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Abstract—The human brain is able to learn language by
processing written or spoken language. Recently, several deep
neural networks have been successfully used for natural language
generation. Even though it is possible to train such networks, it
remains unknown how these networks (or the brain) actually
processes language. A scalable method for distributed storage
and recall of sentences within a neural network is presented. A
corpus of 59 million words was used for training. A system using
this method is able to find sentences which can be considered
reasonable replies to an input sentence. The system first selects a
small number of seeds words which occur with low frequency in
the corpus. These seed words are then used to generate answer
sentences. Possible answers are scored using statistical data also
obtained from the corpus. A number of sample answers generated
by the system are shown to illustrate how the method works.

Index Terms—Natural language generation, neural networks,
statistical natural language processing, artificial intelligence

I. INTRODUCTION

The human brain consists of approximately 1011 inter-
connected neurons forming a large scale neural network. Using
this network, humans are able to produce language and to
understand written or spoken language. Presumably, many
animals are also able to communicate with each other. The
question is, how does natural language processing work in the
brain? With this contribution, we try to answer this question.

First, we will discuss different theories on how language
generation may be achieved by the brain. Unfortunately, these
methods do not scale well to handle long sentences. Because
of this, they are unlikely to be used by the brain. The work
presented here, will show how to transform a large text corpus
into fragments which are stored locally. These fragments are
subsequently used for sentence generation. The system is able
to generate seemingly meaningful replies to input sentences
which are fed to the system. Instead of fully training the
system on a large corpus and then generating replies, it is also
possible to iteratively improve the system by taking every input
as learning input. In this case, generated output will improve
as more and more input sequences have been processed.

There are numerous applications for this system [1]. It could
be used by autonomous robots. Such robots could be used as
companions for people who need someone that can listen and
reply sensibly. Natural language could also be used to obtain
relevant facts or any kind of information previously stored.
The system could also be used for vending machines to create
a natural language interface. The probabilities created by the
system could also be used to improve recognition rates of voice
recognition systems [2]–[4]. Similarly, performance of natural

language translation systems could also be improved [5]. The
system could also be used for automatic text expansion [6] for
people who are unable to talk.

II. NEURAL INFORMATION PROCESSING

A standard model for neural information processing is the
so called integrate and fire model [7]–[10]. The membrane
potential of the neuron increases due to incoming signals.
It increases until a certain threshold is reached. Once this
happens, then the neuron “fires”, i.e. the neuron sends an
impulse along its axon. This signal reaches other neurons via
synaptic junctions. Signals may also be exchanged via gap
junctions [11], [12]. Other neurons also integrate their signals
until they eventually fire. The strength with which neurons are
connected to each other can be adjusted via Hebbian learning
[13]. According to Hebbian learning, the synaptic strength
increases if one neuron repeatedly causes another neuron to
fire. Such large scale neural networks can be simulated using
a computer [14].

III. NATURAL LANGUAGE PROCESSING

In Natural Language Processing, one tries to analyze and
to understand natural language [15]–[18]. A number of re-
searchers [19]–[21] have used deep neural networks to create
captions for images. Kiros et al. [22] have used a neural
network with long short-term memory [23] to encode lan-
guage. Vinyals et al. [24] also used long short-term memory to
generate natural sentences. Hermann et al. [25] have trained a
deep neural network that can answer questions with respect
to texts used during training. They also worked with long
short-term memory. IBM Watson uses also Prolog in addition
to techniques from natural language processing to answer
questions from a very large knowledge domain [26]. Possible
answers are rated using 354 features [27]. However, only a
relatively small number of features (only 8) seem to be relevant
to achieve an accuracy of 85.6% [27].

How can language or texts be stored in the weights of a neu-
ral network? How can texts be recalled from such a network?
We will first look at known methods for information retrieval
and natural language generation from computer science before
we discuss our method for distributed storage and recall of
texts. Manning [28] give an overview over methods for infor-
mation retrieval. Essentially three different approaches exist
for natural language generation: grammar-based, template-
based or statistical approaches [29]–[31]. Grammar-based ap-
proaches [32], [33] need a grammar before language can



be generated or understood. But how can we learn such a
grammar from listening to spoken language? Natural evolution
may shape the neural hardware in order to support some sort
of language. However, humans are not born with the ability
to talk. Language needs to be acquired through learning, i.e.
weights need to be tuned.

Template-based approaches work with pre-stored sentences
or parts of sentences which contain placeholders at certain
positions. These placeholders can be filled with one or several
words in order to complete the sentence. Unfortunately, the
range of possible sentences is limited. Only sentences similar
to the pre-stored sentences can be generated. Statistical sys-
tems work with large text corpora. These corpora are statis-
tically analysed. Probabilities are computed which determine
how a partial sentence can be completed. The method which
is presented here is also a statistical method. Other approaches
use a semantic representation [34].

We will assume that language is solely learned from what is
heard from the surrounding. The brain is a product of natural
evolution. We also assume, that no information about any kind
of grammar for a particular language is stored in the brain.
Only counting is used to gather statistics on language usage.
The mechanism supporting this data acquisition and storage
could be considered a kind of universal “grammar” [35], [36].
However, it is not a grammar in the classical sense. It adapts
to the current language. Using these assumptions, it should be
possible to learn language from texts which are either heard
or read. In other words, we will only use texts as input for
our method.

IV. USING N-GRAMS TO STORE LANGUAGE

So called n-grams allow us to store and recall language
in a distributed way. An n-gram is a sequence containing
n distinct text components. The components could either be
phones, syllables, letters or words. These n-grams are also
used for clustering of web pages for web search [37] or for
distinguishing different languages [38].

For the method described here, we will only consider words
as building blocks. We parse each sentence into words. Then
we compute the probability that one word follows the preced-
ing (n−1) words. This probability can be computed easily by
taking a large text corpus, iterating over the individual words
and counting how often each word follows the preceding
sequence of n − 1 words. Let wi with i ∈ {1, ..., l} be the
individual words of a large text corpus with l words. Let
p(wi|wi−(n−1), ..., wi−1) be the probability that word wi fol-
lows the sequence wi−(n−1), ..., wi−1. Given this probability,
it is quite easy to complete a partial sentence. Similarly, we can
take what has already been said in a conversation and create
a new sentence taking the existing conversation as given. We
only have to use the preceding n− 1 words and compute the
next word until all words of a sentence have been found. A
simple method to find the next word is to only consider the kc
words with the highest probability. We simply perform a best
first search. Then we continue with the kc best alternatives
and so on. We stop the search once an end of sentence marker

has been found. Here, we will treat all punctuation marks as
words. Hence, we stop the search as soon as we have reached
a word marking the end of a sentence, i.e. a full stop, question
mark or an exclamation mark. Using this method, we obtain
a number of possible sentences which can all be used as a
reply to what has been said before. Depending on the size of
n− 1, these sentences may be syntactically correct or not. A
heuristic can be used to rate the sentences which have been
generated. Finally, we pick the best sentence according to the
heuristics in order to reply to what has been said so far.

This method can be implemented easily with a neural
network (Fig. 1). Let us assume that we have one neuron
per word in the word layer. This is the set of all possible
words from our language. Whenever a sequence of n − 1
words have been generated previously, then all neurons from
the word layer, which correspond to a grammatically correct
expansion of this partial sentence, should be activated. Their
activation should be proportional to the probability with which
the respective word follows the preceding (n− 1) words. On
the n-gram level, we could use one neuron for each possible
combination of n − 1 words. Exactly one of these neurons
will be activated when a sequence of n − 1 words has been
generated previously. The probability with which a certain
word follows a given sequence of n − 1 words could be
stored in the weight from the neuron in the n-gram layer
(representing the first n− 1 words) to the neuron in the word
layer (representing the next word). All of the weights between
the n-gram layer and the word layer could be trained using
Hebbian learning [13].

This approach could be used by the brain for natural
language generation. The same method could also be used
by a computer for natural language generation. Unfortunately,
the method does not scale. Suppose that we only use 1-grams
on the n-gram level. Then the word from the word layer would
only depend on the last word that has been generated. If we
were to use 2-grams, then the newly generated word would
only depend on the last 2 words that have been generated,
and so on. If we only use short n-grams inside the n-gram
layer, then the newly generated words will have no relation to
the beginning of the sentence. In other words, what has been
said early on will have no influence on what is being said
towards the end of the sentence. For this method to work,
we will need very long n-grams. This would essentially mean
that we store entire sentences within the n-gram layer. Let us
assume that for every new word, we have 10 possible choices.
That would lead to O(10n) neurons inside the n-gram layer.
For n = 11 this would require all neurons of the brain to store
possible sentence fragments.

Let us consider the average number of possible words that
follows any n-gram for a sample corpus. This data is shown in
Fig. 2. We can see that the average number of words that can
follow any given n-gram goes down with n. Using neurons
to represent n-grams would lead to storing entire sentence
fragments for large n. According to this theory, we would
have neurons for all possible sentences. Fig. 3(a) shows the
number of n-grams for a given n. Fig. 3(b) shows the memory
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Fig. 1. Neural network for language generation. On the lowest layer (n-gram layer), neurons are activated whenever the words at the end of the sentence
which has been generated so far, corresponds to the optimal stimulus of the neuron. On top of the n-gram layer is a layer of word neurons. The connection
strengths correspond to the probability with which the respective word follows the n-gram level on the lower layer. In this example, the most likely alternative
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Fig. 2. Average number of words that can follow any n-gram for a sample
corpus of 42.8 million words.

requirement if n-grams are used for sentence generation. It is
assumed that n-grams plus words that can follow any given
n-gram plus associated frequencies are stored. If we also
consider the additional overhead due to the data structures
used, then the memory requirement is so large that a 16 GB
PC has to be used to store 2-grams, 3-grams, 4-grams and
5-grams plus the preceding and the next words from a corpus

containing 42 million words.

V. USING DELAYS TO STORE LANGUAGE

Given the above, it is reasonable to assume that full sen-
tences are not stored inside the brain. However, it is rela-
tively easy to store p(wi|wi−1), i.e. the probability that word
wi follows word wi−1. Similarly it would also be possible
that the same probabilities but with a certain delay t with
t ∈ {0, ..., tm−1}, i.e. p(wi|wi−1−t) is stored in the brain (for
a maximum possible delay m). This could be easily achieved
by including additional neurons into the processing pipeline
which cause a delayed processing of words. Fig. 4 shows this
scenario where neurons are arranged in layers depending on
the delay with which words are processed. Neurons at the
bottom layer process what was generated early on. Neurons
above the bottom layer process what was generated immedi-
ately after that and so on. Neurons at the top layer process the
most recent word. The probabilities p(wi|wi−1−t) are stored
in the weight from the neuron representing word wi−1−t on
the lower layer with delay t to the word wi on the upper layer.
For this approach, we would need m + 1 layers. Each layer
would consist of nwords neurons, assuming our vocabulary
consists of nwords. Total number of neurons is now O(mnwords)
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(a) (b)
Fig. 3. (a) Number of n-grams for a given n. (b) Memory requirement for sentence generation using n-grams. It is assumed that n-grams plus words that
can follow a given n-gram plus associated frequencies are stored.
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which is a considerable reduction in the number of neurons
required compared to the n-gram approach. The delay network
approach could be used by the brain in terms of number of
neurons required. Unfortunately, the number of words which
could follow word w after a delay t increases with the delay
t. This is illustrated in Fig. 5 for a sample corpus with 42.8
million words. Fig. 5(a) shows the number of words that follow
a given word averaged over all words of the vocabulary for
delays 1 to 10. Fig. 5(b) shows the number of words that
follow a given word for delays 1 to 10. It is clear that words
next to a given word are more correlated or constrained while
words further away are effectively uncorrelated.

The larger the delay i, the less certain we are, which word
wi should be placed at a distance t from word wi−1−t. An
advantage of this approach is that it scales. The number of
neurons increases linearly with the number of delay layers.
Unfortunately, the information stored in p(wi|wi−1−t) is not
sufficient to produce grammatically correct sentences. We have

p(wi|wi−m, ..., wi−1) 6= Πm−1
j=0 p(wi|wi−1−j). (1)

In other words, we do not have a Markov Model where the
probability of obtaining the next state depends only on the
current state. Because of this, the approach also does not seem
to be used by the brain. If we only consider individual letters,
then a Markov model of length 6 seems to be sufficient in
order to create a sequence of correctly written words [38].
Unfortunately, this sequence of words is not grammatically
correct.

VI. DISTRIBUTED STORAGE OF SENTENCES

Some other method of storing sentences inside the weights
of a neural network is required. The following observation
allows us to successfully store and recall sentences using a
distributed neural network: The relative frequency of words
within a sentence is approximately constant over a relatively
long time while language is being processed. Fig. 6 shows the
frequency of words for a sample corpus of 42.8 million words.
The most common word is the full stop with a frequency of
4.591.872. The second most common word is “the” with a fre-
quency of 3.046.404. Because we treat full stops and commas
as words, “,” is the third most common word. The words “to”,
“a”, “and”, “I”, and “of” are ranked with descending order.
Starting from position 300, we find the words “thank, “guess”,
“games” and “top”. From position 2.000, we find the words
“choices”, “mainly”, and “familiar”. From position 10.000, we
find the words “festivals”, “collectively”, “mushrooms” and
“inexpensive”. From this, it is quite clear that certain words
occur more frequently in one’s vocabulary than other words.
Of course, the article “the” ist the most frequent word apart
from the full stop. Other words occur less frequent. This is
the well known Zipf’s law [28]. According to this law, the
frequency of any word is inversely proportional to its rank as
shown in Fig. 6.

If we process natural language with a computer, we simply
need to count how often each word occurs in daily usage.
In the brain, we could simply take one neuron for each

word in our vocabulary. Using Hebbian learning [13], we
could train the weights to encode word frequencies. Even if
these frequencies change during further processing/learning,
the relative order of the frequencies of the words within a
single sentence remains constant.

Let us now consider the sample sentence “I hope that
tomorrow the sun will shine.” The frequencies of the individual
words are: “I (1.512.476) hope (25.619) that (1.037.840)
tomorrow (4.103) the (3.046.404) sun (4.968) will (193.675)
shine (730) . (4.591.872)”. It is not very likely that the
frequency of the word “sun” will become larger than the word
“the” during additional learning/language processing. Also, the
words with the lowest frequency tell us what the sentence is
about. In this example the words with the lowest frequency
are “hope tomorrow sun shine”. In other words, low frequency
words are especially meaningful. Interestingly, the same words
would be extracted if the sentence were German. Words which
occur with high frequency are called stop words [28]. Of
course, stop words are necessary to construct a grammatically
correct sentence. However, they are not required to understand
the general meaning of a sentence.

We will now have a look, at how we can make use of
this observation for storage and recall of texts or sentences.
Whenever we process a word that has never been seen before,
we increase a counter. We will use indices to represent words.
End of sentence markers like full stop, exclamation mark and
question mark are assigned indices starting from 0. The index
after the end of sentence markers will be assigned the comma.
In other words, punctuation marks will have the lowest indices.
Indices after the comma will be used for words. Whenever
we encounter a new word, we will use a new index for
that word. For each word, we count how often it has been
processed, i.e. has been heard or read. Thus, we obtain word
frequencies f(w) for words w where w is the index of the
word. The method will stop processing after a certain number
of sentences have been processed. All words which occur less
than a certain number of times could be removed. Words
that occur infrequent are probably not very relevant to our
vocabulary. It may also have been a typo. We do not want
to include typos into our vocabulary. During this update, the
method is not able to process input. This is similar to the
requirement for sleep in humans. However, we do not want
to suggest that the processing occurring during sleep is the
same update that we perform here. Nevertheless, it is quite
interesting that this method also needs to “sleep” periodically
to perform an update. For the experiments below, we perform
this update whenever our vocabulary exceeds 130000 words.
We sort all words according to their frequencies and simply
remove low frequency words. After sorting, the most frequent
word will have the lowest word index. Low frequency words
will have high indices. If we sort the words according to
their frequencies, then we can use the indices to find out
whether one word occurs more frequent than another word by
simply comparing their indices. If we do not sort the words,
then we have to look up the frequency for a word in order
to determine whether one word occurs more frequent than
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Fig. 5. (a) Number of words that follow a given word averaged over all words of the vocabulary. (b) Number of words that follow four sample words (“run”,
“door”, “fast” and “car”).
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Fig. 6. Frequency of words in a corpus of 42.8 million words. Word frequency
is inversely proportional to its rank. This is the well known Zipf’s law.

another word. In order to keep memory requirements down,
we limit our vocabulary to a fixed number nmax of words. This
is the approach that we have used for our experiments. Only
the 100.000 words which occur most frequent are kept in our
vocabulary.

We can compute probabilities p(wi|wi−1),
p(wi|wi−2, wi−1) and p(wi|wi−3, wi−2, wi−1) by counting
how often the word wi follows the word wi−1, the
sequence of words wi−2, wi−1, or the sequence of words
wi−3, wi−2, wi−1. Using p(w|”.”), we can find any word
which can start a sentence. Whenever we only have a single
word w1, then we can use p(w|w1) to find words which
could follow word w1. If we have two words w1, w2 then
we can use p(w|w1, w2) to find possible words to extend
the sequence w1, w2. Similarly, if we have a sequence of
three words w1, w2, w3, then we can use p(w|w1, w2, w3)
to extend the sequence. Using this approach, all generated
sequences which consists of up to 4 words are guaranteed
to be grammatically correct. Unfortunately, sequences longer
than 4 words may not be grammatically correct.

Using this approach, how can we create a relation between
what is being said towards the end of the sentence with the
beginning of the sentence? We simply take advantage of the

fact that low frequency words are especially meaningful. We
can use them and omit stop words, i.e. words which occur
with a high frequency, to extend the range of probabilities
p(w|w1, ..., wi). We will call these probabilities p̂. In order to
store sentences using the probabilities p̂, we iterate over all
words of a sentence. We keep track of the words with the
smallest frequencies. Let wm1 be the word with the smallest
frequency among the words seen in the sentence so far. Let
wm2 be the word with the second smallest frequency among
the words seen in the sentence so far. We will use the words
wm2 and wm1 in addition to the last word that has been
processed in order to find alternative words to append to this
sentence. We will store probabilities p̂(w|wm2, wm1, wi). Fig.
7 shows how these probabilities are updated for a sample
sentence “I hope that tomorrow the sun will shine.”. In
practice, it is sufficient, so simply count how often a certain
word follows a given tuple.

Let w1, ..., wi be a sequence of words. We can use
p(w|wi−2, wi−1, wi) to find alternative words to expand the
existing sentence. Given the sentence fragment w1, ..., wi, we
can extract the two words wm1 and wm2 from this fragment,
which occur least frequent in our vocabulary. Therefore,
p̂(w|wm2, wm1, wi) as well as p(w|wi−2, wi−1, wi) present
us with a list of possible words wich can be used to ex-
tend the sentence. We will only allow words to expand the
given sentence which have a non-zero probability due to
p(w|wi−2, wi−1, wi) and p̂(w|wm2, wm1, wi). We will use a
conservative approach. We use the minimum probability of
both p(w|wi−2, wi−1, wi) and p̂(w|wm2, wm1, wi) in order to
find a word to expand the given sentence, i.e. we compute

p(w|w1, ..., wi) ≈ min{p(w|wi−2, wi−1, wi), p̂(w|wm2, wm1, wi)}.
(2)

Instead of using the minimum, we could also work with the
sum of these probabilities (maintaining zero probability) or
we could compute the product of these probabilities. It would
also be possible to use log probabilities. However, for the
experiments below, we have used the minimum-operation.

This approach could also be implemented by a neural
network. In order to find the word with the smallest frequency
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among the words that have been processed from the sentence
so far, we iterate over all words sequentially. We would need
memory to store the frequency of the current word. It would
get updated whenever the frequency of the current word is
less than what is already stored in this memory. Whenever
a new sentence starts, this memory would be initialized to
the frequency of the first word of the sentence. All of this
could be achieved with a set of neurons, one neuron for each
word of our vocabulary. The frequency with which these words
occur in our daily language could be stored in the weights
to another neuron. These weights could be trained through
Hebbian learning [13]. This neuron would be activated by
the current word which is processed. The activation of this
neuron could be transferred to another neuron but only if the
activation is less than the current activation of that neuron.
This could be achieved by first inverting the signal (now larger
represents higher frequency) and then taking the maximum
of the current activation stored by this neuron and the new
value. This maximum operation could be performed using
a softmax function. Alternatively, Long Short-Term Memory
[23] could be used. Long Short-Term Memory would be
updated whenever the signal is larger. It would be reset to
zero, when a new sentence starts. An alternative to inverting
the signal would be to have neurons arranged depending on
their usage during language. Frequently used neurons would
be located in one part of the brain, while neurons coding for

words heard less often would be stored in another part of
the brain. Neurons coding for words less often would have
a higher activation because they are located in a different
area. This variant is similar to using word indices where
low index words represent words which are often heard or
processed, while high index words represent words which are
less frequently heard or processed.

VII. RECALL OF SENTENCES

Using the above, it is quite easy to construct a system which
is capable of natural language processing. Suppose that we
have a fully trained system and that we pose a question or
assertion to this system. Let w1, ..., wn be this sentence. From
this sentence, we can extract the k words which have the
lowest frequency within the words of this sentence. These
sentences represent the gist of what has been said so far.
We can use these words to recall sentences which have been
stored in the system in a distributed way. This can be done
by taking all k words as seeds or starting words for sentence
generation. Whenever a sentence has to be extended, we search
for possible alternatives. For each new words, we allow maybe
three to four alternatives. Allowing for four alternatives, we
would obtain 43 = 64 possible sentences after finding three
more words. However, with increasing length of the sentence,
the number of alternatives gets reduced. It is possible that
only a single alternative is grammatically correct given the



probabilities stored by the system. Starting from a seed word,
we continue until an end of sentence marker has been reached,
i.e. a full stop, exclamation mark or question mark.

This leads to a number of sentence fragments. Each frag-
ment starts with one of the seed words. In order to obtain a full
sentence, we need to expand it towards the beginning of the
sentence. We need all of the above probabilities in opposite
reading order. Let pr(w|w1, ..., wn) be the probability that
word w follows the words w1, ..., wn in normal reading order.
In the same way that we have computed pr(w|w1, ..., wn),
we can compute pl(w|w1, ..., wn), the probability that word
w precedes the sequence w1, ..., wn. Given pr and pl, we can
now extend a sentence in any direction. Any fragment of a
sentence can be completed until an end of sentence marker
has been reached.

Given any kind of input, which we call the original input,
we can extract k seed words. Starting with these seed words,
we can generate a number of possible sentences using the
probabilities pl and pr. Then, we can use heuristics to decide
which sentence would be suitable as a reply to the original
input. For our experiments we have used the following 5
different heuristics to provide a quantitative rating of all
sentences. 1) sum of word-sequence-probabilities, i.e. the
probability that one word follows or precedes a given word
of the sentence. 2) sum of n-gram probabilities over all n-
grams of the sentence. 3) information content of the sentence,
i.e. sum of word frequencies of all words of the sentence. 4)
similarity of the sentence to the previous sentence. One point
per word of the original sentence which also occurs in the
generated sentence. 5) Fit of the generated sentence to the
topic of the original sentence.

For each heuristic we compute a quantitative score si with
i ∈ {1, ..., 5}. We now fully describe how these scores are
computed for a complete sentence w1, ..., wn as a reply to the
original input w′1, ..., w

′
l1

.
Sum of word-sequence-probabilities s1:

s1 =

n∑
i=2

(pr(wi|wi−1) + pl(wi−1|wi)) (3)

Sum of n-gram probabilities s2:

s2 =

n∑
i=4

(pr(wi|wi−3, wi−2, wi−1) + pl(wi−3|wi−2, wi−1, wi))

(4)
Information content of the sentence s3. Word indices are

sorted in order of decreasing frequency. Hence, we have wi >
wi−1 if p(wi) < p(wi−1).

s3 =

n∑
i=1

wi (5)

Similarity of the sentence to the previous sentence. s4: Let
w′′1 , ..., w

′′
l2

be the unique words of the sentence w′1, ..., w
′
l1

,
then

s4 =

n∑
i=1

l2∑
j=1

δ(wi, w
′′
j ) (6)

where δ is the Kronecker delta.
Fit of the generated sentence to the topic of the original

sentence s5. Let ws
1, ..., w

s
k be the k words of the original

sentence w′1, ..., w
′
l1

with the least frequency. The word ws
1

is the word from the original sentence with the smallest
frequency in our vocabulary.

s5 =

n∑
i=1

k∑
j=1

(k − j + 1)δ(wi, w
s
j ) (7)

We normalize each score si(a) that has been computed
for sentence a = w1, ..., wn, by dividing each score by the
maximum of all scores over all generated sentences. Then we
sum up all normalized scores, obtaining s(a).

s(a) =
∑

i=1,...,5

si(a)

maxb si(b)
(8)

Instead of normalizing by the maximum score, it would also
be possible to normalize by dividing scores by the sum of
scores. Finally, we chose the sentence a with highest score
s(a) among the generated sentences as a reply to the original
sentence w′1, ..., w

′
l1

. It would also be possible to use only a
subset of the five heuristics presented here. A weighted sum
could also be used to compute the overall score s(a). This
would allow us to give more weight to certain more relevant
heuristics in relation to others that are less relevant.

The complete model is shown in Fig. 8. The input sequence
is converted into individual words. All words are analyzed
based on their frequency. The most relevant words (least
frequent words) are memorized. For each of these words, a
sentence is generated based on statistical data which has been
gathered so far. Among these sentences, one sentence is finally
selected.

VIII. MATERIALS AND METHODS

In order to test the above method for storing and recalling
sentences, a corpus of 59 million words has been used. The
corpus has been extracted from the site Reddit.com, which
is a popular discussion forum. All comments from the sub-
reddits art, askreddit, askscience, books, diy, documentaries,
europe, explainlikeimfive, food, funny, futurology, gadgets,
gaming, getmotivated, history, internetisbeautiful, jokes, life-
protips, listentothis, mildlyinteresting, movies, music, news,
personalfinance, philosophy, science, sports, television, to-
dayilearned, upliftingnews, videos, worldnews, which were
available through the web page on 5 March 2017 have been
included in the corpus (16.2 million words). Additionally,
all comments from the “Complete Public Reddit Comments
Corpus (SQLite)”1 posted on 1 July 2014 have also been
used for learning (42.8 million words). Together, a corpus of
59 million words have been used for training. The method
was implemented using unordered maps in C++ to store the
frequency with which a given word follows a certain tuple of
words.

1https://archive.org/details/2015_reddit_comments_
corpus_sqlite
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Fig. 8. Neural model for language generation. As a first step, the input is separated into words. Each word is analyzed depending on its frequency during
natural language usage. Low frequency words are memorized and sentences are generated based on these words. Finally, a single sentence is chosen which
is then output.

A number of sample questions and assertions will be
addressed to this system. For each question, we show the
best answers sorted with decreasing score s(a). The punc-
tuation mark of the preceding sentence is also included in
the computation. Additional answers which differ only in the
punctuation mark of the preceding sentence have been omitted.
We take our questions and assertions from a quite general
subject area. The answers, that have been given by the system,
are stored somewhere almost verbatim in the corpus. All words
are written in small letters. No distinction was made between
lower case and capital letters in order to save memory space.
The parameter k was set to 3. In other words, only 3 words
are used to describe the gist of the original sentence. When
expanding sentences, we only consider the two alternatives
which are most likely. Additionally, we also allow up to two
more alternatives if these alternatives are among the k most
relevant words from the original input sentence. Most of the
answers created with this system are reasonable replies to the

original sentence.
• Statement: i like the beatles .

– if you like rock music , you’ll like the beatles .
– i like the way it is . (Corpus contains “and I don’t

like the way it is”)
– i like the way it looks . (Corpus contains “I just like

the way it looks.”)
– i like the way you think .

• Statement: city life is not better than country life .
– this is exactly what’s wrong with this city country

right now . (Corpus contains “This is EXACTLY
what’s wrong with this city/country right now.”)

– you’re not from chicago and you don’t know jack
shit about city life .

– what specifically draws you to city life ?
– i’m english and know the area the book was set in the

book was set in the south west of england i thought it
was a pretty decent portrayal of country life . (Corpus



contains “I’m English and know the area the book
was set in relatively well (I live in the South West of
England) - I thought it was a pretty decent portrayal
of country life.”)

• Question: is the country a better place to live ?
– a place to live is a good start .
– i want to live . (Corpus contains “My only goal right

now is to manage my depression well enough to be
able to function in the life I want to live.”)

– i live near the mountains .
– i live near the border . (Corpus contains “I used to

live near the border and miss it :p)”)
• Question: what is better , democracy or a dictatorship ?

– i think the alternative is benevolent dictatorship
. (Corpus contains “I think the alternative is
r/Bitcoin.”)

– with more recent reforms giving better investment
and autonomy along with breaking the region up into
better administered provinces a lot of the tensions
have been diminished from earlier years when in-
donesia was a military dictatorship .

– what tb wants is a benevolent dictatorship . (Corpus
contains “What TB wants is a benevolent dictator-
ship, and everyone knows that just in practice does
not work.”)

– this is the mark of a dictatorship .
• Statement: rock music is great .

– rock , folk , blues , jazz , and pretty much every
genre of music ever . (Corpus contains “rock, folk,
blues, jazz, electronic, hip-hop, world, punk, metal,
soul.”)

– this clipping makes the distortion sound we’re all
familiar with in rock music .

– his harmonies are really fucking intelligent on a level
you don’t usually hear in rock music .

– the music is great . (Fragment “the music is great”
contained multiple times in corpus)

• Question: why are so many people unemployed ?
– &gt , why do we have a ton of people who are

overworked doing the jobs of 2 3 people and then
also have millions of unemployed who need work ?
(Corpus contains “Why do we have a ton of people
who are overworked doing the jobs of 2-3 people
and then also have millions of unemployed who need
work?”)

– you have a very unique play style to do well with ,
and that’s why many people don’t like them .

– also , and that’s why many of us are not . (Not in
corpus)

– obviously , there are diminishing returns which is
why it isn’t 1 person does 80 hours and 3 people are
unemployed .

• Statement: university education is expensive .
– i am in the second semester of my freshman year at

a fairly expensive university .
– i’m guessing it doesn’t require a university education

.
– a university is not a criminal court , the student

doesn’t risk getting jailed at the end of the school
proceeding , and so the school isn’t required to adopt
a criminal standard of evidence .

– the full name of the university . (Corpus contains “
The only time I ever use it for us, however, is when
I am using the full name of the university.”)

• Statement: students do not learn as much as they should
.

– why should students then study literature and not
media more broadly ?

– i should learn to play the game .
– students should make wise borrowing decisions .
– the students critically developing how to obtain the

answers they seek succeed later in life .

IX. CONCLUSIONS

The above system is able to store and recall sentences.
The system processes any kind of input sentence, extracts the
relevant words and generates a seemingly meaningful answer
sentence. Internally, several alternative answer sentences are
generated and subsequently scored based on the original
input sentence. Only statistical data gathered from previously
processed input sentences is used to generate answer sentences
and to score them. The system essentially tokenizes the input
sentence into words and generates n-tuples with n ≤ 3
from these words. Some of these tuples contain sequentially
ordered words as they appeared in the input sentence while
the remaining tuples may be considered a summary of the
sentence processed so far. For each tuple, it is simply counted
how often a particular word occurs as an alternative for the
next word to be read or generated. Using only information
from these 3-tuples, it is possible to generate quite long answer
sentences.

The system could be used to create autonomous robots that
can interact with humans in a natural way. Humans would be
able to address such robots using a natural language interface
and would obtain a reply in a similar way that a human
would respond (more or less relevant to the original input).
Additionally, this system could also be used to improve voice
recognition systems or natural language translation systems
because the system generates plausible alternative words for
sentence fragments which have been obtained so far. Given
such alternative words, it is possible to reduce the number
of possible meanings and hence to simplify the task of voice
recognition or automatic translation. Finally, people who are
unable to talk, could use it for automatic text expansion.
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