;
Oizumi et al., 2014)). Here, it is argued that systems, e.g.
artificially built robots, that do not exchange information in a
purposeful way are not conscious. It is irrelevant how elaborate
the information processing might be. Consciousness requires
an exchange of information between individuals. A non-zero
Φ is not sufficient to generate consciousness.

The communication system is assumed to be the system
(in humans) having the largest value of integrated information
theory Φ. A CPU processing the data from simulated V4
using NAND or NOR gates and is able to inform others
about this fact, will also perceive colors in the same way as a
conscious human being. Of course such a robot would not be
able to have feelings like pain, love or hate. We humans have
these feelings because of our evolutionary history. Since the
robot does not share our evolutionary history, it will not have
feelings like pain, love or hate. The ability to experience qualia
will remain with someone as long as the neural assembly in
charge of processing percepts (the communication center) is
able to function. This holds, even if the ability to communicate
is destroyed (because the connection to the motor center is
severed or if muscles are no longer able to perform their
function).

VIII. REVIEW OF EXISTING THEORIES

Several neurobiological theories of consciousness have been
put forward. Kouider (2009)) has reviewed several theories.
Humans appear not to be aware of processing which occurs
inside the primary visual cortex (Crick and Koch, 1990)).
Conscious processing of visual information only happens in
higher visual areas. The ventral visual pathway is used for
perception whereas the dorsal visual pathway is used for
action. This is the duplex vision theory of Goodale and Milner
(1992)). Crick (1994)) argues that consciousness depends
crucially on thalamic connections with the cortex. According
to Aleksander (1996)) the primary function of consciousness
seems to be the functional memory of past experience, its
integration into a perception of the present and its projection
into the future. Gazzaniga and LeDoux (1978)) focus on
language. According to their view, the language center or
verbal system monitors and registers perceptions, thoughts,
moods and actions of its owner. This verbal system creates
the personal sense of conscious reality. They also assume
that similar memory systems might be in use in nonspeaking
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animals. However, they point out that the human verbal system
creates awareness and self-awareness in ways that are unique
to humans.

Tononi and Edelman (1998)) have put forward the reen-
trant dynamic core theory. This theory is based on recurrent
processing of information. Damasio (1999)) argues that we
become conscious when our organism internally constructs
and exhibits a specific kind of wordless knowledge about
how the organism’s own state is affected by the processing
of an object. Damasio calls this type of nonverbal account
core consciousness. Memory added to processes that result
in core consciousness allow an organism to create an au-
tobiographical record or self. This leads to (as Damasio
calls it) extended consciousness. According to Dehaene and
Naccache (2001)), consciousness is based on a global neuronal
workspace. Dehaene (2014)) suggests that the evolutionary
role of consciousness is learning over time as opposed to
living in the instant and that consciousness is essentially
nothing but the flexible circulation of information inside the
global neuronal workspace. Tononi (2004, 2008, 2012)) has
developed the information integration theory. His theory is also
supported by results on how anesthetics work. It appears that
anesthetics block the brain’s ability to integrate information.
Once integration of information is no longer possible, an
organism becomes unconscious (Alkire et al., 2008)). The
integrated information theory is being continually improved
(Oizumi et al., 2014)). So far, it describes experimental results
very well.

Synchronous firing of neurons may also play a role in
conscious information processing (Singer, 1999; Ebner and
Hameroff, 2015)). Lamme (2006)) created the local recurrence
theory which is also based on recurrent information process-
ing. According to Zeki’s (2007) micro-consciousness theory,
multiple consciousnesses are distributed across different pro-
cessing sites. These are all neural correlate of consciousness

theories. They try to define a minimal set of neuronal events
and mechanisms which are sufficient for a conscious percept.

Kotchoubey (2015)) argues that consciousness is a kind of
behavior and emerges on the interface between three types
of behavior: communication, play, and the use of tools. All
of the above theories are not constructive, i.e. they do not
provide an algorithmic description of information processing
occurring inside a conscious entity. Graziano et al. (2019))
have suggested that a single, coherent explanation of con-
sciousness is available, but has not yet been recognized. They
propose a standard model of consciousness that reconciles the
attention schema, global workspace, higher-order thought, and
illusionist theories.

Penrose has argued that quantum effects are used by the
brain for conscious information processing (Penrose, 1989,
1994)) and that no algorithm is able to describe consciousness.
Hameroff and Penrose (1996)) proposed a model of conscious-
ness in which orchestrated objective reduction of quantum
coherence occurs in brain microtubules. If quantum effects
really do play a role in conscious information processing,
then we could simulate them on a sequential computer. Even
though quantum computing can be simulated on a standard
CPU (Williams and Clearwater, 1998)), this would require
enormous computing resources and would be significantly
slower compared to actual quantum computing. It is still
unknown whether quantum effects actually play a role in
conscious information processing.

The view, that a person’s mental activities are completely
defined by the behavior of neurons, glial cells as well as the
environment they reside in inside the brain, is also taken by
Francis Crick, co-discoverer of the molecular structure of the
DNA (Crick, 1994)). Kurzweil (2012)) also views conscious-
ness as an emergent property of a complex physical system.
This view is also shared by Minsky (1988)). Of course, this
does not leave any room for free will. If quantum effects play



no role in the behavior of a person, then the behavior would
be governed by classical physics alone, and hence it would
be possible (at least in theory) to estimate the behavior of a
person if the environment of this person could be measured
with sufficient accuracy. Christof Koch teamed up with Francis
Crick to search for the neural correlates of consciousness
(Koch, 2004)). According to Koch, a key function of the
neuronal correlates of consciousness is to sumarize the present
state of affairs of the world. This summary is then made
available to the planing stages of the brain. He also assumes
that perception occurs in discrete processing episodes, i.e.
snapshots. A stream of consciousness consists of a sequence
of such snapshots. Even though finding the neural correlates
of consciousness is highly important, a more abstract approach
may also be beneficial. Interestingly, Koch also suggests
that conscious percepts are private and cannot be directly
communicated, only by way of example or comparison. Koch
(2019)) argues (with reference to the integrated information
theory (Tononi, 2012; Oizumi et al., 2014))) that consciousness
is widespread but can’t be computed. However, the integrated
information theory is basically a method to locate structures
that are particularly useful for information processing. In the
process, a value called Φ is computed that essentially is a
measure of consciousness. It tells us which structures may be
relevant for generating consciousness. Unfortunately, it does
not tell us how to create conscious entities.

IX. CONCLUSION

We argue that consciousness is nothing mysterious and
that it can be created using computational processing. It is
possible to create certain types of qualia. At least qualia
like color or those during object perception. Consciousness is
equivalent to the communication center perceiving (or rather
processing) external or internal events. We have learned to say
“I” and to explain to our peers what our body/brain is doing.
According to this theory, the job of the communication center
(consciousness) is (a) to analyze what the body experiences
(internal and external events), (b) to keep a record of it, and
(c) to explain it to our peers. We argue that these components
give rise to consciousness. Given these components, we are in
a position to move towards creating machine consciousness.

As we have shown above for the quale color, qualia are not
arbitrary. Color is essentially a three-dimensional descriptor
that describes the reflectance function of objects at any given
point. Hence, color perception is comparable across individu-
als. We argue that the quale color is due to the mathematical
structure of the space of reflectance. Given this result for color
perception, we assume that the same also holds for other
types of qualia. Qualia are grounded in reality due to our
evolutionary history. Qualia serve a purpose. Their purpose
is to help the organism to survive in its environment and
to eventually reproduce. We also argue that it is possible to
generate the quale color in a computationally created entity.
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