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Related Concepts

– Automatic White Balance

Definition

Color constancy is the ability to perceive colors as approximately constant
even though the light entering the eye varies with the illuminant. Color con-
stancy also names the field of research investigating the extent of this ability,
i.e. the conditions under which a color is actually perceived as constant and
which factors influence color constancy. Computer scientists working in the field
of color constancy try to mimic this ability in order to produce images which
are independent of the illuminant, i.e. color constant. Simple color constancy
algorithms, also known under the name automatic white balance, are used in
digital cameras to compute a color corrected output image. The input of a color
constancy algorithm is often one image taken under an arbitrary illuminant and
the output of a color constancy algorithm is frequently the image as it would
appear had it been taken with a canonical illuminant such as CIE Standard
Illuminant D65 or a spectrally uniform illuminant.

Background

An introduction to computational color constancy is given by Ebner [1]. Mal-
oney [2] also reviews different algorithms for surface color perception. Color is
a product of the brain [3]. When an observer perceives an object, processing
starts with the retinal sensors. The sensors in the retina measure the light en-
tering the eye. However, the light entering the eye is dependent on both the
spectral characteristics of the illuminant and the reflectance properties of the
object. Therefore, without any additional processing, the measured light varies
with the illuminant.

In the eye, two different types of retinal sensors exist: rods and cones. The
rods are used for viewing when little light is available. The cones are mostly
used in bright light conditions for color vision. Three types of cones can be
distinguished which absorb light primarily in the red, green, and blue parts of
the spectrum. Similarly, a digital sensor often measures the incident light in
three different parts of the spectrum and uses red, green and blue sub-sensors.
However, cameras with four sub-sensors, e.g. red, green, blue and cyan also exist.

Suppose that an observer views a diffusely reflecting surface which uniformly
reflects the incident light. Now assume that the surface is illuminated by a candle.
A candle emits more light towards the red part of the spectrum. The candle light
will reach the surface where part of the light will be absorbed and the remainder
will be reflected. Part of the reflected light enters the eye where it is measured.
The sensitivity function of the sensors in combination with the amount of light



entering the eye will determine how strongly the sensors respond. Now consider
another illuminant with a higher color temperature, e.g. daylight or an electronic
flash. Such an illuminant will emit more light towards the blue spectrum com-
pared to the candle. If the same surface is viewed with an illuminant that has
a high color temperature then the sensors shift their response towards the blue
part of the spectrum. Assuming a normalized response of all three sensors, then
the reflected light will have a red color cast when the surface is illuminated by a
candle. The measured light will appear white during daylight and it will have a
blueish color cast for an illuminant with a high color temperature. The observer,
however will be able to call out the correct color of the surface independent of the
illuminant. Color constancy algorithms try to mimic this ability by computing
an image which is independent of the illuminant.

Theory

Let I(λ, x, y) be the irradiance captured by either a digital sensor or by the
eye at position (x, y) for wavelength λ. Let Si(λ) be the response function of
sensor i. Then the response of the sensor ci(x, y) at position (x, y) is given by

ci(x, y) =

∫
Si(λ)I(λ, x, y)dλ.

The integration is done over all wavelengths to which the sensor responds. As-
suming three receptors with sensitivity in the red, green and blue parts of the
spectrum, then i ∈ {r, g, b}. In this case, the measurement of the sensor is a
three component vector c = [cr, cg, cb].

The irradiance I falling onto the sensor is a result of the light reflected from
an object patch. Let L(λ, x, y) be the irradiance falling onto a diffusely reflecting
object patch which is imaged at position (x, y) of the sensor arrangement. Let
R(λ, x, y) be the reflectance of the imaged object patch. Thus,

I(λ, x, y) = G(x, y)R(λ, x, y)L(λ, x, y)

where G(x, y) is a geometry factor which takes the orientation between the
surface and the light source into account. For a diffusely reflecting surface,
G(x, y) = cosα where α is the angle between the unit vector which points from
the surface into the direction of the light source and the normal vector at the
corresponding surface position. Thus, the sensor response can be written as

ci(x, y) = G(x, y)

∫
Si(λ)R(λ, x, y)L(λ, x, y)dλ.

From this equation, it is apparent that the sensor response depends on the ori-
entation of the patch relative to the light source (because of G(x, y)), it depends
on the sensitivity Si of the sensor i, the reflectance of the object patch R(λ, x, y)
and on the illuminant L(λ, x, y). Some color constancy algorithms are based on
a set of basis functions to model illuminants and reflectances. See Maloney [2]
for an introduction.



Color constancy algorithms frequently assume that the sensitivity of the sen-
sors is very narrow band. Assuming that they have the shape of a delta function,
Si = δ(λ− λi), it holds that

ci(x, y) = G(x, y)

∫
δ(λ − λi)R(λ, x, y)L(λ, x, y)dλ,

ci(x, y) = G(x, y)R(λi, x, y)L(λi, x, y).

This equation is often written in the form

ci(x, y) = G(x, y)Ri(x, y)Li(x, y)

where the only difference to the previous equation is that the index i is used
instead of the parameter λi. In this treatment, sensor response, reflectance and
the illuminant is considered only for three distinct wavelengths, i.e. color bands,
with i ∈ {r, g, b}.

A color constancy algorithm tries to discount the illuminant by computing a
color constant descriptor d(c) which is independent of the illuminant L(x, y) =
[Lr(x, y), Lg(x, y), Lb(x, y)]. Geusebroek et al. [4] have derived several different
descriptors which can be computed from c and are invariant to some imaging
conditions such as viewing direction, surface orientation, highlights, illumination
direction, illumination intensity or illumination color. Finlayson and Hordley [5]
have shown how a color constant descriptor can be computed provided that the
illuminant can be approximated by a black body radiator. Apart from computing
a color constant descriptor a color constancy algorithm usually tries to output
an image of the scene which would either correspond to the perception of a
human photographer observing the scene or it would correspond to the image
that would have resulted if a spectrally uniform illuminant or illuminant D65
had been used.

An ideal solution to the problem of color constancy would be to compute
R(x, y) = [Rr(x, y), Rg(x, y), Rb(x, y)] from the sensor responses. It is of course
clear that this problem cannot be solved without making additional assumptions,
because for each position on the sensor array, one only has three measurements
but there are seven unknowns (shading, reflectance and illumination compo-
nents). Note that the above model for image generation is already a simple
model assuming narrow band sensor responses.

A frequently made assumption is that the illuminant varies slowly over the
image while reflectance is able to change abruptly between sensor responses.
Since color constancy algorithms are based on certain assumptions, they will
not work correctly if the assumptions are violated. In many cases, it is possible
to find images where the color constancy algorithm does not perform as intended.
The goal is to develop algorithms which perform well on most everyday scenes.

Simple Algorithms If a single illuminant illuminates the scene uniformly, i.e.
Li(x, y) = Li, then it suffices to estimate a three component vector L̃ from all
the measured sensor responses with L̃ ≈ L. Given an estimate L̃(x, y), a color



constant descriptor can be computed by dividing the sensor response by the
estimate of the illuminant.

ci(x, y)

L̃i(x, y)
=

G(x, y)Ri(x, y)Li(x, y)

L̃i(x, y)
≈

G(x, y)Ri(x, y)Li(x, y)

Li(x, y)
= G(x, y)Ri(x, y)

Such an output image will be a shaded reflectance image. In other words, a
diagonal color transform suffices if the sensor response is very narrow band. Some
color constancy algorithms, however, also use a general 3 × 3 matrix transform
to compute a color corrected output image.

It is also possible to transform a given image taken under one illuminant
L to another image taken under a different illuminant L′. This can be done by
multiplying each sensor response vector by a diagonal matrix whose elements are

set to ki =
L′

i

Li

. The coefficients ki are called von Kries coefficients [6]. Necessary
and sufficient conditions on whether von Kries chromatic adaptation gives color
constancy have been derived by West and Brill [7].

A simple algorithm to estimate the color of the illuminant is the white patch
Retinex algorithm. It is a simplified version of the parallel Retinex algorithm [8].
In order to understand how this algorithm works, suppose that a white patch, i.e.
a uniformly reflecting patch, is contained in the imaged scene which is uniformly
illuminated. Assuming a normalized sensor response, then the response of the
sensors on the white patch will be an estimate of the illuminant. For the white
patch, it holds that Ri = 1 which leads to ci(white patch) = GLi. The white
patch algorithm treats each color band separately and searches for the maximum
response which is assumed to be an estimate of the illuminant.

L̃i = max
x,y

ci(x, y)

Instead of locating the maximum response, one can also compute a histogram
of the sensor responses and then set the estimate of the illuminant at some
percentage from above. This will lead to a more robust estimate of the illuminant.
Figure 1(b) shows the output of the white patch Retinex algorithm for a sample
image shown in Figure 1(a). The illuminant was estimated at 5% from above
using a histogram approach for each color band.

Another simple algorithm is based on the gray world assumption which is
due to Buchsbaum [9]. According to Buchsbaum, the world is gray on average.
Let ai be the global average of all sensor responses for color channel i where n

is the number of sensors.

ai =
1

n

∑
x,y

ci(x, y) =
1

n

∑
x,y

G(x, y)Ri(x, y)Li(x, y)

Assuming a uniform illuminant Li(x, y) = Li and an independence between
shading and reflectance, then

ai = Li

1

n

∑
x,y

G(x, y)Ri(x, y) = LiE[G(x, y)Ri(x, y)] = LiE[G(x, y)][Ri(x, y)]
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Fig. 1. (a) sample input image (b) results for the white patch Retinex algorithm
using a histogram (c) results for the gray world assumption.

where E[x] denotes the expected value of x. Suppose that a large number of dif-
ferently colored objects are contained in the scene. Thus, a uniform distribution
of colors is assumed. This results in E[Ri(x, y)] =

1
n

∑
x,y Ri(x, y) =

1
2 assuming

a range of [0, 1] for reflectances and E[G(x, y)] = c where c is a constant. The
result is

ai =
c

2
Li.

Hence, the illuminant is proportional to global space average color Li ∝ ai and
an estimate of the illuminant can be obtained by setting

L̃i = 2ai.

Using c = 1 assumes that all patches are frontally oriented or alternatively,
that the geometry factor is subsumed into a combined reflectance and geometry
factor. Figure 1(c) shows the results for the gray world assumption on a sample
image. Figure 2 shows the results for another image where the assumption, that
a large number of different colored objects are contained in the scene, is not
fulfilled. In this case, the gray world assumption will not work correctly.

Additional Color Constancy Algorithms Other important algorithms include
gamut constraint algorithms originally developed by Forsyth [10]. A gamut con-
straint algorithm looks at the gamut of colors contained in a sample image
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Fig. 2. (a) image of a leaf from a banana plant (b) results for the gray world
assumption.

and then transforms this color gamut to a color gamut of a canonical image.
Forsyth’s algorithm operates on three color channels. Finlayson [11] has devel-
oped a variant which operates with a projected color gamut (2D gamut constraint
algorithm). Van de Weijer et al. [12] have introduced the gray-edge hypothesis.
While the gray-world assumption suggests that the world is gray on average,
the gray-edge hypothesis suggests that image derivatives are gray on average.
Brainard and Freeman [13] have addressed the problem of color constancy using
Bayesian decision theory.

Uniform vs non-uniform illumination Many color constancy algorithms assume
that the scene is uniformly illuminated by a single illuminant. If multiple light
sources are distributed over the scene, then it is assumed that these light sources
can be combined into a single average illuminant. This is possible provided that
the light sources are sufficiently distant from the scene. If the illumination is
uniform, then only a three component descriptor has to be estimated from the
input image. However, in practice, many scenes are illuminated non-uniformly.
Very often, one has several different illuminants. For instance, daylight may be
falling through a window while artificial lights have already been turned on
inside a building. Non-uniform illumination may also be present outside during
a sunny day. Consider a family sitting in the garden under a red umbrella and
a photographer taking a photograph of the family members. The family would
be illuminated by light reflected from the red umbrella while the surrounding
would be illuminated by direct sunlight. A digital camera usually corrects for a
single illuminant. Thus, either the family members would have a red color cast
to them or the background colors would not look right in the resulting image.

Algorithms have also been developed which can cope with a spatially vary-
ing illuminant. Land and McCann’s Retinex algorithm [8] is a parallel algorithm
for color constancy which allows for a non-uniform illumination. They only con-
sidered one-dimensional paths over the sensor array. Horn [14] extended Land’s
Retinex algorithm to two dimensions. Blake [15] provided additional improve-
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Fig. 3. Local space average color after 0, 200 and 2000 iterations.

ments. Barnard et al. [16] extended the 2D gamut constraint algorithm to scenes
with varying illumination.

Ebner [1] showed how a grid of processing elements is able to estimate the
color of the illuminant locally using the gray world assumption. Each processing
element receives the measurement ci from the sensor and computes local space
average color. The processing elements are laterally connected to neighboring
processing elements. Let ai(x, y) be the current estimate of local space average
color for a processing element located at position (x, y). Each processing element
receives the estimate of local space average color from neighboring elements
and averages the neighboring estimates to update its own estimate. A small
component from the sensor measurement is then added to this estimate. Let p

be a small percentage and let N(x, y) be the neighborhood of the processing
element at position (x, y) then the computation of a processing element consists
of the following two updates.

a′i(x, y) =
1

|N(x, y)|

∑
(x′,y′)∈N(x,y)

ai(x
′, y′)

ai(x, y) = (1− p)a′i(x, y) + pci(x, y)

The two updates are carried out iteratively. This process converges to local space
average color which is an estimate of the illuminant, L̃i(x, y) = 2ai(x, y). Figure 3
shows local space average color after 0, 200 and 2000 iterations using p = 0.0001
given the input image shown in Figure 4(b). The extent of the averaging is
determined by the parameter p. Figure 4 shows the output when local space
average color is used to estimate the illuminant locally. Local average color was
computed for a down-scaled image (25% in each direction) the original image
had 768× 512 pixels. Ebner [1] suggested that a similar algorithm may used by
the brain for color perception.

Advanced reflectance models The theoretical model of color image formation,
that has been given above, assumed that objects diffusely reflect the incident
light. This is not the case for all surfaces, e.g. brushed metal or pastics. Espe-
cially for plastic objects or objects covered with gloss varnish a more elaborate
reflectance model is more appropriate. The dichromatic reflection model [17,18]
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Fig. 4. (a & b) input images (c & d) results using local space average color.

assumes that reflectance is composed of interface reflectance, which occurs at
the boundary between the object’s surface and air, and body reflectance which
is due to the scattering of light below the object’s surface. In other words, the
reflection of light from the object’s surface is assumed to be partially specular
and partially diffuse. Color constancy algorithms have also been developed using
the dichromatic reflection model, e.g. by Risson [19].

Application

Color constancy algorithms are ideal for color correction in digital photo-
graphy. In digital photography, the goal is to obtain a color corrected image that
corresponds nicely to human perception. A printed photograph or a photograph
viewed on a computer display should appear in exactly the same way that the
human observer (the photographer) perceived the scene. Besides digital photog-
raphy, color constancy algorithms can be applied in the context of most com-
puter vision tasks. For many tasks one should try to estimate object reflectances.
For instance, image segmentation would not be as difficult, if object reflectance
could be correctly determined. Similarly, color-based object recognition is easier
if performed on reflectance information. Thus, color constancy algorithms should
often be applied as a pre-processing step. This holds especially for autonomous
mobile robots equipped with a vision system because autonomous mobile robots
need to operate in different environments under different illuminants.



Experimental Results and Datasets

A comparison of computational color constancy algorithms is given by Barnard
et al. [20] for synthetic as well as real image data. Another detailed comparison of
color constancy algorithms along with pseudo code for many algorithms is given
by Ebner [1]. Data for computer vision and computational color science can be
found at the Simon Frasier University, Canada (www.cs.sfu.ca/~colour/data/).
A repository has also been created by the color group at the University of East
Anglia, UK (www.colour-research.com). A database for spectral color science
is available from the University of Eastern Finland, Finland (spectral.joensuu.fi/).
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