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ABSTRACT

A general video game player is an an agent that can learn to
play different video games with no specific domain knowl-
edge. We are working towards developing a GP-based gen-
eral video game player. Our system currently extracts game
state features from screen grabs. This information is then
passed on to the game player. Fitness is computed from data
obtained directly from the internals of the game simulator.
For this paper, we compare three different types of game
state features. These features differ in how they describe the
position to the nearest object surrounding the player. We
have tested our genetic programming game player system
on three games: Space Invaders, Frogger and Missile Com-
mand. Our results show that a playing strategy for each
game can be found efficiently for all three representations.
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1. INTRODUCTION

The idea of general video game playing is to create a video
game player that is able to learn to play different video
games without domain-specific knowledge. When encoun-
tering a new game, the game player first needs to learn where
the avatar is located, what is the goal of the game and what
is the current game state. Most game state information can
be obtained by image processing frame grabs of the game.
Using this information, the game player is able to search for
a good playing strategy by playing the game several times.

Playing video games is a challenging problem even for hu-
man game players. Each video game has a certain goal.
Most video games give feedback to the player via a score
which describes to what extent the player has achieved the
this goal. Usually, we have one or more game agents that
can be manipulated by the game player. For each game, a
sequence of actions has to be found that for any given game
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state maximises the score that will eventually be achieved.
Hence, video games are excellent testbed for research in ar-
tificial intelligence or machine learning approaches.

Game state is extracted from frame grabs and conveyed to
the learning algorithm. For this paper, we have used genetic
programming [11, 12, 2] to evolve game playing strategies.
The strategies are tested on three different video games:
Space Invaders, Frogger and Missile Command. These games
were implemented using the Python video game description
language game engine developed by Tom Schaul [13]. The
games are similar to old Atari 2600 games.

Three trees are used to determine the action of the player.
Each tree computes a scalar value based on the current game
state. The output of the first tree determines joystick move-
ment in the horizontal direction, the second joystick move-
ment in the vertical direction and the third tree determines
whether a button is pressed or not. We have used ECJ [14]
to evolve our individuals.

Section 2 summarises previous work on general video game
playing. Section 3 introduces the image processing methods
and algorithm for self detection which was implemented in
this work. Section 4 describes the game state feature rep-
resentations and also demonstrates how the game player is
evolved through genetic programming. The result are dis-
cussed in section 5. The conclusion is given in the final
section.

2. PREVIOUS WORK

Artificial intelligence research has achieved great progress
in developing players for certain specific games, such as chess
[15], Go [6] or Pac Man [1]. These game players are dedi-
cated to playing their respective game but cannot be used
to play another game.

The relatively new research area of general game playing
focuses on developing general game players that are capable
of playing arbitrary games. A competition on general game
playing is annually held since the AAAI 2005 conference
[7]. This competition, however, focuses on turn-taking board
games. For general game playing, it is difficult to design an
algorithm that can cope with a variety of games. Most suc-
cessful participants of the general game playing competition
use Monte Carlo Tree Search as their controlling algorithms
[16, 17, 5].

The general video game AI Competition has been held
since 2014 [4]. This competition aims to create a controller
which can learn to play a variety of video games, without
previously knowing which games are to be played. In this
competition, there is no need to analyse screen grabs, be-



cause all game state information is accessible via encapsu-
lated objects. Perez et al [21] describe a knowledge-based
fast evolutionary Monte Carlo tree search approach for Gen-
eral Video Game Playing. A new score function is provided
in this paper based on score change, knowledge change and
distance change.

Naddaf [20] presented two approaches to play Atari 2600
console games without having any game-specific prior knowl-
edge. The agent must analyse the screen grab to identify the
game avatar as well as game state information. He used two
methods to learn the game strategy: reinforcement learning
based methods and search based methods. The reinforce-
ment learning based methods use feature vectors extracted
from the game screen to learn to play a given game. The
search-based methods use the emulator to simulate the con-
sequence of actions into the future, aiming to play as well as
possible by only exploring a very small fraction of the state-
space. Hausknecht et al. [9, 10] presented a HyperNEAT-
based general game player. In this framework, a high level
of game state representation can be extracted from game
screen. It is said that such a method is capable of exploit-
ing geometric regularities which is very important in game
playing.

Mnih et al. [18, 19] first try to learn the vision features and
control policies at the same time. A deep learning model,
called DQN which had great achievement in playing some
Atari games, has been presented. The model combines con-
volutional neural network and Q-Learning, which takes raw
pixels as input and outputs a value function estimating fu-
ture rewards.

Guo et al. [8] described another method which combines
deep learning (DL) and MCTS planing. They collect train-
ing data from a UCT agent, where UCT is one of MCTS
methods. Using these data, three convolutional neural net-
work (CNN) are trained. They attempt to retain the Deep
Learning advantage of not needing hand-crafted features and
the online real-time play ability of the model-free Reinforce-
ment Learning(RL) agents. They evaluated their model on
seven Atari games and found that their model outperforms
previous DQN models.

3. IMAGE PROCESSING AND SELF DETEC-

TION

Before we are able to play a game, we need to acquire
some knowledge about the game, i.e. Who am 17 Where
am I? What is the current game state and what is the game
about? We only use screen grabs to find answers to these
questions.

3.1 Visual Processing

Each game has several classes of objects. These objects
may belong to the game agent, a goal position, enemies or
food and so on. We need to locate these objects and de-
termine the relationship between them. The objects can be
identified using distinguishing features. The objects of the
games used in this paper can be identified easily by their
colour. Each object has a unique colour. Hence, we first
compute a colour histogram. To do this, the image, orig-
inally an RGB image, is converted to a gray scale image
by mapping each hue to a particular gray scale. This al-
lows us to detect objects rapidly. A histogram is computed
from the gray scale image (shown in Figure 1 for the game
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Figure 1: Histogram for Frogger.

Frogger). From the histogram it is clear that there are six
object classes. Each peak in this histogram corresponds to
one object class.

If each object is basically a blob of a unique colour, then
its position can be determined easily by applying blur and
then extracting local maxima. This would also work for
games with more complex graphics by applying a convolu-
tion with a filter having the same graphics as the object to be
extracted. To reduce the computation complexity, we first
down sample the gray image using a blur filter to 1/16th of
its original size. Next we apply a non-local maximum sup-
pression filter on the down-sampled image. Each object in
the game is then represented by one point. The position of
these points are saved in a feature list. The list of features
is used to detect the game agent and to acquire game state
information. This will be explained in detail in the following
sections. Figure 2 illustrates the image processing pipeline.

3.2 Avatar Identification

Avatar identification is another key task that has to be
solved before the game can be played. We modify Hausknecht
et al.’s method [9] to identify the avatar. The avatar is the
entity, whose movement is affected most by actions of the
game player. The movement of an object is represented by
its velocity in the x direction v, and its velocity in the y
direction v,. Two array lists are used to calculate the veloc-
ities of the objects. One array list List. is used to record the
position and the colour of feature points from the current
frame. The second list List, is used to record the position
and the colour of feature points from the previous frame.
For each element a € List,, we search List. for objects which
are located in a small neighbourhood around a to find the
nearest object b which belongs to the same class as a. This
object is assumed to be the same object as a. The difference
between these two positions of objects b and a is the veloc-
ity (vs,vy) of object a. The velocity vector is mapped to a
one-dimensional velocity with the range [-24, 24], as shown
in Equation 1, where mod(x, y) is the modulo operation.
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Figure 2: Image processing for Space Invaders. (a)
input RGB image. (b) gray scale image. (c) down-
sampled image. (d) feature points after using non-
local maximum suppression. (e) feature points over-
laid on RGB image.

Terminal Symbol Description

X x coordinate of the nearest object
for class i relative to avatar

Y; y coordinate of the nearest object
for class i relative to avatar

D; FEuclidean distance between avatar
and the nearest object for class ¢

A; Angle between vector pointing

from self to the nearest object and
the horizontal axis.

Table 1: Terminal symbols

Because we want to get an integer velocity here.

v = mod(max(min(vsz, 19), —19), 5)

+ mod(maz(min(vy,19),—19),5) * 7 @

Naturally, there may be situations where the nearest object
is actually some other object of the same class. In these
cases, the velocity computation fails.

Hausknecht [9] proposed a method to identify the avatar
using information gain which is the difference between one
object’s velocity entropy and the weighted sum of its selec-
tive entropy. Entropy is calculated using the formulation:
H(V) = >0 p(vi) *in(p(v;)). It uses the entire velocity
history. Selective entropy is the entropy calculated by only
implementing the velocities corresponding to one fixed ac-
tion. The avatar’s motion is affected by the actions of the
game player. Hence, it should have the largest information
gain. But it fails in some games in our work, because one
object’s information gain may be even larger than avatar’s
entropy. Then this object will be mistaken as avatar. A
normalised information gain is used in our work, which is
calculated using formulation:

I, = 1/H(o) 2)

I is the information gain and H(o) is the entropy. There is
an assumption that the movement of avatar is fixed when
the same actions are taken. If the games do not obey this
rule, this algorithm fails.

3.3 Game State Features

A game player needs to know what the current game state
is before making a decision. A game player will be able to
make a better decision the more information is known about
the game. It would be ideal if our game agent had access
to the position of all objects. If we would provide our game
agent with the position of all objects, it would probably
take a long time for the game agent to learn what objects
are most useful in making the next step. We use a quite
simplistic approach. We only provide information about the
nearest object of each class to the game agent. The nearest
object may be most dangerous to avatar if it is an enemy.
It can also be the food the avatar is searching for.

The nearest object is the object which has the smallest
Euclidean distance to the avatar. This feature is easy to
compute and quite useful.

In this work, we present three representations for the game
state to find solutions to each of these three games: Space
Invaders, Frogger and Missile Command. They differ in the



Figure 3: Computation of the angle and the Eu-
clidean distance to the nearest object.

Function

Add(argl, arg2)
Subtract(argl,arg2)
Divide(argl,arg2)

Description

return argl+arg?2

return argl-arg2

return argl/arg2 if arg2 != 0,
otherwise return 100000
Multiply (argl, arg2) return argl*arg2

Negate(argl) return -argl
Sqrt(argl) return y/argl
Square(argl) return argl * argl

Table 2: Set of elementary functions.

way how to represent the nearest object. The terminal sym-
bols are shown in Table 1, where each terminal symbol is
used for each i € {1,...,n} where n is the number of dif-
ferent object classes. Representation A uses only terminal
symbols X;, Y;, D;. Representation B uses terminal sym-
bols X;, Yi, Di, A;. Representation C uses only terminal
symbols D;, A;. How the angle and the Euclidean distance
to the nearest object is computed is shown in Figure 3 for a
sample scene. The first representation is used to explore the
importance of Cartesian coordinates. The third representa-
tion is used to explore the importance of Polar coordinates.

4. EVOLVING A GAME PLAYER USING GE-

NETIC PROGRAMMING

We have used Sean Luke’s ECJ System [14] to evolve our
game agents. A modified version of Tom Schaul’s py-vdgl
game engine [13] was used to play the games. Both pro-
grams, the ECJ system which constructs the genetic pro-
gramming individuals which need to be evaluated and the
game engine are maintained as separate programs. They
communicate with each other through the TCP/IP proto-
col. In each game step, ECJ system receives the game state
feature vector from game engine, and then sends the calcu-
lated action back to it. The image processing program is
carried out directly in the game engine.

The elementary functions that we use are shown in Ta-
ble 2. This set consists of basic arithmetic functions. The
terminal symbol which we have used for our representation
have already been shown in Table 1.

Each individual consists of three trees. Figure 5 illustrates
one example for the structure of each tree. The value of the
first tree T1 determines avatar’s movement in the horizontal
direction (left, right or no action). The value of the sec-
ond tree T determines the avatar’s movement in vertical
direction (up, down or no action). The value of the third
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Figure 4: The moving direction of avatar depending
on the value of Tree 1 and Tree 2.

Value of Tree 3
[0, 00)
(_007 0)

Actions

Press_button
No_action

Table 3: Whether the button will be pressed down
depending on the value of Tree 3.

tree T3 determines whether the button should be pressed or
not. Figure 4 illustrates what motion will be chosen for the
avatar depending on the values of the trees 71 and T>. Ta-
ble 3 shows when the button will be pressed down depending
on the value of T3. One of a total of 18 different actions will
be chosen depending on the value of these three trees.

S. EXPERIMENTS AND RESULTS

The parameters which we have used for our experiments
are shown in Table 4. We have used a population of 200 in-
dividuals. Tournament selection is used to select individuals
with a tournament size of 3. Evolution is carried out for 100
generations. As genetic operators we use crossover, muta-
tion and reproduction. The probabilities with which these
operators are applied are also shown in Table 4. Ephemeral
random constants are mutated by adding a random value
with a Gaussian distribution. The mutation operator tries
to generate a subtree maximally twice before giving up if
the mutated tree is not within the depth limit of 10. ECJ’s
halfBuilder is used to create individuals of the first genera-
tion.

In order to reduce noise, we evaluate each individual on
several different game levels of a game. The levels differ in
avatar’s initial position and random seed which affects the
behaviour of game sprites. The sum the game scores is used
as the fitness of the individual.

Whenever an individual is evaluated, a new game is started.
For each game step, the feature vector (with the terminal
symbols as described above), is handed to the individual.
The values for the three trees of this individual are calcu-
lated and then passed back to the game engine.



Parameter Value

population size 200
tournament size 3

crossover probability 0.4
reproduction probability 0.4
mutation probability 0.1

ERC mutation probability 0.1
mutate.tries 2

builder HalfBuilder

Table 4: Parameters for genetic programming.

Figure 5: One example of the tree structure.

We use three different games to evaluate the representa-
tions: Space Invaders, Frogger and Missile Command. Space
invaders is a classic arcade game. The goal is to protect the
earth from the aliens coming in from above. The player has
to shoot at the aliens with missiles. The player also needs
to avoid bombs from aliens. Frogger is a game where a frog
has to cross several roads to reach its home. The frog needs
to move from the bottom of the screen to the goal position
which is located at the top of screen. While finishing this
task, the frog needs to be careful with cars on the roads.
The agent will get some bonus when it moves up one step
or reaches its home. Missile Command is a game where the
player’s cities are attacked by ballistic bombs. The player
should intercept these bombs using missiles. The missile’s
moving direction is consistent with avatar’s moving direc-
tion. These three games as implemented in Py-vdgl are il-
lustrated in Figure 6.

For each representation, we carry out 10 runs with dif-
ferent random seeds. It usually takes 5 seconds to play a
single game. In order to evaluate one individual, we need to
play this game three times, as described above. It takes ap-

proximately two days to complete a run of 100 generations.
Hence, we only carry out 10 runs for each representation.

The fitness of the best individual for every generation in
each run and the average fitness over 10 runs are shown in
Figure 7. As the figure shows, the fitness improves consider-
ably after 100 generations. In over 90% of the runs for both
representation A and B genetic programming is able to find a
perfect strategy for all three games. Table 5 shows the aver-
age best fitness and standard deviation after 100 generations
for each game. The results show that both representation A
as well as representation B work well in finding a program
which will play the respective game.

We use the Mann-Whitney U-test to compare the three
game state representations. Both Repres.A and B perform
significantly better than Repres.C (p < 0.01).

We also compare our method with three Monte Carlo tree
search methods: Vanila MCTS, Fast-Evo MCTS, KB Fast-
Evo MCTS [21], as shown in Table 5. These three methods
all the game state from the emulator. Vanila MCTS is a nor-
mal Monte Carlo tree search method that estimates the aver-
age reward by iteratively sampling the actions and building
a search tree. The game agent will take the action that is
visited most often or provides the highest average reward.
Fast-Evo MCTS embedded the roll-outs within evolution,
dynamically adapting to the game features. KB Fast-Evo
MCTS used both knowledge base and evolution to bias the
roll-outs. For more details about these three algorithms,
the reader is referred to [21]. Their results show that MCTS
method outperforms previous approaches.

For Space Invaders, our genetic programming players per-
form slightly worse than MCTS and Fast-Evo MCTS. But
for Frogger and Missile Command, our genetic programming
players show a much better performance than the three
MCTS-related methods. The latter three algorithms need
game domain information. The game state information are
obtained from the game simulator rather than from the
screen grabs as presented in this paper. They also need
to advance the game state [3] before making a decision. But
for our method, once the same game is encountered again,
the evolved playing strategy can be used directly.

In this paper, we only test our algorithm on three games
because of the limitation of evolving time. In the future
plan, we will add more games into our work.

6. CONCLUSION

In this paper, we present three simple representations for
the game state. The results show that both Repres.A and
B work better than Repres.C for these three games. But we
lack evidence that the same results among these three rep-
resentations will be obtained for other games. Genetic pro-
gramming is used as the learning algorithm in our work. GP
players achieved better performance than MCTS methods in
finding the playing strategy for these three video games. The
genetic programming method represents a first step towards
a general video game player.
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Average Score

Game GP+Repr.A  GP+Repr.B  GP+Repr.C Vanila MCTS Fast-Evo MCTS KB Fast-Evo MCTS
Space Invaders 894 £13.50  891+28.46 884+7.18 900 +0 900 +0 858+132.82
Frogger 54+ 0 51.3+£8.53 38.4+14.23 24.2+4.7563 25+3.16 37+10.59
Missile Command 77 £ 9.50 80 +0 70 £11.574 3948.756 47.27+£11.9 59+3.17

Table 5: Average scores over 10 runs obtained from the games: Space Invaders, Frogger, Missile Command.
The maximum possible scores, Space Invaders:900, Frogger:54 and Missile Command:80.
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Figure 6: For each py-vgdl game, two snapshots are
shown. One from the beginning of the game and one
well into the game.
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