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We have developed an on-line evolutionary vision system which is able to evolve detectors for a variety of
different objects. The system processes a video stream and uses motion as a cue to extract moving objects from
this video sequence. The center of gravity of the largest object, currently in the image, is taken as the teaching
input, i.e. the object which should be detected by the evolved object detector. Each object detector only takes
a single image as input. It uses image processing operations to transform the input image into an output image
which has a maximum response as close as possible to the teaching input. Since the detectors only work on
single images, they are basically appearance detectors. However, the appearance of the object may change as the
object moves or changes its orientation relative to the position of the camera. Hence multiple different detectors
will need to be combined to represent the concept of an object. We use gene duplication to evolve sub-detectors
for the different appearances of an object. The difficulty in evolving these sub-detectors is that only one type of
appearance is visible for any given image. Hence, the genetic operators could disrupt the genetic material, i.e.
the sub-detectors which are currently not in use.

1 Motivation
The human visual system is a product of natural evo-
lution. It is highly advanced. Indeed, to date, no ar-
tificial systems have been created which match the
abilities of the human visual system. Obviously, it is
of considerable interest to learn how the visual sys-
tem works and how exactly it was created during the
course of natural evolution.

Our long term goal is to get a deeper understanding
of the human visual system and to reproduce at least
parts of human perceptual behavior. Ebner (2009) has
created an online evolutionary vision system which
takes an image stream as input and evolves object
detectors which locate interesting objects (as deter-
mined by the user). In an early prototype system,
interesting objects had to be pointed out using the
mouse pointer. The user would follow the object us-
ing the mouse as the object moves across the screen.
The user created the teaching input (position of mouse
pointer) by pressing the mouse button. Ebner (2010b)
then went on to remove the user input from the sys-
tem. Motion was found to be a valuable cue to provide
the teaching input. Hence, independently moving ob-
jects were extracted from the image stream and the

Figure 1: The spatial distribution of colors changes as
on object (toy train) moves along a track.

center of gravity of the detected motion was taken as
the teaching input. Evolved object detectors worked
on single images, i.e. were able to detect the desired
object without the motion cue. After all, humans are
also able to correctly name objects which are shown
in images.

In Ebner’s work, it became apparent that detectors
for objects without unique colors are more difficult to
evolve than detectors which can be based on unique
colors by which the object can be identified. If an ob-
ject cannot be uniquely identified by a single color,
one has to take the spatial relationship between colors
or the shape of the object in general into account to
create a successful detector for such an object. How-
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Figure 2: System overview.

ever, the shape of the object as well as the spatial rela-
tionship of the colors changes as the orientation of the
object relative to the position of the camera changes.
This is illustrated in Figure 1. In theory, an overall
object detector can be based on several sub-detectors
each of which is tuned to a single appearance of an
object on the screen. In the human visual system the
detectors are independent of the object’s size on the
retina due to the special type of mapping (complex-
logarithmic) from the retinal receptors to visual area
V1 (Schwartz 1977).

With this contribution, we have made a move to-
wards creating an artificial system, shaped by evo-
lution, which is able to evolve detectors responding
to an overall concept, i.e. detectors which consist of
sub-detectors each of which tuned to a particular ap-
pearance of an object. The system is illustrated in
Figure 2. The system takes a video stream as input.
It maintains a population of image processing algo-
rithms. The best individual of the population is used
to detect the desired object. If the detected position
is close enough to the actual position of the object
then the next image is processed. Otherwise, evolu-
tionary operators are used to create a new generation
of offspring. Evolution continues through additional
images as long as it is required, i.e. until the detec-
tion accuracy is good enough. We show that gene du-
plication is an important evolutionary operator which
allows us to incrementally evolve concept detectors.
Without gene duplication the problem is more diffi-
cult to solve.

The paper is structured as follows. In section 2, we
provide a brief introduction into the human vision sys-
tem. Section 3 puts our work into the context of re-
search in the field of evolutionary computer vision.
Section 4 describes our approach to concept learning
using gene duplication. Section 5 describes the exper-
iments that we have performed. Conclusions are given
in Section 6.

2 The Human Vision System
The visual system is highly structured (Zeki 1993).
Processing of visual information of course starts with

the retinal receptors (Dowling 1987). Three types of
receptors can be distinguished for color perception
which measure the light in the red, green and blue
parts of the spectrum (Dartnall, Bowmaker, & Mollon
1983). This information is then sent to the primary vi-
sual cortex, which is located in the back of the brain.
The primary visual cortex, also called visual area 1 or
V1 is also highly structured (Livingstone and Hubel
1984). Inside the so called ocular dominance seg-
ments, neurons respond primarily to stimuli presented
to either the left or the right eye. Within these seg-
ments, neurons can be found which respond to light
of certain wavelengths or to lines with different ori-
entations. In short, the visual information is analyzed
locally with respect to color and lines. Higher visual
areas receive their input from V1 and further analyze
it to recover shape, motion and the color of objects.
It appears that the different aspects shape, motion and
color of a stimulus are processed via separate areas of
the brain.

So called matched filters (Schrater, Knill, and Si-
moncelli 2000; Simpson and Manahilov 2001) could
be used to detect objects of known shape. An over-
all detector which responds in a generalized manner,
i.e. whenever a random view of an object appears, can
be created by simply merging (adding) the output of
several matched filters. Such a detector will respond
whenever one of the sub-detectors, i.e. matched filters
responds. We investigate how such general detectors
can be generated through artificial evolution.

3 Evolutionary Computer Vision
Evolutionary computer vision is an active research
field since the early 1990s with the pioneering work
of Lohmann (1991). An recent overview is given by
Cagnoni (Cagnoni 2008). Evolutionary computer vi-
sion can be used to optimize a given algorithm for
a particular task. In this case, the algorithm is either
well known from the literature or developed by a hu-
man and an evolutionary algorithm is used to opti-
mize parameters of the algorithm. However, evolu-
tionary algorithms can also be used to evolve an en-
tire computer vision algorithm from scratch using Ge-
netic Programming (Koza 1992). This is of course
a highly interesting approach as it would eventually
allow the construction of systems which automati-
cally create vision algorithms based on some type of
fitness function. Ebner (2008) has been working to-
wards the creation of an adaptive vision system. Cre-
ating such adaptive systems is especially important
as many computer vision algorithms are very fragile.
They work well in the lab but when taken to a differ-
ent environment the algorithms often no longer work
because the ambient light has changed, e.g. from arti-
ficial light to direct sunlight. The human visual appa-
ratus adapts easily to such changing conditions. Some
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artificial systems compute so called intrinsic images
(see Matsushita et al. (2004)). Even though it is pos-
sible to apply Color Constancy algorithms to arrive at
a descriptor which is independent of the illuminant,
current computer vision algorithms are far from being
fully adaptive. Using evolutionary algorithms it could
be possible to create an artificial vision system which
also adapts to environmental conditions.

Such an adaptive vision system needs to adapt to
an image stream on an image by image basis. That’s
why our system works with a population of algo-
rithms which are all applied to an incoming image.
The best algorithms are allowed to reproduce and cre-
ate offspring which are then tested on the next incom-
ing image. Of course this requires extensive computa-
tional resources. Computer vision algorithms usually
require a lot of processing power. However, we have
to apply multiple different algorithms to each input
image. The time required to evaluate all of the algo-
rithms would be extensive using single CPU process-
ing. We have used GPU accelerated image processing
to speed up the evaluation. GPU accelerated image
processing is known to provide a speedup of over 40
if ten or more high level image operators are applied
(Ebner 2010a).

4 Gene Duplication
Ebner has used a variant of the Cartesian Genetic Pro-
gramming approach (Miller 1999) for his experiments
as shown in Figure 3. Each evolved individual con-
sists of a set of n1 high level image processing op-
erators and a processing matrix of low level image
operators of size nx × ny which are applied to the in-
put image. Each high level processing operator trans-
forms the input image in some way to produce a mod-
ified image. Operators include edge detection, Lapla-
cian, convolution or segmentation. In contrast to the
high level operators which also take the surrounding
of an image pixel into account, the operators used in
the processing matrix use point operations to combine
the output obtained so far on a pixel by pixel basis.
The list of both types of operators is shown in Figure
4. This set of operators is fully described in (Ebner
2009). Due to the lack of space it is not possible to
explain the functions of these operators in detail. The
interested reader is referred to (Ebner 2009).

Ebner has called this the n1 − nx × ny representa-
tion. Since there are ny output operators on the right
hand side of this representation, there are basically
ny sub-detectors in this representation. The output of
these ny sub-detectors is averaged to obtain a single
output image for this detector. The output RGB pixel
is interpreted as a 24 bit value and the maximum re-
sponse over all image pixels denotes the position of
the detected object. If multiple image pixels have the
same maximum value, then we compute the center of
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Figure 3: Each individual (byte array) is decoded into
a computer vision algorithm which consists of n1 high
level operators and a processing matrix of nx×ny low
level operators. The output of the ny sub-detectors is
averaged to compute the output of the entire detector.

Set of operators
High level
input node
operators
(used in
column 1)

Image, DX, DY, Lap, Grad,
ImageGray, ImageChrom,
ImageLogDX, ImageConv1,
ImageConv4, ImageConv16,
ImageConvd, ImageSeg, 0.0,
0.5, 1.0

Low level
node op-
erators
(used in the
processing
matrix)

id, abs, dot, sqrt, norm,
clamp(0,1), step(0), step(0.5),
smstep(0,1), red, green, blue,
avg, minChannel, maxChannel,
equalMin, equalMax, gateR,
gateG, gateB, gateRc, gateGc,
gateBc, step, +, -, *, /, min,
max, clamp0, clamp1, mix, step,
lessThan, greaterThan, dot,
cross, reflect, refract

Figure 4: Set of image processing operators. See
Ebner (2009) for a detailed description of these op-
erators.

gravity for all these image pixels to obtain a single
position inside the image. This position denotes the
position inside the image at which the detector has lo-
cated the object.

Unfortunately, the evolved detectors did not gen-
eralize to detect different views of the same object.
We address this problem using gene duplication and
gene deletion. Gene duplication and gene deletion
have also been used by Koza (1995a, 1995b) in the
context of tree-based genetic programming to evolve
solutions to the parity problem. Haynes (1996) ex-
perimented with duplication of code segments in ge-
netic programming which resulted in a speedup of the
learning process. Hoai et al. (2005) have used gene
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eral genes, i.e. sub-algorithms. Each gene is decoded
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Figure 6: A randomly selected gene is duplicated and
appended at the end of the individual.

deletion and duplication for tree-adjoining grammar
guided genetic programming.

We add both genetic operators, gene duplication
and gene deletion, to the set of operators in addition
to the standard evolutionary operators crossover and
mutation. In our approach, each individual may con-
sist of several segments or genes. Each gene is basi-
cally a description of nodes as in the representation
shown in Figure 3. Hence, each individual with mul-
tiple genes can be decoded into multiple image pro-
cessing algorithms as shown in Figure 5. We call them
sub-algorithms. The output of these sub-algorithms is
averaged to obtain the overall output of the entire in-
dividual. When a gene duplication happens, then one
of the genes is selected at random. This gene is most
likely useful in one way or another because it has been
shaped by evolution. The selected gene is duplicated
and appended to the individual as shown in Figure
6. When a gene deletion occurs, then a randomly se-
lected gene, i.e. sub-algorithm, is deleted.

The output of an individual with a single gene
which has just been duplicated is almost identical
to the original individual. However, mutation is now
free to change the contents of one the sub-algorithms
without compromising on the function of the original
gene. Hence, it is now possible to evolve concept de-

Figure 7: Two images from the toy train image se-
quence. The sequence was taken with a stationary
camera.

tectors. Each concept detector consists of several sub-
algorithms whose output is averaged. As long as one
particular view is present in the current image, then
one of the sub-algorithms will respond.

5 Experiments
We have used the toy train video sequence that has
already been used by Ebner (2010b, 2010a) as shown
in Figure 7. It is not possible to detect the toy train
through color alone. The color of the toy train is
mostly yellow and red. However, other objects in
the video sequence feature the same colors, e.g. the
wagon in the center. The spatial arrangement of the
different colors must also be taken into account to
successfully detect the train on its track. A success-
ful algorithm could detect the object showing a large
yellow area on the top left and a large red area on
the bottom right. Of course this spatial arrangement
of colors changes as the train takes turns on the track.
During previous runs of this experiment, it was not
possible to find an overall detector which would de-
tect the train as it completes a full circle on the track.
Therefore, we increased the length of the sequence to
ten times its size by playing it forward, backward, for-
ward and so on. However, the problem still remains
difficult.

Fitness is computed as the Euclidean distance be-
tween the position of the moving object (automati-
cally detected as described in (Ebner 2010b)) and the
object position as detected by the individualfitness of
zero as it would correctly locate the moving object
in the image sequence. Initially, evolution is used to
find an individual which is able to correctly locate the
moving object in the image sequence. Once the mov-
ing object is correctly located, i.e. with an accuracy of
10 pixels or less for five consecutive images, then evo-
lution is turned off. The best individual found so far is
then used to detect the moving object for successive
images. Of course it may happen that the appearance
of the object changes and that the currently used indi-
vidual is no longer able to correctly detect the moving
object. If the accuracy deteriorates beyond 25 pixels
difference between the actual and the detected posi-
tion, then evolution is turned on again. This process
continues throughout the entire image sequence. Evo-
lution is turned on whenever re-learning is needed.

Our experiments are carried out using a population
of 5 parent individuals which generate 10 offspring
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for each image whenever evolution has been turned
on. In addition to these offspring, 10 offspring are
generated completely at random. This ensures an in-
flux of new genetic material at all times. We use four
different genetic operators: crossover, mutation, gene
duplication and gene deletion. These operators are ap-
plied with probabilities pc, pm, pdup and pdel respec-
tively. We use 2-point crossover with randomly se-
lected crossover points. The mutation operator either
increments or decrements a randomly chosen param-
eter by one or it mutates all of the bits with a probabil-
ity of 2/l per bit where l is the length of the genotype
in bits. In other words, on average, two bits are mu-
tated. The reason for the factor of two is that the ge-
netic representation is redundant and hence a slightly
larger mutation rate than 1/l is used.

For each new incoming image, fitness is computed
for all parents as well as all offspring. Parent and off-
spring are then sorted according to fitness. Whenever
two or more individuals achieve the same fitness they
are considered to be identical even though their ge-
netic material may be different. Hence, only one of
these individuals is kept. The remaining duplicates are
discarded. The best 5 individuals are selected to be-
come parents of the next generation. Usually, approxi-
mative solutions are found within 24 generations. The
evolved detectors will then be further refined by evo-
lution.

We have carried out three experiments:

a) without gene duplication using a 2− 2× 2 repre-
sentation with probabilities pc = 0.1, pm = 0.9,
pdup = 0 and pdel = 0

b) with gene duplication, using a 2 − 2 × 2 rep-
resentation for the first generation with proba-
bilities pc = 0.1, pm = 0.89, pdup = 0.005 and
pdel = 0.005

c) without gene duplication using a 10−2×10 rep-
resentation with probabilities pc = 0.1, pm = 0.9,
pdup = 0 and pdel = 0 as a control experiment.

Figure 8 shows how the number of genes changes dur-
ing the course of evolution for experiment b). Per-
forming 10 runs for each of these experiments took
almost two days on a Linux system (Intel Core 2
CPU running at 2.13GHz) equipped with a GeForce
9600GT/PCI/SEE2.

Table 1 summarizes the results. The first two
columns show the number of generations that evolu-
tion had to be turned on. The last two columns show
the number of restarts which were necessary. The data
is shown for the entire run (all 15800 images), as well
as for the last iteration of the image sequence, i.e. only
for the last 1580 images. The number of restarts, i.e.
the number of times evolution had to be turned on
again for re-learning, is taken as the relevant indicator.
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Figure 8: Evolution of the number of sub-detectors
(shown independently for all 10 runs of experiment
b).

A successful individual would not need any restarts
because it is able to correctly detect the moving ob-
ject at all times. The differences are not statistically
significant using a t-Test. However, the problem got
easier on average by using gene duplication. The total
number of generations that evolution was turned on,
could be decreased from 1407.1 to 1014.8 generations
on average. The number of restarts could be decreased
from 73.4 to 50.8 on average.

6 Conclusion
We have shown that gene duplication is a tool to incre-
mentally evolve object detectors. If the representation
used to evolve an object detector is too small, then
the evolved detector may not be able to generalize to
other views. If the representation is too complex, then
evolution may fail to find a good solution. However
with gene duplication, evolution can start off using a
small representation. Once an approximative solution
has been found, it will eventually be duplicated. Evo-
lution is then free to modify one of the genes while
still maintaining the functionality of the original gene.
This makes its possible to incrementally evolve good
solutions.
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