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Abstract—The human brain routinely performs figure/ground
separation like picking up a cup on a table, or grasping an apple
from a tree. Figure/ground separation is used not only in vision,
but in separating voice from chatter, touch and other modalities,
and remains a challenge in artificial intelligence and machine
learning. To approach this problem we’ve shown figure/ground
separation in a laterally-connected sheet of ‘integrate-and-fire’
spiking neurons. Biologically, the lateral connections and sheet
are based on ‘gap junction’ electrical synapses between dendrites
and soma of brain neurons, e.g. cortical layer 5 pyramidal cells
and interneurons. The method is based on locally computing the
average integration potential for each neuron using lateral con-
nection inputs as well as direct sensory inputs. We show results
for artificial as well as real world images in which the model
adaptively extracts a figure from background, irrespective of
actual numerical value of the figure’s pixels. Lateral modulation
enables collective integration and synchronized firing/spiking of
large groups of neurons. As lateral connections open and close, a
zone of integration moves through the larger system. With further
development, such ‘mobile zones’ offer models for executive
agency, causal action, attention and correlates of consciousness
in intelligent systems.

Index Terms—Figure/ground separation; visual percep-
tion; spiking neurons; lateral-coupling; gap-junctions; gamma-
oscillations

I. INTRODUCTION

The human brain excels at many tasks involving ‘Fig-
ure/Ground separation’, e.g. recognizing salience and meaning
in an object or pattern from its background. Understanding
how the brain discriminates ‘Figure’ from less important
‘ground’ may help design computer systems for artificial
intelligence (AI).

In the brain, figure/ground separation in conscious percep-
tion depends on sensory inputs reaching thalamus, and then
on to cerebral cortex in a 3-step hierarchical process. For
example in visual processing, optical inputs are mapped onto
(‘retino-topic’) sheets of rod and cone cells in retina, and
then relayed to thalamus. From thalamus, the first wave of
activity relays sensory inputs to primary cortex, e.g. for vision
in V1 in the very back of the brain’s occipital lobe, still
maintaining retino-topic representation. From there, secondary
‘associative’ processes project in feed-forward pathways to
frontal areas including prefrontal ‘executive’ cortex. Finally,
from there, a third wave of ‘recursive’ feedback projects

to other cortical and sub-cortical areas and correlates with
consciousness [1]. This third wave matches a philosophical
approach termed ‘higher order thought’ (‘HOT’, [2], [3])
which suggests recursive feedback projection from pre-frontal
cortex to other brain regions correlates with consciousness.
Lee et al. [4] showed this third wave activity is selectively
sensitive to anesthetics of all types, i.e. gas molecules, propofol
and ketamine.

Third wave activities terminate at the apex of the brain’s
hierarchy, cortical layer V giant pyramidal neurons which are
unique in several ways. Their apical dendrites arise vertically
to the cortical surface, and are primarily responsible for
EEG signals. Basilar dendrites of pyramidal neurons spread
laterally, parallel to brain surface, forming, along with inter-
neurons, sheet-like networks throughout cortex. They are
likely biological sites for conscious perceptions, and fig-
ure/ground separation.

But how are certain activities within the sheet recognized
as ‘figure’ rather than ground, and assigned meaning? Various
‘spotlight’ attentional theories require a spotlight operator.
We’ve approached the problem with a self-organizing mobile
zone of integrative activity within a larger sheet of integrate-
and-fire spiking neurons.

Neurons consist of multiple dendrites and cell body, or
soma, which receive and integrate synaptic inputs by chemical
messengers to a threshold potential for all-or-none firing,
or spiking along a single long axon, giving unidirectional
information flow. However the brain also utilizes electrical
synapses, or ‘gap junctions’ which physically fuse neuronal
membranes, create window-like connections between adjacent
neuronal interiors, and synchronize membrane depolarizations,
e.g. in gamma synchrony EEG. Although gap junctions are
prevalent in the brain, more primitive than chemical synapses
and highly conserved in evolution, their true function is not
understood.

In networks of integrate-and-fire (spiking) neurons, inputs
from dendritic-dendritic (and dendritic-somatic) gap junctions
have been proposed to modulate integration and regulate
firing/spiking. Gap junction lateral connections may enable
groups of neurons to function collectively, and more intel-
ligently. We applied this principle in a computational model



system for figure/ground separation.
We previously described figure/ground processing using a

sheet of spiking neurons with lateral connections [5]–[7]. It is
assumed that the neurons’ ‘pre-spiking’ dendrites are laterally
connected through gap junctions to neurons in their immediate
vicinity. This is an extension to the traditional spiking neuron
model which does not include lateral connections.

In our model, if an open gap junction exists between two
neurons then the neurons are resistively coupled, allowing for
a current flow, or voltage gradient, from the neuron having a
higher activation to the neuron having a lower activation. As
a result, neurons connected via an open gap junction are able
to integrate collectively and synchronize their firing behavior.
Neurons cause gap junctions to open and close based on
activation or other factors. If a gap junction closes, the lateral
connection between two neurons is severed, and they integrate
individually and fire asynchronously.

While gap junctions are either open or closed, we assume
an additional permanent network of lateral connections. This
may occur biologically (e.g. in layer 5 cortical pyramidal
neurons) by cortical inter-neurons, and used to compute a
spatial average of the input. This average is then used to
determine whether neurons close or open their gap junctions.
If a neuron’s activation is above the spatial average, then
this neuron will open its gap junctions. Neurons connected
by lateral gap junctions can collectively respond to a given
stimulus, and fire synchronously with a specific frequency
which can be used to discern different stimuli. Neurons which
do not respond may fire asynchronously.

Our model uses visual information from a sheet of neurons
whose output corresponds basically to a topological represen-
tation of the retina, e.g. retinal outputs serve as inputs to our
model which is comparable to neurons found in V1. Our sheet
of laterally connected neurons then performs figure/ground
segmentation.

The brighter part of the image is extracted if neurons
whose activation is above the spatial average open their gap
junctions, irrespective of the actual maximum output of a
single input neuron. The neurons adjust themselves such that
whichever region appears brighter than the surrounding will be
extracted as figure while the remaining area is considered as
background. We could extract arbitrary types of regions (e.g.
regions having a certain color or texture) by transforming the
input through additional sheets of neurons placed in front of
the sheet that we describe here.

Below, we fully describe our theoretical model of a spiking
neuron including its lateral connections. We show how a sheet
of such neurons is able to separate figure from ground for
several real world images. We show only results for visual
input data. However, the method can also be used to separate
figure from ground in any kind of spatially distributed signal.

For example, suppose we take a topological map of neurons
representing different regions of the body and pressure, touch
or proprioception are the relevant signals. Our method would
be able to locate the signal irrespective of the amount of
pressure exerted. The corresponding neurons of a certain

a) b) c)
Fig. 1. a) Input image. b) gaussian blur of squared color differences
highlighting areas which have the colors (from top to borrom): red, yellow,
white) c) extracted areas: red flowers, yellow flowers, butterfly.

region would only have to fire, or fire with a larger frequency
when this area is touched. All neurons responding to the same
touch would fire in synchrony.

II. FIGURE/GROUND SEPARATION

The ability to separate figure from ground is very important
to many daily tasks. If one grasps a cup on a table top, the
brain determines what part of the scene corresponds to the cup
and what part corresponds to the table top. A similar ability is
probably required by all animals processing visual information
in nature. Locating red apples on a tree or strawberries in a
field require a similar ability.

Figure 1 illustrates how different objects can be extracted
based on their color. The first column shows the input image.
First, squared differences are computed. The second column
shows the results after computing squared differences with the
colors [0.82, 0.43, 0],[0.63, 0.02, 0.04],[0.90, 0.78, 0.62] and
applying Gaussian blur with a standard deviation of 10 pixels.
Let a(x, y) be the output of the blur operator, i.e. a local spatial
average and let ā be the global average of this output. The
third column of images shows areas for which a(x, y) >= fā
holds with f = {1.4, 1.16, 1.7}. Extracted objects are shown
in Figure 1c). This rather simple example shows how different
colored objects (red flowers, yellow flowers or butterfly) can
be separated from their background based on their color.

A cup on a table may be more difficult to extract. However,
we can of course take additional information such as depth or
texture into account. Then we would extract areas which have
a unique texture and a depth different from the surrounding
area.

Below, we will show how a figure can be separated from
ground using a network of laterally connected neurons. But
first, we will describe the basic model of a spiking neuron
followed by our extension which also includes lateral connec-
tions.



III. SPIKING NEURAL NETWORKS

The brain consists of a large set of ‘integrate-and-fire’
spiking neurons interconnected by variable strength chemical
synapses in feed-forward networks [8].

These neurons exchange electro-chemical signals, resulting
in network patterns of activity which correlate with sensory
perception, motor control and learning. Each neuron sends
out sequences of spikes along its axon to other neurons, the
sequence depending largely (but not entirely) on integration of
electro-chemical membrane signals the neuron receives from
other neurons.

Each neuron receives and integrates synaptic inputs to its
dendrites and cell body/soma in the form of an integrated
activation potential. When this potential reaches a threshold
potential, an all-or-none firing, or spike is triggered down the
axon. However in brains of awake animals, threshold for firing
varies spike-to-spike, suggesting some other factor contributes
to integration, possibly via gap junctions [9].

In standard computational models, only algorithmic integra-
tion and a fixed spiking threshold are considered. Other po-
tentially relevant aspects are usually not included, for example
lower level synaptic and cytoskeletal interactions and lateral
gap junction influences. Using a spiking neural model based
on membrane capacitance, resting potential, threshold poten-
tial, a recovery variable, dendritic and synaptic currents and
other parameters, a large-scale approximation of mammalian
thalamo-cortical systems can be constructed [10].

In simulations, we model a large network of neurons.
Consider a single neuron i with activation potential Vi. The
change of the activation potential dVi

dt can be described by
(modified from [11]):

C
dVi
dt

= gi(Ei − Vi) + Itonic + Ii +

N∑
j=1

wijKj (1)

where C is the capacitance of the neuron, gi is the leakage
conductance, Ei is the resting potential and Itonic is a tonic
current. The leakage conductance will determine the speed
with which the activation potential will reach the resting
potential if no input is received from other neurons. External
input to the neuron can be modelled using Ii while the input
received from other neurons is modelled by Kj . The input
received from other neurons will depend on the strength of
the synaptic connection wij between the two neurons i and j.
Neural learning is thought to basically modify the connection
strengths wij .

This standard model only considers input from other neu-
rons received via synaptic connections, with learning achieved
by tuning the connective weights. Lateral connections created
by gap junctions are not included in this standard model.
Below, we will show that these lateral connections enable
exchange of activation between neighboring neurons, allowing
them to tune their response to a given stimulus. Thus neurons
connected via open gap junctions can collectively integrate
inputs and memory, fire synchronously and efficiently separate
figure from ground.

IV. LATERAL CONNECTIONS VIA GAP JUNCTIONS

Our model neuronal network also includes lateral connec-
tions via gap junctions. Neurons in our model network receive
and temporally integrate incoming spikes as in the standard
model, activation potential slowly rising toward threshold.
And like the standard model, once activation potential reaches
a particular threshold, the neuron ‘fires’, or ‘spikes’, and
sends a spike along its axon to the next synapse. Our model
adds another factor during integration and activation which
regulate firing/spiking, inputs from lateral ‘gap junction’ and
interneuron connections.

Laterally-connected neurons are able to exchange part of
this activation via open gap junctions. A current will flow, i.e. a
voltage gradient exists, from a neuron with a higher activation
potential to a neuron with a lower activation potential. In
our model, this current flow/gradient between neighboring
neurons can be turned on or off by opening or closing the
gap junction. Only neurons which perform a similar function,
i.e. which respond to the same type of signals are assumed
to be connected. Such neurons inter-connected by open gap
junctions will collectively respond to the same stimulus.

It can be envisioned that initially, i.e. during early develop-
ment, many lateral connections randomly form, and are then
pruned to form sub-networks able to collectively respond to
a stimulus. Gap junction-defined sub-networks then specialize
themselves to respond to different types of stimuli by tuning
their synaptic weights.

A gap junction can be treated as a resistive connection be-
tween neurons [12], [13]. The set of all neurons interconnected
via gap junctions form a resistive grid where the node points
are the neurons and the gap junctions the resistors. If a gap
junction exists, it is always there, i.e. a permanent connection
between two neurons, though it may be open or closed. We
assume that this connection forms an unconditional resistive
grid. Therefore, some information is always exchanged be-
tween these laterally connected neurons. This network could
be used to compute a global average among interconnected
neurons.

Traub et al. [14] have used a voltage dependent conductance
of gap junctions. In our model, each gap junction is also able
to change its state. It can open or close, i.e. the conductance
depends on an internal state of the neuron. This creates a
second network whose connections can be modified over
time. The two networks are illustrated in Figure 2. If a gap
junction is open between two neurons then these neurons will
synchronize their firing behavior. It is well known that chaotic
or non-linear electrical circuits will synchronize their behavior
if they are resistively connected [15]–[17]. The same will
happen with neurons whose firing pattern is chaotic whenever
they are resistively connected to other neurons.

The unconditional network is assumed to spatially average
the input spikes. This allows each neuron to become aware of
the global average firing pattern of all other laterally connected
neurons. This signal which we call the sync-threshold, is used
to adjust the adaptive resistive network. Each neuron can of
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Fig. 2. Gap junctions between adjacent neurons give rise to two resistive
networks: a fixed resistive network and a modifiable resistive network defined
by the state of the gap junction (open or closed).

course also compute a temporal average of its firing pattern.
If the average firing pattern is above the global average,
i.e. the sync-threshold, then the network will open its gap
junctions. Otherwise it will close its gap junctions. This results
in synchronized firing of all neurons responding to the figure,
i.e. which have an average firing rate above average.

Figure 3 shows our model neuron which is also laterally
connected to four other neurons. Of course, neurons may also
have fewer or more gap junctions. Similarly, neurons may have
an other number of dendritic inputs and the connections will
not be uniformly distributed. In Figure 3, the lateral connec-
tions extrude from the neuron body. This is meant to illustrate
that information is exchanged through this connection on the
same level. For actual neurons, gap-junctions are generally
located on the dendrites, shown on left in the illustration. The
dendrites lead up to the neuron soma, or cell body which also
receives and temporally integrates inputs.

Inputs received and temporally integrated are indicated by
the box labeled with

∫
dt. This input is also temporally and

then spatially integrated as indicated by the boxes labeled with∫
dt and

∫
dx. Gap junctions allow for an exchange of this

signal with laterally connected neurons, provided these gap
junctions are open. Two connections are shown for each gap
junction. The connection extending from the sphere illustrates
the conditional connection between neighboring neurons. The
small sphere on this connection indicates that the gap junction
can be opened or closed. This connection is controlled via the
input from the sync-threshold which in turn is determined by
the spatially averaged input signal obtained from the uncondi-
tional network (formed by the lateral connections protruding
in between the dendrites and the large sphere, and biologically
by interneurons). The neuron will fire if its activation potential
is above the threshold. This operation is indicated by the
threshold box. Whenever the neuron fires, a spike (as indicated
by the spike shown on the last box on the right) is sent along
the axon.

It may also be that some of the functions just described,
are spread over two or three interconnected neurons inside a

cortical column. Mountcastle [18] gives a review of columnar
organization of the neocortex. These neurons would then have
different shapes due to the different function performed by
the neuron. A lateral network formed by such neurons will
extract any kind of spatial signal which is above the average.
This is more useful than using a fixed threshold per neuron. A
set of neurons which extracts a signal with a fixed threshold
will fail to detect a faint signal. It will also fail to generate
synchronized firing behavior.

V. SIMULATION OF A SHEET OF LATERALLY CONNECTED
NEURONS

We evaluate our model using real world photographs as
visual stimuli. We simulate a sheet of laterally connected
neurons. Each neuron is randomly connected to other neurons
in its immediate surrounding. All neurons of this sheet receive
their input from a virtual retina. This input can also be viewed
as coming from V1 with some additional transformation of the
visual stimulus.

The sheet of neurons is assumed to extend over an area of
1000×1000×2 units, i.e. a square area of non-zero height. We
simulate 4000 neurons inside this area. The non-zero height is
modeled because actual neurons are not perfectly arranged on
a two-dimensional plane inside the cortex. In our simulation,
each neuron i is located at position (xi, yi, zi) inside the three-
dimensional sheet. It is laterally connected to its 6 nearest
neighbors.

The human visual system processes visual information using
three channels, bright-dark, red-green and yellow-blue [19].
Our sheet of neurons processes only information from the
bright-dark channel (also called lightness). Data is extracted
from computer images which are stored using red, green,
blue components. This data is transformed to lightness for
each image pixel. Let (R,G,B) be the red, green and blue
non-linear pixel intensities, then lightness is given by L =
0.299R+ 0.587G+ 0.114B [20].

A topological mapping is used to determine the input
received by neuron i. Let the coordinates xi, yi, zi of neuron
i be normalized to the range [0, 1]. For each input signal,
we determine offset coordinates (xr,i, yr,i) randomly selected
from −1, 0, 1. The neuron j where neuron i receives it’s input
from is given by (wxi+xr,i, hyi+yr,i) where w and h are the
width and height of the input image. Each neuron i receives
input from three neurons of a lower sheet. The output provided
by neuron j from a lower sheet is taken as oj = L(xj , yj)
where L is simply the lightness of the corresponding image
pixel at position (xj , yj).

Our sheet of neurons is probably located in some higher
visual area which is in charge of figure/ground separation. For
our experiments, we use the input directly from the image.
Since multiple inputs from all three color bands are used, this
amounts to using only the black and white channel as input.
Any type of color could be extracted by simply computing
squared differences to certain colors or by correlating the input
signal with a given signal.
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Fig. 3. Artificial neuron, laterally connected to 4 other neurons via gap junctions.

Neurons found in V3 respond to different types of oriented
lines [21], [22]. Hence, neurons receiving input from V3 could
be used to separate figure from ground based on texture.
Neurons found in V5 respond to lines moving in a certain type
of direction. Some neurons also respond to the global motion
of an object. This contrasts with the response of neurons
found in V1 which only respond to local image motion. Thus,
neurons receiving input from V5 could be used to separate a
figure moving in a certain direction while the background is
either stationary or moving in a different direction.

In our computer model, the state of our laterally connected
neuron i is described by the following variables: ai activation,
ti fire-threshold, oi output voltage, ãi temporal average of
incoming spikes, āi spatial average of temporal average. The
spatial average is computed using the unconditional network
formed by the gap-junctions. The model shown in Figure 3
shows temporal averaging per dendrite. Since these temporally
averaged signals are eventually spatially averaged, we use only
one variable ãi for the neuron i to speed up the simulation.
The update equations which modify these state variables are
shown in Figure 4. Compared to our earlier model [6], we
have modified the algorithm slightly in that the activation is
not distributed to neighboring neurons but simply averaged. In
other words, a current flows, or voltage gradient exists from
the neuron having a higher activation to a neuron having a
lower activation.

The state variables can be initialized with random values.
The exact values, which are used to initialize the simulation,
are not relevant. Due to the leakage factors the simulation
will converge to the same type of response if the input
is kept constant. The following values were used for our
experiments: decay of activation potential αa = 0.9995, decay
of output voltage αo = 0.5, temporal averaging factor of gap-

junction αt = 0.001, spatial averaging factor of gap-junction
input αs = 0.0001, leakage to adjacent neurons upon firing
ε = 0.0001, reduction of fire-threshold γ = 0.0005, factor
for over-relaxation ω = 1.999, refractory period of neuron
∆tr = 10.

All weights between neurons i and j are set to wij = 1.
Learning could be used to tune these weights. For our experi-
ments, we only process the luminance signal to extract objects
with maximum luminance. Hence, learning is not necessary.
Simple Hebbian learning [23] could tune these weights in a
way that objects having certain colors are extracted. Alterna-
tively, learning and memory could occur within each neuron,
e.g. in the cytoskeleton. Negative weights could also be used.
Such weights would model inhibitory signals.

The behavior of a single neuron is fully described by the
algorithm shown in Figure 4. Each line of the algorithm
describes one small state change. If all updates are completed,
then the algorithm starts over. First, the output voltage decays
(01), then the weighted input is computed (02). If we were to
add learning, we would have to tune the weights wij .

Each neuron computes the temporal average of the input
using the parameter αa (03). Next, another temporal average is
computed using the parameter αt (04). The spatial average of
ā is computed in lines (05-08) using the unconditional network
formed by the gap junctions. Over-relaxation is used in line
(09) to speed up the simulation. If the temporal average ã is
above the spatial average ā, then we open all gap junctions,
otherwise we close all gap junctions (10-11). This spatial
average is an adaptive threshold. It depends on the average
spatial output produced by the previous sheet of neurons.
Only neurons whose input is above the spatial average will
fire vigorously and also connect with adjacent neurons which
allows for figure/ground separation.

Here, all gap junctions are modified at the same time. This



(01) oi = (1− αo)oi // decay of output
(02) I =

∑
j
wijoj // compute weighted input

(03) ai = (1− αa)ai + αaI // temporal average of input (activation)
(04) ãi = (1− αt)ãi + αtI // temporal average of input (dendrites)
(05) ā′′ = āi // save spatial average from previous time step
(06) N = {j|Neuron j is laterally connected to neuron i via gap junction }
(07) ā′ = 1

1+|N|

(
āi +

∑
j∈N

āj

)
// compute spatial average

(08) āi = (1− αs)ā′ + αsãi // add temporal average
(09) āi = (1− ω)ā′′ + ωāi // use over-relaxation
(10) if (ãi > āi) open gap junctions // open gap junctions
(11) else close gap junctions // close gap junctions
(12) if Neuron i fired within ∆tr return // done if neuron fired recently
(13) N = {j|Neuron j is laterally connected to neuron i via open gap junction }
(14) a′ = ai; n = 1 // initialize spatial averaging
(15) for all j ∈ N do : if Neuron j did not fire within ∆tr
(16) { a′ = a′ + aj ; n = n+ 1 }
(17) ai = a′/n // spatial averaging completed
(18) Ns = { number of neurons in sub-network created via open gap junctions}
(19) ti = max[0, 1− γ ·Ns] // compute fire-threshold
(20) if (ai > ti) { // does the neuron fire? (activation above fire-threshold)?
(21) ai = 0 // reset activation
(22) oi = 1− ε|N | // output rises to 1 minus some loss
(23) for all j ∈ N do : aj = aj + ε // distribute leakage to adjacent neurons
(24) }

Fig. 4. Update equations which change the state variables of neuron i over time.

is probably not the case for actual neurons. We have used
this simplification to allow for faster simulation of the model.
Currently, it takes 3.7ms to simulate one update of a sheet of
4000 neurons on a 2,8 GHz Intel Core i7. In real neurons,
gap-junctions probably open and close independently of the
other gap-junctions. The state of the gap junction is probably
controlled by the signal passing through its dendrite.

We are done if the neuron fired recently (12). Next, the
neuron computes the spatial average of activation across open
gap junctions (13-17). This operation allows activation to flow
from a neuron having a higher activation to a neighboring
neuron with a lower activation. Then the fire threshold is
computed (18-19). This threshold depends on the number
of neurons in the sub-network formed by neurons connected
through open gap junctions. For larger networks the threshold
will be lowered such that neurons belonging to a large set
of neurons will fire with a higher frequency. An adaptive
firing threshold is not really required. However, it allows to
distinguish larger figures from smaller figures in higher visual
areas.

Whenever the neuron fires (20), i.e. the activation is above
the fire-threshold, then the activation is reset (21) and the
output rises to 1 minus some leakage (22). This leakage is
distributed to adjacent neurons (23).

It should be clear that our sheet of neurons is capable of
adaptive figure/ground separation irrespective of the actual
lightness values. Figure 5 shows how the sheet of neurons
responds to images of a gray square on a slightly darker
background. The input images are shown on the left hand
side. Noise with a mean of zero and a standard deviation of
0.5 has been applied to these images as real world signals

always contain some noise. The noisy input signal is shown
in the middle. The sheet of neurons is shown overlayed on
this input signal. Each neuron is represented by a dot. The
brightness of the dot is proportional to its activation. Open
gap junctions between two neurons are represented by thick
lines. The color of the lines is chosen in a way that each
sub-network has a unique color.

On the right hand side, the lightness histograms are shown.
It should be noted that the lightness of the background in
case (d) is higher than the lightness of the square in case (a)
and (b). Nevertheless the square is correctly separated from
the background in case (d). A single neuron which may be
capable of simple bright/dark classification based on a fixed
threshold would not be able to correctly separate the figure
from ground in all four cases shown in Figure 5.

Figure 6 and Figure 7 shows the response of individual
neurons for two different types of input stimuli. The input
stimulus is shown on the left hand side. Selected neurons are
marked with a circle and a number. Three neurons are located
on the figure (bright square) while three other neurons are
located on the background. The spiking sequences are shown
on the right hand side. Neurons 1 to 3 whose receptive fields
lie on the bright square fire in sync, while neurons 4 to 6
whose receptive field lie on the background fire out of sync.
All neurons located on the figure are connected via open gap
junctions to neighboring neurons. It can also be seen that
the neurons located on the larger square fire with a higher
frequency compared to the neurons located on the smaller
square. This behavior is due to the adaptive firing threshold
used in line (19) of Figure 4. Higher visual areas may make
use of the different firing rates for tracking of different objects.
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Fig. 5. Results for a brighter sphere in front of a darker background. Noise has
been applied with zero mean and standard deviation 0.05 (pixel range [0,1]).
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It may also be used for visual servoing [24], [25].
A simulation of the network responding to an image se-

quence is shown in Figure 8. This sequence simulates a sweep
of the eye from one photograph to another photograph. The
object in the foreground is extracted by a network of neurons
connected via open gap junctions. In the course of time,
different neurons respond to the object. The firing rate of
neurons with their receptive field above the object will stay
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Fig. 7. Sequence of output spikes generated by individual neurons. (a) input
stimulus (b) behavior of six different neurons (marked). Neurons 1-3 fire in
synchrony. They belong to the sub-network formed by neurons extracting the
figure. Neurons 4-6 fire out of sync.
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Fig. 8. Results for a moving stimulus (a-c) Snapshots from an image sequence.
(d-f) Neurons with a receptive field above the figure respond vigorously. They
collectively extract the figure. The sub-network formed by neurons with open
gap junctions tracks the figure.

constant as long as the object does not change in size. It is
known that the mapping from the retina to the visual cortex can
be viewed as a complex-logarithmic mapping [26]–[28]. This
transforms the visual input to a size invariant representation.

VI. BASIS OF OUR MODEL

As we have just shown a sheet of laterally connected
neurons is able to segment figure from ground. Zhao and Breve
[29] have shown that chaotic synchronization in a 2D lattice
can be used for scene segmentation. In their work, they have
used Wilson-Cowan neural oscillators [30] to segment letters.
They only used static input. Quiles et al. [31] have developed
a visual selection mechanism using a network of integrate
and fire neurons with short range excitatory connections and
long-range inhibitory connections. They also used only static
images as input. Eckhorn et al. [32] simulated feature linking
via synchronization among distributed neural assemblies. They
simulated two one-dimensional layers from the visual cortex of
the cat including feed forward and backward connections. The
backward connections modulate the inputs. A moving stimulus
was used as input. Our model addresses synchronization within
a sheet of neurons and only relies on local connections. As



gap junctions open and close, a moving zone of collective,
synchronized activity tracks and moves with it. Such a zone
of activity in the brain is asserted to correlate with conscious
perception and control. Self-organizing mobile zones are also
possible.

Neurons who have their receptive field above the stimulus
will fire in sync while all other neurons will fire out of
sync. In the brain, synchronized firing behavior is seen in
the electroencephalogram (EEG) especially in the frequency
range from 40 to 80Hz [33], [34]. This type of synchronous
activity includes gamma synchrony EEG. Singer [35] gives a
review on how gamma synchrony correlates with perception
and motor control. Gamma synchrony arises because of inter-
dendritic gap junctions [36]–[39].

According to the so called “conscious pilot model”, created
by Hameroff [40], gap junctions open and close, creating self-
organizing synchronized zones of activity moving through the
brain. In our model, these zones move because the input stim-
ulus moves. In the ‘conscious pilot’, the zone self-organizes
converting non-conscious ‘auto-pilot’ cognition to conscious
cognition. Self-organizing mobile zones are candidates for
consciousness in the brain, and for an executive ‘causal agent’
in computer systems.

Kouider [41] has reviewed several different theories of
consciousness. Tononi and Edelman [42] have developed the
re-entrant dynamic core hypothesis. This theory assumes re-
current processing of information. Another theory, the local
recurrence theory developed by Lamme [43] also assumes
recurrent processing of information, both consistent with the
‘third wave’, also descrbed philosophically by the higher order
thought’ (HOT) theory.

In the context of theories of consciousness, our model may
be seen as a moving zone within the third wave target, e.g.
laterally-connected cortical layer 5 pyramidal neurons.

As noted by Crick and Koch [44], humans appear not to
be aware of processing occurring inside V1. In this case,
V1 is merely in charge of preprocessing visual input and
conscious processing starts in higher visual areas. Zeki [45]
suggests that multiple consciousnesses are distributed across
different processing sites. He calls the conscious processing of
different aspects microconsciousness, e.g. of attributes such as
color, form and motion bound together. Woolf and Hameroff
[46] proposed feed-forward cascades through visual cortex
accumulate shape, color, motion and meaning aspects into a
conscious visual gestalt. With further unification with other
modalities, visual scenes unify into global consciousness.
linguistic and communication skills are included. Our model
addresses only a single percept, but gap junction-mediated
zones zones may coalesce into larger zones to accommodate
full conscious awareness.

So far, we have not modeled synchronization across dif-
ferent sheets but could do so in the future. This would then
be macroconsciousness in Zeki’s terms. Wang [47] noted that
only local connections can lead to global synchrony. König
and Schillen [48] used long range excitatory delay connections
to achieve synchronization within two-dimensional layers of

oscillators. Terman and Wang [49] have developed an ar-
chitecture of oscillator networks in which a global inhibitor
is used to achieve desynchronization. In our model, neurons
connected via open gap junctions are resistively coupled. They
synchronize their behavior, and the connected zone moves
through the larger sheet of neurons. With further development,
our mobile zone model can serve as a theory for the neural
correlate of consciousness, and executive causal agents in
artificial intelligence.

VII. CONCLUSION

We extend standard network models of ‘integrate and
fire’ spiking neurons to include lateral connections between
neurons in a 2-dimensional feed-forward sheet. The lateral
connections are based biologically on gap junctions between
dendrites and cell bodies of brain neurons. Neurons within
the laterally-connected network are shown to perform fig-
ure/ground separation by collective integration and synchro-
nized outputs.

Here we implement an artificial system based on laterally-
connected neurons and show examples of its ability to dis-
criminate figure from ground. Gap junctions resistively couple
adjacent neurons. A gap junction may be in one of two states:
open or closed. If a gap junction connects two neurons then it
creates a physical connection between the two neurons. A net-
work of resistively coupled neurons formes an unconditional
network. In addition to this unconditional network, another
network is formed which may be changed over time by open-
ing or closing gap junctions. We use the unconditional network
to compute a spatial average of the temporally averaged input.
This spatially averaged signal allows the neuron to adaptively
respond to the input. If the temporal average of the input
signal received by the neuron is above the spatial average,
then the neuron opens its gap junctions, otherwise it closes
its gap junctions. Neurons connected via open gap junctions
synchronize their firing behavior because a current always
flows from the neuron having a higher activation to adjacent
neurons having a lower activation. Neurons with synchronized
firing collectively respond to the figure whereas the remaining
neurons fire out of sync. Neurons out of sync respond to the
ground. Our model is shown to separate figure from ground
for artificial as well as real world images.
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