
1

Is Depth Information and Optical Flow Helpful for
Visual Control?
Johannes Hansen and Marc Ebner

Ernst-Moritz-Arndt-Universität Greifswald
Institut für Mathematik und Informatik

Walther-Rathenau-Straße 47, 17487 Greifswald, Germany
Tel: (+49)3834/86-4646, Fax: (+49)3834/86-4640

marc.ebner@uni-greifswald.de

Abstract—The human visual system was shaped through
natural evolution. We have used artificial evolution in order
to investigate whether depth information and optical flow are
helpful for visual control. Our experiments were carried out in
simulation. The task was controlling a simulated racing car. We
have used The Open Racing Car Simulator TORCS for our
experiments. Genetic Programming was used to evolve visual
algorithms that transform input images (color, optical flow or
depth information) to control commands for a simulated racing
car. We found that significantly better solutions were found when
color, depth and optical flow were available as input together
compared to either color, depth or optical flow alone.

Index Terms—Visual Control, Genetic Programming, Optical
Flow, Depth Map

I. INTRODUCTION

With this contribution, we investigate whether depth and
motion provide an evolutionary advantage compared to color
alone. As a test environment, we have used The Open Racing
Car Simulator TORCS [1]. Simulated evolution [2] was used
to evolve control algorithms for the racing car. These algo-
rithms use screen grabs from the racing car simulator. The
screen grabs are processed using elementary computer vision
operators. The output of these algorithms control the steering
wheel as well as gas/brakes of the car [3]. OpenCV [4], [5], an
open source library for computer vision, was used for image
processing. Genetic Programming [6], [7], [8] was used to
evolve visual algorithms. We will see that significantly better
solutions are found if color, depth and optical flow are all
available.

This article is structured as follows. The next section gives
a brief introduction to the visual system. Section III describes
the racing car simulator. Section IV explains how data from the
simulator is used to compute optical flow. A brief introduction
to Genetic Programming is given in Section V. Related work
on visual control using Genetic Programming is discussed
in Section VI. How we have used genetic programming to
evolve visual control algorithms is explained in Section VII.
Our results are described in Section VIII. We provide our
conclusions in Section IX.

II. THE VISUAL SYSTEM

The human visual system was shaped through natural evo-
lution [9], [10]. Visual processing starts with light entering the

eye. This light is measured by two different types of receptors
inside the retina [11], [12]: rods and cones. The rods mediate
vision when little light is available. They have a much higher
sensitivity than the cones. Cones are in charge of color vision.
Three different types of cones exist which absorb light mainly
in the red, green and blue parts of the visual spectrum.

Some preprocessing occurs inside the retina. Information
flows from the retinal receptors to the retinal ganglion cells.
This information exists the eye at the blind spot, passes
through the lateral geniculate nucleus and then reaches the
primary visual cortex or area V1. Area V1 is highly structured
[13]. Cells within ocular dominance segments respond primar-
ily to stimuli from one or the other eye. V1 contains columns
with orientation sensitive cells. Blobs with color or lightness
sensitive cells also exist. In other words, visual information
is analyzed using a retinotopic map with respect to different
aspects. Indeed the entire visual cortex is highly structured.

Color, shape and motion appear to be processed by separate
visual areas [14], [15]. Color is a product of the brain. It is
processed in visual area V4. Shape is processed in V3 and
motion is processed in V5. A dedicated area for face and
object recognition also exist. It is also interesting that color and
motion is not perceived synchronously. Moutoussis and Zeki
[16] demonstrated that color is perceived earlier than motion.
The brain appears to bind visual attributes that are perceived
together.

III. TORCS

TORCS [1], is an open source racing car 3D simulation. A
sample screenshot is shown in Figure 1. We have used this
simulator as a test environment in order to evaluate whether
depth information and optical flow are helpful for visual
control. Currently, Berhard Wymann maintains the TORCS
project. Its original creators were Eric Espié and Christophe
Guionneau. The TORCS simulator provides several different
racing tracks. A player can choose among different cars when
playing the game. Several different opponents are available to
race against. A split screen mode is also available. Up to four
human players are supported.

Supported controls are a joystick, mouse and keyboard.
Some steering wheels are also supported. The game features
realistic 3D graphics, lighting, smoke and skid marks. Game

2

Figure 1. The Open Racing Car Simulator

physics include simulation of collisions, tire and wheel prop-
erties and a simple damage model. It even includes a simple
aerodynamic model with slip-streaming and ground effects.
The Open Racing Car Simulator was used in several different
scientific competitions [17], [18]. For these competitions,
participants are developing AI methods that drive the racing
car along its track. Usually, a client-server architecture is used
and competition participants develop a client that sends its
control commands to the TORCS server.

We have modified TORCS slightly in order to use it for
our experiments. We extract screen grabs from the graphics
buffer. A dense depth map is extracted form the so called Z-
buffer of the graphics library [19], i.e. both color and depth
are readily available form the graphics context. In addition to
color and depth, we also provide optical flow to the visual
control algorithms. How we compute optical flow is described
in the next section.

IV. COMPUTING OPTICAL FLOW

Optical flow describes the pattern of motion of objects
which are seen on the screen. This information is very helpful
for visual control. We would like to estimate a dense flow field,
i.e. optical flow for each image pixel. Let v(x, y, t) = (vx, vy)
be the optical flow, estimated for image pixel (x, y) in an
image taken at time t, then the image content in the vicinity
of pixel (x, y) will be found at position (x+ vx∆t, y+ vy∆t)
in an image taken at time t + ∆t provided that the object is
moving with constant velocity across the screen.

Several different methods have been developed to compute
optical flow from visual input [20], [21], [22], [23]. In recent
years, the accuracy of the methods have been considerably
improved. Many methods for computing optical flow are based
on partial derivatives. However, block based methods are also
used. Block based methods search for pixels within an area
of a given pixel in a subsequent image to determine image
motion.

Estimating optical flow from two subsequent images is an
expensive image operation. Therefore, we have used the depth
map and the known motion of the race car to compute optical

flow. The depth map is readily available from the graphics
library. It is a by-product of rendering the scene. The depth
map contains, for each image pixel, the distance from the
object to the camera along the Z-axis. The motion of the race
car is available directly from the race car simulator.

Let d(x, y) = dx,y be the depth map of the current image
shown on the screen. We assume that all screen coordinates
are specified relative to the center of the screen. Let f be the
focal length of the camera. The location of an object of the
scene which is shown at image pixel (x, y) has coordinates
(XS , YS , ZS) inside the camera coordinate system centered
on the car driver. XS

YS

ZS

 =
dx,y
f

xy
f

 (1)

The coordinates (XS , YS , YS) are relative to the viewer sitting
inside the car, i.e. these are eye-coordinates.

Let R be the inverse 3 × 3 rotation matrix that describes
the rotatory motion of the racing car from one time step of
the simulation to the next. Let D be the inverse vector which
describes the translatory motion of the racing car from one
time step of the simulation to the next. Hence, after the racing
car has moved, the point (XS , YS , YS) will have moved to a
location (X ′

S , Y
′
S , Z

′
S) relative to the eye of the driver.X ′

S

Y ′
S

Z ′
S

 = R

XS

YS

ZS

+ D (2)

The coordinate (X ′
S , Y

′
S , Z

′
S) can be projected onto the

screen using the known focal length of the camera. Let (x′, y′)
be the screen coordinates of (X ′

S , Y
′
S , Z

′
S), then we have[

x′

y′

]
= f

[
X ′

S/Z
′
S

Y ′
S/Z

′
S

]
(3)

Optical flow can then be computed by subtracting the screen
coordinate before the racing car has moved from the screen
coordinate after the car has moved.[

vx
vy

]
=

[
x′

y′

]
−
[
y
y

]
(4)

Since the depth map and the known motion of the racing car
is correct, the optical flow will also be correct. Figure 2 shows
the computed optical flow for a sample image.

It would be possible to compute optical flow directly from
the input images using an algorithm based on partical deriva-
tives or using block based methods. However, this would take
considerably more computing resources and also would have
the disadvantage that the estimated optical flow would not be
100% correct for all image pixels.

Next, we will describe Genetic Programming, which we
have used to evolve visual control algorithms.

V. GENETIC PROGRAMMING

Genetic programming [6], [7], [8] is an evolutionary al-
gorithm. Evolutionary algorithms use simulated evolution to
solve optimization problems. Such algorithms work with a
population of individuals. Each individual represents a possible

3

(a) (b) (c)

Figure 2. Computing optical flow from game angine data. (a) input image (b) depth map (c) optical flow computed using the depth map and the known
ego-motion of the car.

solution to the optimization problem. Darwinian selection is
used to select above average individuals in order to create an
offspring population, i.e. a new generation of individuals.

In Genetic Programming, individuals are represented as
trees. The fitness of an individual describes how well this
individual solves the given problem. The main operators of
an evolutionary algorithms are selection, reproduction and
variation. Above average individuals are selected to create
offspring. For our experiments we have used four genetic op-
erators: reproduction, mutation, ERC-mutation and crossover.
Each genetic operator is applied with a certain probability prep,
pmut, pERC-mut, pcross respectively. These four probabilities sum
to one.

Individuals of the first generation are created using the so
called ramped-half-and-half initialization [6]. In order to create
offspring, one genetic operator is randomly selected (using the
four probabilities). The reproduction operator simply creates
a copy of the genetic material of the individual, i.e. the tree.
Mutation, ERC-mutation and crossover create offspring that
are similar but not identical to their parents. Depending on
the type of operator, one or two parents are selected from the
population. Typically, tournament selection is used to select
new parents. For tournament selection, nT individuals are
selected with uniform probability from the population. These
nT individuals form a tournament. The individual with highest
fitness is the winner of the tournament and becomes a parent.
This parent will then create offspring using one of the genetic
operators.

The genetic operators are illustrated in Figure 3. Figure
3(a) shows the reproduction operator which is applied with
probability prep. Figure 3(b) shows the mutation operator
which is applied with probability pmut. Figure 3(c) shows
the ERC-mutation operator which is applied with probability
pERC-mut. Figure 3(d) shows the crossover operator which is
applied with probability pcross.

If the reproduction operator is applied, then a copy of
the parent individual is created. Next, a node of the tree is
randomly selected. Internal nodes are selected with probability
0.9, while external nodes are selected with probability 0.1. Fi-
nally, the selected node is replaced with a randomly generated
sub-tree. The method which is used to create this sub-tree
is the same method that is used to create the individuals of

the first generation. For ERC-mutation, a single node which
contains a so called ephemeral random constant (ERC) is
selected. All ERCs located within this subtree are muated. We
originally intended to use Gaussian mutation (like an evolution
strategy [24]) to slightly alter this ERC value, i.e. v := v·e0.01z
where v is the original value of the constant and z is a normally
distributed random value with mean 0 and standard deviation
1. However, we have actually used v := v ·z ·0.01 which pulls
the ERC towards zero and may also change the sign of the
constant. For crossover, two parent individuals are selected.
Next, two nodes are randomly selected (one for each tree).
Again, internal nodes are selected with probability 0.9, while
external nodes are selected with probability 0.1. Then the two
sub-trees (together with the selected nodes) are exchanged
between the two individuals. Trees are limited to a maximum
depth of 17.

Whenever an offspring is created, it is inserted into the
next generation of individuals. The process of selecting a
genetic operator and creating offspring continues until the next
generation is filled. Usually an evolutionary run is terminated
after a certain number of generations have been created. The
individual with highest fitness that was found during all these
generations is the solution that solves our problem best.

For our experiments, we have used the Evolutionary Com-
putation Library ECJ developed by Sean Luke [25]. Devel-
opment of ECJ started in 1998 and is a mature library for
evolutionary computation.

VI. VISUAL CONTROL USING GENETIC PROGRAMMING

Our racing car is controlled through visual input alone. We
only use the images obtained from screen grabs and the optical
flow. Data from the game engine is not used to control the car.
It is only used to compute optical flow as described above.

Genetic Programming has been used by Winkler and Manju-
nath [26] for object detection. Johnson et al. used it to evolve
visual routines [27]. Ebner and Tiede [28] have previously
evolved controllers for TORCS using Genetic Programming.
However, for this work, input was taken directly from the game
engine and not from screen grabs. Koutnik et al. [29] have used
an evolutionary algorithm to evolve compressed encodings of
a recursive neural network to control a racing car in TORCS.
Tanev and Shimohara [30], [31] have used a genetic algorithm

4

(a)

(d)(c)

offspringparent

parent offspring parent offspring

(b)

parent 2 offspring 1 offspring 2parent 1

3.5 3.2

Figure 3. Genetic operators. (a) reproduction (b) mutation (c) ERC-mutation (d) crossover

to evolve parameters that will control an actual scale model
of a car using visual input from an overhead camera.

Other researchers have used Atari Video games for training
game players [32]. Hausknecht et al. [33], [34] evaluated neuro
evolutionary methods for general game playing of Atari video
games. They found that HyperNEAT was the only neuro-
evolution algorithm able to play based on raw-pixel input from
the games. Minh et al. [35], [36] created a deep neural network
that was trained using reinforcement learning. It was able to
achieve a level comparable to human players. Deep learning
in combination with Monte-Carlo tree search planning was
used by Guo et al. [37]. Parker and Bryant [38], [39] evolved
controllers for Quake II which used only visual input.

VII. MATERIALS AND METHODS

We are using Strongly Typed Genetic Programming [40]
to evolve two trees. The first tree is used to control the
steering wheel. The second tree is used to control the velocity
of the racing car. The terminal symbols are shown in Table
I. We work with two return types: float and image. The
only terminal symbol returning a floating point value is an
ephemeral random constant. An ephemeral random constant
is a random floating point value from the range [0, 1]. Once a
node with an ephemeral random constant is created, it stays
constant throughout the life of the node. It may be modified
by the ERC-mutation operator, though.

The remaining terminal symbols provide access to visual
information obtained via screen grabs from the game engine.
This screen grab is scaled down to one third of its original
size. All pixel values are transformed to the range [0, 1]. All
terminal symbols returning image data provide single band
images: red channel (imageR), green channel (imageG),
blue channel (imageB), cyan channel (imageC), magenta
channel (imageM), yellow channel (imageY), gray channel

(imageGray). The depth map of this input image is available
through the terminal symbol (depthMap). Optical flow is
computed using the depth map and the known ego-motion of
the car which is available from the game engine. Since optical
flow is a two-dimensional vector, the x-component of this vec-
tor is made available through the terminal opticalFlowX
and the y-component is made available through the terminal
opticalFlowY. All image data is downscaled to one third
of this size of the original image. Pixel values are scaled to
the range [0, 1].

The set of elementary functions is shown in Table II and
Table III. Table II shows elementary functions which return
a floating point value. Table III shows elementary functions
which return an entire image. We have used standard arith-
metic functions like addition and multiplication, computation
of minimum and maximum. We have also included functions
which search for maximum and minimum values inside the
image. These functions return either the x or the y coordinate
of the position where the extremum was found. A Gaussian
filter is also available. If we apply a Gaussian filter to a
gray scale input image and then a function which locates the
maximum, we can locate the brightest point in the image.
The function extractNAME extracts smaller regions from
the input image. The size of the region is one third of the
image. The location of the region can be specified through the
parameters of the function. All bands (see terminal symbols)
are available for this extraction operation.

This functions is very useful to control the steering wheel
of the car. This is illustrated in Figure 4. Suppose we extract
a region from the depth map from the left hand side of the
image and we extract another region from the depth map from
the right hand side of the image. If we apply the avg function
which computes the average depth within these two areas then
we can compare both average depths to control the steering

5

Table I
TERMINAL SYMBOLS.

Name Return Type Description
ERC float Ephemeral random constant in the range [0, 1]
imageR Image input image (red channel)
imageG Image input image (green channel)
imageB Image input image (blue channel)
imageC Image input image (cyan channel)
imageM Image input image (magenta channel)
imageY Image input image (yellow channel)
imageGray Image input image (gray channel, average RGB)
depthMap Image input image (depth map)
opticalFlowX Image optical flow (horizontal component)
opticalFlowY Image optical flow (vertical component)

Table II
ELEMENTARY FUNCTIONS. THE RETURN VALUE OF THE NODE IS o.

Name Output Type Description
abs(float v) float absolute value, o = |v|
round(float v) float round function, o = round(v)
floor(float v) float floor function, o = bvc
ceil(float v) float ceil function , o = dve
neg(float v) float negate input, o = −v
sqrt(float v) float square root, o =

√
v

minLocX(Image c) float x-coordinate (range [0, 1]) of minimum c(x, y)
minLocY(Image c) float y-coordinate (range [0, 1]) of minimum c(x, y)
maxLocX(Image c) float x-coordinate (range [0, 1]) of maximum c(x, y)
maxLocY(Image c) float y-coordinate (range [0, 1]) of maximum c(x, y)
avg(Image c) float average value of all pixels, o =

∑
x,y c(x, y)

min(float a,float b) float minimum value, o = (a < b)?b : a
max(float a,float b) float maximum value, o = (a > b)?b : a
q-quantile(Image c,float q) float q-quantile of the image
add(float a,float a) float addition, o = a+ b
mult(float a,float b) float multiplication, o = a · b

Table III
ELEMENTARY FUNCTIONS. THE RETURN VALUE IS o(x, y) FOR EACH PIXEL (x, y) OF THE OUTPUT IMAGE.

Name Output Type Description
abs(Image c) Image absolute value o(x, y) = |c(x, y)|
sqrt(Image c) Image square root, o(x, y) =

√
c(x, y)

min(Image c) Image minimum value, o(x, y) = minx,y c(x, y)
max(Image c) Image maximum value, o(x, y) = maxx,y c(x, y)
add(image a,image b) Image addition, o(x, y) = a(x, y) + b(x, y)
constImage(float v) Image constant image, o(x, y) = v
invert(Image c) Image image, o(x, y) = max−c(x, y) where max is the maximum

value of all image pixels
gauss(float v,Image c) Image gaussian filter with kernel e−x

2/(2σ2) where σ = 0.3(|v| −
1) + 0.8

median(float v,Image c) Image median filter with size [2|v|+ 1]
binary(Image c,float v) Image binary threshold, o(x, y) = (c(x, y) > v)?1 : 0
clamp(Image c,float v) Image binary threshold, o(x, y) = (c(x, y) > v)?v : c(x, y)
thresholdPass(Image c,float v) Image threshold o(x, y) = (c(x, y) > v)?c(x, y) : 0
thresholdZero(Image c,float v) Image threshold o(x, y) = (c(x, y) > v)?0 : c(x, y)
avgThreshold(Image c) Image average threshold, o(x, y) = (c(x, y) > a)?1 : 0 with a =∑

x,y c(x, y).
localThreshold(Image c) Image local average threshold, o(x, y) = (c(x, y) > a(x, y))?1 : 0

where a(x, y) is obtained by convolving the input image with a
Gaussian kernel e−x

2/(2σ2) with standard deviation σ = 1.1
extractNAME(float s,float t) Image 10 variants of this elementary function exist, with NAME ∈

{R, G, B C, M, Y, Gray, DepthMap, OpticalFlowX,
OpticalFlowY}. The parameters (s, t) specify the upper left
corner of a rectangular area which is extracted from the current
input image (as specified by NAME). The width and height of
this area is one third of the input image.

6

wheel. This simple control algorithm will drive the car in the
direction where more space is available.

We have carried out four sets of experiments in order to
evaluate whether depth information is helpful in controlling
the racing car. For our experiments, we used the same basic set
of elementary functions, but varied the input information that
was made available to the evolved individuals. For experiment
A), only color information was available. For experiment B),
only the depth map was available, for experiment C), only
optical flow was provided and finally, for experiment D), all
of the visual information (color, depth, and optical flow) was
provided. The terminal symbols and elementary functions for
the 4 experiments are shown in Table IV. Note that some of the
functions listed under “All” accept both floating point values
and images as input.

The track that we have used for all of our experiments is
shown in Figure 5. The red arrow illustrates the direction in
which the race will start. A path taken by an evolved individual
is shown overlayed on this track (green line). The end of this
path is marked with a green cross. At this point the evolved
driver lost control of its car and crashed into the border of the
track.

The task is to evolve visual controllers that will drive the car
along the track. Therefore, fitness is computed by considering
distance traveled along the track. In addition, the damage
attained is also used for the fitness computation. Individuals
which stay away from the border of track and manage to avoid
damage will receive higher fitness values. Let d be the distance
traveled along the track (in meters). Let a be the amount of
damage attained (with range [0, 1] where 1 is a completely
damaged car). Then fitness fi of individual i is given as

fi =

−50 if controller is disqualified
d · (1− a)2 not disqualified,

only single sided steering
max{2d · (1− a)2, 0} not disqualified,

steering toward left and right
(5)

A controller is disqualified if it (a) drives along the track in
the wrong direction, or (b) does not use the steering wheel,
i.e. the first tree returns a constant value or (c) does not use
the gas pedal, i.e. the second tree returns a constant value. If
the controller is disqualified, it will be penalized with a fitness
value of −50. Otherwise it will receive a fitness of d ·(1−a)2.
This fitness value is doubled if the controller turns the steering
wheel to the left as well as to the right.

For each experiment, 10 runs with different initializations of
the random number generator were performed. For each run, a
population of 200 individuals was evolved for 99 generations.
Individuals were selected using tournament selection with
nT = 7. Crossover was applied with probability pcross = 0.2,
mutation was applied with probability pmut = 0.4, ERC muta-
tion was applied with probability pERC-mut = 0.3 reproduction
was applied with probability prep = 0.1. Ramped half-and-half
initialization was used to initialize the individuals of the first
generation with depth ranging from 2 to 6.

VIII. RESULTS

Figure 6 shows the best fitness values obtained for all four
experiments. By far the highest fitness values were reached
when only depth information was available. It is clear (as
we have described above) that this type of information is
helpful in controlling the car. Optical flow also seemed to be
helpful. Indeed, it is well known that bees use optical flow to
achieve centering behavior [41], [42]. This ability (comparison
of lateral optical flow) has also been used for visual control
in robotics [43], [44].

Figure 7 shows the average best fitness for all four exper-
iments. Using only color information resulted, on average, in
less average best fitness compared to using depth information,
optical flow or all three after 99 generations. Average best
fitness at generation 99 is summarized in Table V. This table
also shows the overall best fitness obtained in all of the 40
runs (ten per experiment) which we have carried out.

We have used a Mann Whitney U Test to compare these
averages as shown in Table VI. We confirmed that the max-
imum fitness at the end of 99 generations was not normally
distributed using a Kolmogorov-Smirnov-Test. Results when
using depth information or optical flow were not significantly
better compared to when only visual information was used.
Average fitness improved considerably when depth informa-
tion or optical flow was used for visual control. However, the
difference was not significantly different because the Mann
Whitney U Test compares results on an ordinal scale.

Only when all visual data (color, depth, and optical flow) is
combined, do we get significantly better results than when
either visual input is used alone. Interestingly, the human
brain evaluates its visual input with respect to color (in V4)
and motion (in V5) [45], [11]. Ocular dominance columns
are found in V1. Depth information can be computed from
disparity information, i.e. a lateral offset of visual information
between the two eyes [46]. The human visual system somehow
combines this visual information in higher areas to achieve
visual control.

IX. CONCLUSION

We have used an evolutionary algorithm (Genetic Program-
ming) to evolve image processing algorithms to control a
racing car. These algorithms are able to process various types
of visual information: color, depth information or optical flow.
Each individual consists of two trees. The first tree is used
to control the steering wheel and the second tree is used to
control the acceleration of the car. Several elementary visual
operations like Gaussian smoothing, addition, multiplication,
threshold or locating a maximum or minimum response are
also provided. These are all elementary operations that can
be performed easily by a network of spiking neurons. In
our experiments, we found that significantly better results in
driving a racing car along its track are obtained when color,
depth and optical flow are provided together.

REFERENCES

[1] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and C. Guinneau,
“TORCS, The Open Racing Car Simulator,” http://www.torcs.org, Mar.
2015.

7

add

extractDepthMap

0.50.66

avg

neg

extractDepthMap

0.50.0

avg

(a) (b) (c)

Figure 4. Extracting sub-regions from the visual input is helpful for visual control. (a) sample tree which evaluates information from the depth map. (b) input
image (c) depth map with regions.

Table IV
TERMINAL SYMBOLS AND ELEMENTARY FUNCTIONS USED FOR OUR EXPERIMENTS.

Experiment Terminal Symbols and Elementary Functions
A imageR, imageG, imageB, imageC, imageM, imageY, imageGray,

extract{R,G,B,C,M,Y,Gray}
B imageDepthMap, extractDepthMap
C opticalFlowX, opticalFlowY, extractOpticalFlowX extractOpticalFlowY
D imageR, imageG, imageB, imageC, imageM, imageY, imageGray,

extract{R,G,B,C,M,Y,Gray}, imageDepthMap, extractDepthMap,
opticalFlowX, opticalFlowY, extractOpticalFlowX extractOpticalFlowY

All ERC, abs, round, floor, ceil, neg, sqrt, minLocX, minLocY, maxLocX,
maxLocY, avg, min, max, q-quantile, add, mult, constImage, invert, gauss,
median, binary, clamp, thresholdPass, thresholdZero, avgThreshold,
localThreshold

(a) (b)

Figure 5. Track used for our experiments. (a) track (b) path taken by an evolved individual (green line). Driving direction (red arrow).

[2] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. Cambridge, Massachusetts: The MIT Press, 1992.

[3] J. Hansen, “Visuelle Steuerung eines simulierten Rennfahrzeugs mit
Hilfe von genetischer Programmierung,” Master’s thesis, Ernst Moritz
Arndt Universität Greifswald, Faculty of Mathematics and Natural
Sciences, Greifswald, Germany, Dec. 2014.

[4] G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal, Nov. 2000.
[5] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time

computer vision with OpenCV,” Communications of the ACM, vol. 55,
no. 6, pp. 61–69, Jun. 2012.

[6] J. R. Koza, Genetic Programming. On the Programming of Computers
by Means of Natural Selection. Cambridge, Massachusetts: The MIT
Press, 1992.

[7] ——, Genetic Programming II. Automatic Discovery of Reusable Pro-
grams. Cambridge, Massachusetts: The MIT Press, 1994.

[8] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-
gramming - An Introduction: On The Automatic Evolution of Computer
Programs and Its Applications. San Francisco, California: Morgan
Kaufmann Publishers, 1998.

[9] C. Darwin, The Origin of Species. Edited with an Introduction by Gillian
Beer. Oxford, England: Oxford University Press, 1996.

[10] D.-E. Nilsson and S. Pelger, “A pessimistic estimate of the time required
for an eye to evolve,” Proc. R. Soc. Lond. B, vol. 256, pp. 53–58, 1994.

[11] M. J. Tovée, An introduction to the visual system. Cambridge:
Cambridge University Press, 1996.

[12] J. E. Dowling, The retina: an approachable part of the brain. Cam-
bridge, Massachusetts: The Belknap Press of Harvard University Press,

8

��

����

�����

�����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
���
�
�
�

����������

��������������������

��

����

�����

�����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
���
�
�
�

����������

��������������������

��

����

�����

�����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
���
�
�
�

����������

���������������������������

��

����

�����

�����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
���
�
�
�

����������

��

Figure 6. Best fitness values obtained for all four experiments. 10 runs were conducted for each experiment. Depth information seems to provide an evolutionary
advantage. For some of the runs it produced exceptionally high fitness individuals. Optical flow also seems to provide an evolutionary advantage.

��

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
���
�
�
�

����������

��������������������

�
�
�
�

Figure 7. Average best fitness for all four experiments.

1987.
[13] M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color

system in the primate visual cortex,” The Journal of Neuroscience, vol. 4,
no. 1, pp. 309–356, Jan. 1984.

[14] S. M. Zeki, “Review article: Functional specialisation in the visual cortex
of the rhesus monkey,” Nature, vol. 274, pp. 423–428, Aug. 1978.

[15] S. Zeki, Inner Vision. An Exploration of Art and the Brain. Oxford:
Oxford University Press, 1999.

[16] K. Moutoussis and S. Zeki, “A direct demonstration of perceptual

Table V
EXPERIMENTAL RESULTS FOR ALL FOUR EXPERIMENTS. OVERALL BEST
FITNESS IF THE BEST FITNESS OBTAINED OVER ALL 10 RUNS FOR EACH

EXPERIMENT. THE AVERAGE BEST FITNESS OBTAINED IN GENERATION 99
IS SHOWN IN THE LAST COLUMN.

experiment overall best fitness avg best fitness f
A 312.8 168.4
B 1978.6 636.2
C 1129.7 341.2
D 875.0 345.4

Table VI
COMPARISON OF AVERAGE BEST FITNESS IN GENERATION 99 USING THE

MANN WHITNEY U TEST. SIGNIFICANT DIFFERENCES ARE SHOWN IN
BOLD FACE.

hypothesis p value
H0 : fA = fB , H1 : fA < fB 0.30
H0 : fA = fC , H1 : fA < fC 0.65
H0 : fA = fD, H1 : fA < fD 0.02

asynchrony in vision,” Proc. R. Soc. Lond. B, vol. 264, pp. 393–399,
1997.

[17] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated
car racing championship. competition software manual,”
http://arxiv.org/abs/1304.1672, Apr. 2013.

[18] D. Loiacono, J. Togelius, P. L. Lanzi, L. Kinnaird-Heether, S. M. Lucas,
M. Simmerson, D. Perez, R. G. Reynolds, and Y. S. (2008), “The wcci

9

2008 simulated car racing competition,” in Proceedings of the 2008
IEEE Symposium on Computational Intelligence and Games, December
15-18, Perth, Australia. IEEE, 2008.

[19] R. S. Wright, Jr., N. Haemel, G. Sellers, and B. Lipchak, OpenGL
SuperBible. Comprehensive Tutorial and Reference, 5th ed. Upper
Saddle River, NJ: Addison-Wesley, 2011.

[20] B. K. P. Horn, Robot Vision. Cambridge, Massachusetts: The MIT
Press, 1986.

[21] H. Bülthoff, J. Little, and T. Poggio, “A parallel algorithm for real-time
computation of optical flow,” Nature, vol. 337, no. 9, pp. 549–553, Feb.
1989.

[22] H. Wang, M. Brady, and I. Page, “A fast algorithm for computing optic
flow and its implementation on a transputer array,” in Proceedings of
the British Machine Vision Conference, Zisserman, Ed. Oxford: British
Machine Vision Association, 1990, pp. 175–180.

[23] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proceedings
of the 8th European Conference on Computer Vision, Part IV,Prague,
Czech Republic, May, 2004, T. Pajdla and J. Matas, Eds. Berlin:
Springer-Verlag, 2004, pp. 25–36.

[24] I. Rechenberg, Evolutionsstrategie ’94. Stuttgart: frommann-holzboog,
1994.

[25] S. Luke, The ECJ Owner’s Manual. A User Manual for the ECJ
Evolutionary Computation Library, 2015.

[26] J. F. Winkeler and B. S. Manjunath, “Genetic programming for object
detection,” in Genetic Programming 1997, Proceedings of the Second
Annual Conference, July 13-16, 1997, Stanford University, J. R. Koza,
K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
Eds. San Francisco, California: Morgan Kaufmann Publishers, 1997,
pp. 330–335.

[27] M. P. Johnson, P. Maes, and T. Darrell, “Evolving visual routines,”
in Artificial Life IV, Proceedings of the Fourth International Workshop
on the Synthesis and Simulation of Living Systems, R. A. Brooks and
P. Maes, Eds. Cambridge, Massachusetts: The MIT Press, 1994, pp.
198–209.

[28] M. Ebner and T. Tiede, “Evolving driving controllers using genetic
programming,” in IEEE Symposium on Computational Intelligence &
Games, September 7-10, Politecnico di Milano, Milano, Italy. IEEE,
2009, pp. 279–286.

[29] J. Koutnı́k, G. Cuccu, J. Schmidbuber, and F. Gomez, “Evolving
large-scale neural networks for vision-based reinforcement learning,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
July 6-10, 2013, Amsterdam, The Netherlands. ACM, 2001.

[30] I. T. Tanev and K. Shimohara, “On human competitiveness of the
evolved agent operating a scale model of a car,” in Proceedings of the
IEEE Congress on Evolutionary Computation, Singapore, September 25-
28. IEEE, 2007, pp. 3646–3653.

[31] I. Tanev and K. Shimohara, “Evolution of agent, remotely operating
a scale model of a car through a latent video feedback,” Journal of
Intelligent Robotic Systems, vol. 52, pp. 263–283, 2008.

[32] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents (ex-
tended abstract),” in Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015, pp. 4148–4152.

[33] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neuroevo-
lution approach to general Atari game playing,” IEEE Transactions on
Computational Intelligence and AI in Games, pp. 355–366, Dec. 2014.

[34] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
“Hyperneat-ggp: A hyperneat-based atari general game player,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
Philadelphia, Pennsylvania, July 7–11, 2012.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[37] X. Guo, S. Singh, H. Lee, R. Lewis, and X. Wang, “Deep learning
for real-time atari game play using offline monte-carlo tree search
planning,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
Eds. Curran Associates, Inc., 2014, pp. 3338–3346.

[38] M. Parker and B. D. Bryant, “Visual control in quake ii with a
cyclic controller,” in Proceedings of the 2008 IEEE Symposium on

Computational Intelligence and Games, P. Hingston and L. Barone, Eds.
Piscataway, NJ: IEEE Press, 2008, pp. 151–158.

[39] ——, “Visual control in quake ii with a cyclic controller,” in Proceedings
of the 2009 IEEE Symposium on Computational Intelligence and Games.
Piscataway, NJ: IEEE Press, 2009, pp. 287–293.

[40] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, no. 2, pp. 199–230, 1995.

[41] M. V. Srinivasan, “How bees exploit optic flow: behavioural experiments
and neural models,” Phil. Trans. R. Soc. Lond. B, vol. 337, pp. 253–259,
1992.

[42] ——, “Distance perception in insects,” Current Directions in Psycho-
logical Science, vol. 1, no. 1, pp. 22–26, Feb. 1992.

[43] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi, “Divergent
stereo for robot navigation: Learning from bees,” in Proceedings of
Computer Vision and Pattern Recognition, New York, 1993, pp. 434–
439.

[44] M. Ebner and A. Zell, “Centering behavior with a mobile robot using
monocular foveated vision,” Robotics and Autonomous Systems, vol. 32,
no. 4, pp. 207–218, 2000.

[45] S. Zeki, A Vision of the Brain. Oxford: Blackwell Science, 1993.
[46] P. A. Arndt, H. A. Mallot, and H. H. Bülthoff, “Human stereovision

without localized image features,” Biological Cybernetics, vol. 72, pp.
279–293, 1995.

