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Abstract A series of experiments with human subjects
have shown that color constancy improves when an ob-

ject moves. It has been hypothesized that this effect

is due to some kind of influence of high-level motion

processing. We have built a computational model for

color perception which replicates the results qualita-
tively which have been obtained with human subjects.

We show that input from high-level motion processing is

not required. In our model, the dependence is an effect

of eye movement in combination with neural processing.
Depending on the type of stimulus used, the eye either

tracks the object or the background. When the object

moves but is tracked by the observer, the background

appears to move when considering the stimulus with

respect to eye coordinates. Hence, the retinal input is
different for the two conditions leading to a difference

in color constancy performance.

Keywords Color Constancy, Color Perception,

Computational Modelling, Object Motion

1 Motivation

Recently, Werner (2007) has shown, that for certain

stimuli, color constancy improves, when an observed

object moves. Werner compared color constancy under
a series of different conditions (a) static scene: object in-

front of background (b) motion parallax: object remains
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stationary while background moves (c) global motion:
object and background move together as if they were

connected (d) object motion: an object moves across

a static background. In addition to these four stimuli,

Werner also used a 5th stimulus: (e) ambiguous motion:

where an object moves across a background consisting
of horizontal stripes. Stimulus (e) is referred to as am-

biguous motion because it cannot be discerned whether

the background moves horizontally or not. Hence, this

motion stimulus is ambiguous. Since the results ob-
tained for the ambiguous motion experiments were not

consistent across subjects, we do not consider this type

of stimulus here.

Werner has shown that color constancy improves

significantly for stimulus (d) compared to (a). Werner
has used a black and white checkerboard pattern as

background and a gray patch as a test patch. This

artificial scene was virtually illuminated using either

red or green light. Werner concluded from the exper-

iments that high-level motion influences color percep-
tion. We now provide an alternative explanation for the

observed results. We show how the results (obtained

by Werner with human subjects) can be replicated in

simulation using a computational model developed by
Ebner (2007a,b). His model has already been shown to

be in line with experimental results obtained by Helson

(1938). We were able to reproduce the experimental re-

sults obtained by Werner (2007) using Ebner’s model

of color perception in conjunction with eye movements.
We show that the results can be explained through

purely bottom up processing. No interaction with mo-

tion areas (neither low- nor high-level areas) is required.

Anatomical studies have shown neural connections be-
tween motion processing areas in the dorsal pathway

and color processing areas in the ventral pathways (Felle-

man and Essen, 1991). In light of our results it seems
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more likely that such connections are used to combine

motion and color such that both can be used for track-

ing and/or figure/ground separation.

2 Color Image Formation

Before we can address the experimental results using
computational processing, we first need a model of color

image formation. Processing of visual information of

course starts with light entering the eye where it is

measured by the receptors of the retina. In order to

perceive anything, at least one light source is required.
Light from one or more light sources reaches an object

patch. Some of the light is absorbed by the patch, the

remainder is reflected. Some of the reflected light enters

the eye where it is measured. Let I(xr) be the energy
measured by a retinal receptor at position xr on the

retina. The light entering point xr on the retina orig-

inated from some object patch located at position xo.

Let L(xo, λ) be the irradiance falling onto object patch
at position xo at wavelength λ. Let R(xo, λ) be the re-

flectance at object point xo at wavelength λ. Let S(λ)

be the sensitivity of the retinal sensor. If we assume that

the object patch reflects the incident light diffusely, i.e.

uniformly, then we obtain the following expression for
the measured energy I(Ir).

I(xr) ∝

∫

S(λ)R(xo, λ)L(xo, λ)dλ (1)

The measured energy is also proportional to a geometry
factor which takes into account the foreshortening of

an object patch. However, this factor can be subsumed

into a combined shading/reflectance factor. Thus, there

is no need to consider this geometry factor here.

We now drop the coordinates xr and xo and switch

to a two-dimensional coordinate system (x, y). We can

do this because there is a one-to-one correspondence
between points on the retina and points on the objects

viewed. Thus, we obtain

I(x, y) ∝

∫

S(λ)R(x, y, λ)L(x, y, λ)dλ. (2)

Three types of cones can be distinguished which re-

spond to light in the red, green, and blue parts of the
spectrum (Brown and Wald, 1964; Marks et al, 1964).

Let Si(λ) be the sensitivity of cone type i with i ∈

{r, g, b}. We now assume that the sensors are very nar-

row band, i.e. that they have the shape of delta func-

tions. Using Si(λ) = δ(λ− λi), we obtain

Ii(x, y) ∝

∫

δ(λ− λi)R(x, y, λ)L(x, y, λ)dλ. (3)

This gives us

Ii(x, y) ∝ R(x, y, λi)L(x, y, λi). (4)

It is of course clear that the retinal receptors do not

respond only to a a single wavelength. However, the

above relationship will help us to develop a mathemat-
ical theory of how the visual system processes informa-

tion in order to arrive at an approximate color constant

descriptor. In the following, we will refer to I(x, y) =

[Ir(x, y), Ig(x, y), Ib(x, y)] as the measured color, i.e. the
data measured by the system. Using this data, a color

constant or rather approximately color constant de-

scriptor is computed. When performing computations,

we assume that arithmetic operators operate on the in-

dividual components of this vector, i.e. we will write
a · b as a short hand notation for

[arbr, agbg, abbb]. (5)

3 The gray world assumption

Numerous computational approaches to color constancy

have been developed. The most well known approaches

are probably the white-patch Retinex algorithm (Funt
et al, 1998) and the gray-world-assumption (Buchsbaum,

1980). Both algorithms assume that the illumination

of the scene is uniform. The white-patch Retinex al-

gorithm is a simplified version of Land’s Retinex algo-
rithm (Land, 1964, 1974, 1986). This algorithm sim-

ply takes the maximum response of each color chan-

nel and divides the measured color by this maximum

response. The maximum response is assumed to orig-

inate from a white patch. Therefore, this response is
proportional to the illuminant, i.e. if Ri(x, y) = 1 then

Ii(x, y) ∝ Li(x, y).

Buchsbaum (1980) has proposed the gray world as-

sumption. According to Buchsbaum, the world is gray

on average. And indeed, if we assume that a large num-
ber of different colors are contained in the image and

we also assume that all colors are equally likely, then

the spatial average over all image pixels is proportional

to the illuminant. Let n be the number of image pixels,
then we obtain (Ebner, 2004)

L ∝
1

n

∑

x,y

I(x, y) (6)

as an estimate of the illuminant L. Ebner (2009) has

shown that the gray world assumption can also be ap-
plied locally. We only need to convolve the input image

using an extensive smoothing kernel G(x′, y′). This al-

lows us to estimate the illuminant L(x, y) locally for
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each image or retinal point.

Le(x, y) ∝

∫ ∫

G(x′, y′)I(x′, y′)dx′dy′ (7)

Once we have a local estimate of the illuminant, we
can compute a color constant descriptor occ which is

independent of the illuminant by dividing the measured

color I(x, y) by the estimate of the illuminant Le(x, y).

We obtain

occ(x, y) =
I

Le(x, y)
(8)

With Le(x, y) ∝ L(x, y) and our derivation from above,

we obtain

occ(x, y) =
R(x, y)L(x, y)

L(x, y)
= R(x, y) (9)

which is independent of the illuminant. Note that here,

R is a product of shading and reflectance.

4 A computational model of color perception

We now describe Ebner’s computational model for color

perception (Ebner, 2007a,b). Processing of course starts

with the receptors of the retina. The relationship be-

tween the output of the retinal cones and the mea-
sured light could be either logarithmic (as proposed by

Faugeras (1979)) or follow a cube root or a square root

(see Hunt (1957)). All of these functions can be made

quite similar to each other on a given range with a

proper choice of parameters. Suppose that the response
follows a logarithmic function. Thus, the output of the

retinal receptors transforms the measured product of

reflectance times illumination into a sum of logarithms:

oretina(x, y) = log I(x, y) (10)

= logR(x, y)L(x, y) (11)

= logR(x, y) + logL(x, y) (12)

The information then reaches V1 through connections

which go through the lateral geniculate nucleus and
eventually reach V4. V4 is assumed to be the location

where a color constant descriptor is computed (Zeki,

1993; Zeki and Bartels, 1999; Zeki and Marini, 1998).

The function of the color opponent cells can be viewed

as performing a rotation of the coordinate system. The
retinal coordinate system has the three axes red, green,

and blue. After the coordinate system is rotated, pro-

cessing continues in a rotated coordinate system where

the axes are dark-bright, red-green, and yellow-blue.
For our mathematical treatment, we omit this rotation

as it does not matter whether the coordinate system is

rotated or not.

Ebner (2007a,b) assumes that a grid of resistively

coupled neurons in V4 computes local space average

color. Adjacent neurons are presumably coupled through

gap junctions which are known to behave as resistors

(Herault, 1996). These neurons form a resistive grid,
which performs extensive smoothing of the input. Each

neuron of this resistive grid is used to compute local

space average color. Let a(x, y) be local space aver-

age color estimated by a neuron which processes data
from position (x, y) on the retina. Each neuron is re-

sistively coupled to a number of neighboring neurons.

Let N(x, y) be the set of neurons which are resistively

coupled to neuron (x, y), i.e.

N(x, y) = {(x′, y′)|(x′, y′) is neighbor of neuron (x, y)}.

(13)

Each neuron computes local space average color by av-

eraging local space average color which has already been

estimated by neighboring elements. A small amount of
the measured color oretina is then added to this inter-

mediate result. Note that here, oretina is the output of

the retinal sensors using the red, green, blue coordinate

system but in the brain oretina corresponds to the ro-

tated coordinate system. As described above, this rota-
tion can be omitted in the mathematical treatment. In

summary, the function computed by the resistive grid of

neurons can be described by the following two update

equations

a′(x, y) :=
1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′) (14)

a(x, y) := oretina(x, y) · p+ a′(x, y) · (1 − p) (15)

where p is a small value larger than zero. These up-

date equations are executed indefinitely by the resis-

tive grid in the brain. Mathematically, this process con-
verges to local space average color a(x, y) which is a

local estimate of the illuminant. Quite a large num-

ber of iterations are required (ca. 50000) before conver-

gence (Ebner, 2007a). However, over-relaxation (Bron-

stein et al, 2001) can be used to speed up this process
(only approximately 8000 iterations are required). The

parameter p defines the extent over which local average

color will be computed. If p is very small, local space

average color will be computed over a relatively large
area. If p is relatively large, local space average color

will be computed over a small area.

The algorithm does not have to be run until conver-

gence in order to use its output. An estimate of local

space average color is available at any point in time.
The human visual system is assumed to use this esti-

mate to compute a color constant descriptor. It is pre-

cisely for this behavior that motion has an influence on
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the perceived color of an object. This is purely bottom

up behavior without any input from high-level motion

areas.

Local space average color a is used to compute a

color constant descriptor by subtracting local space av-
erage color from the measured color. Thus, the color

constant descriptor occ describing the output color will

be given as

occ(x, y) = oretina(x, y)− a(x, y). (16)

In order to understand that this is a color constant de-

scriptor, we will assume that a(x, y) is equivalent to
global space average color, and that the scene is uni-

formly illuminated. Let n be the number of pixels in

the image, then we obtain (Ebner, 2007a)

ai(a, x) =
1

n

∑

x,y

oi,retina(x, y) (17)

=
1

n

∑

x,y

(logRi(x, y) + logLi) (18)

= logL+
1

n

∑

x,y

logRi(x, y). (19)

for a single color channel i. Let us now assume that

the scene contains a large number of different colored
patches. We do not know which colors actually occur

in the scene. Therefore, we will assume a uniform dis-

tribution of all colors, i.e. reflectances. Thus, we obtain

ai(x, y) = logL+
1

n

n
∑

j=1

log

(

j

n

)

(20)

= logL+
1

n
log

(

n!

nn

)

(21)

= logL+ log

(

n!
1

n

n

)

. (22)

This allows us to estimate the last term by a constant

using Stirling’s formula

lim
n→∞

(n!)
1

n

n
=

1

e
, (23)

provided that we have a sufficiently large number of

pixels. We now obtain

ai(x, y) = logLi − 1. (24)

Therefore, local space average color is an estimate of the
logarithm of the local illuminant except for a constant

offset. The color constant descriptor is thus given as

oi,cc(x, y) = oi,retina(x, y)− ai(x, y) (25)

= logLi(x, y) + logRi(x, y) (26)

− logLi(x, y) + 1 (27)

= logRi(x, y) + 1. (28)

5 Stimuli and Results

We tested a variant of this computational model on
the same set of experiments which were conducted by

Werner (2007). Figure 1 illustrates the input stimuli ob-

served by human subjects for experiments (a) through

(d). Experiment (a) uses a static scene. The test patch

is shown in front of an achromatic checkerboard pattern
(background). The remaining experiments use continu-

ous motion of either the test patch, the background or

both. Only a single snapshot is shown for experiment

(a) the static scene. Figure 1(b) shows the motion par-
allax sequence. The background moves behind the test

patch. The test patch remains stationary. Figure 1(c)

shows global motion. Test patch and background move

together in the same direction. Figure 1(d) shows the

object motion sequence. The test patch moves across
a static background. When the test patch leaves the

screen on the left, it reenters the screen on the right.

Subjects have to adjust the illuminant until the test

patch appears achromatic to them. They have to do this
for a standard D65 illuminant (see e.g. Ebner (2007a)

for a description of this illuminant) and also for two test

illuminants (red and green). The extent of the necessary

adjustment is used as a measure of color constancy.

Local motion seems to be important for tracking

moving objects whereas global motion processing seems
to be important for gaze stabilization (Lindner et al,

2001; Ilg, 1997). The movement of the eyeball for the

four stimuli is shown in Figure 2. The measurements

were obtained using a standard video camera (Sony
HDR-TG3E, video resolution 960× 540 with 25 frames

per second). Head movements were not prohibited dur-

ing the experiment. Head movements were later re-

moved using image stabilization. The video sequence

was transformed into a stream of images. The image se-
quence was then stabilized using patch matching with

sub-pixel accuracy such that the eye appears stationary

in the image sequence. We then extracted the color of

the pupil and computed the distance of every pixel to
the color of the pupil. The distance image pixels were

transformed to the range [0,1] using linear scaling such

that 1 corresponds to the eye color. Distances below

0.9 were clipped and the result again transformed to

the range [0, 1] using linear scaling. Next, a morpholog-
ical closing operation with a structure element of size

5× 5 was applied, followed by a morphological opening

using a structure element of size 10×10. Finally, Gaus-

sian smoothing was applied with a standard deviation
of 60. The center of mass was taken as the position of

the pupil. The horizontal eye position was smoothed us-

ing a median filter with a window size of 7. Finally, the
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Table 1 Computation of eye movements based on stimulus.

Stimulus Eye movement

a) Eye fixates center of the patch
b) Eye first looks at the center of the patch

but then tracks the background. Whenever
the background has moved by a distance
equal to twice the patch size, then the eye
performs a saccade moving the focal point
of the eye by a distance equal to twice the
patch size in a direction opposite to the
movement of the background.

c) Eye fixates center of the patch
d) Eye fixates center of the patch

eye orientation was computed based on the position,

size of the pupil and the distance to the camera.

For stimulus (a) static stimulus, the eye shows only

small movements. For stimulus (b) motion parallax, the
eye shows more extensive movements. For stimuli (c)

and (d) the eye performs a smooth pursuit tracking

motion.

We assume that the eyes track important structures

in the image. Since the subjects are queried on the color
of the test patch, it is assumed that the eyes posi-

tion the test patch directly in the center of the field

of view. Table 1 explains how the movement of the

eye is computed. Figure 3 shows the same stimuli as

described above but viewed from the point of view of
the retinal receptors. The eyes essentially track the test

patch maintaining it exactly in the fovea of the retina

in (a) and (c-d). In Figure 3(a), the entire scene is sta-

tionary. Thus, this experiment is equivalent to Figure
1(a). In Figure 3(b), the subject is assumed to track

the background with periodic saccades to maintain the

test patch inside the fovea. As a result of this tracking,

black stripes occur on the border of the image. For the

case of global motion shown in Figure 3(c), the object
is tracked, maintaining it exactly in the center of the

fovea. Because object and background move together,

the perceived image will be almost identical to exper-

iment (a) except for the black stripes on the left or
right side of the retina. The stripes occur whenever the

object leaves the scene at the left and re-enters at the

right. For experiment (d), as shown in Figure 3(d), the

background appears to move behind the object because

the object is tracked by the observer.

The experimental results obtained by Werner are
shown in Figure 4(a). Three human subjects were ex-

posed to the stimuli shown in Figure 1. One subject

was informed while the other two were naive subjects.

Werner uses a constancy index (CI) to describe the per-
formance of the subjects. In Werner’s experiments, the

subjects have to adjust the illuminant of the input stim-

uli until the test patch is perceived as achromatic. This

adjusted color of the stimulus is obtained once for the

illuminant D65 and once for another illuminant (red or

green). The Euclidean distance in Luv color space be-

tween these two adjusted colors is divided by the Eu-

clidean distance between the colors of the two illumi-
nants D65 and the non-standard illuminant. This is the

color constancy index CI.

6 Methods

It is possible to replicate the results obtained by Werner
using the following computational algorithm. Figure 4(b)

shows the results from our computational model. Note

that the error measure that we compute for the com-

putational model is computed from internal data of the
model. Hence, for our model color constancy is best

when the error is smallest. Werner’s color constancy

performance is best the larger the CI measure is. Fig-

ure 2 shows the parameters used. The same parameters

were used by Werner (2007). The algorithm was ter-
minated after 8470 iterations using p = 0.001705. The

stimuli had image size 242× 176 pixels. The parameter

p was set such that local space average color is com-

puted using a kernel radius which extends across 10%
of the image.

The computational algorithm computes color con-

stant descriptors occ(x, y) similar to the theoretical deriva-

tion as described above. Processing starts with retinal

input oretina(x, y) and a processing matrix with one ele-
ment per image pixel. The stimuli falling onto the retina

is exactly as shown in Figure 3. Color stimuli were con-

verted from Luv color space to sRGB as shown in Fig-

ure 2. These will be used as reflectances R and illu-
minant L. The three channels RGB correspond to the

retinal receptors which absorb light in the red, green

and blue parts of the spectrum. The receptors measure

the reflectances R scaled by the illuminant L. Thus, we

obtain for the light c(x, y) entering the retina

c(x, y) ∝ R(x, y)L(x, y) (29)

The eye adapts to the amount of available light, hence

we scale all channels by the maximum value m with
m = maxi,x,y{ci(x, y)}.

I(x, y) =
c(x, y)

m
(30)

We will now drop the index (x, y) when it is clear from

context.

The exposure of the retinal receptors is modeled as

oexp = (1− pe)oexp + peI (31)

with pe = 0.8. The retinal receptors appear to either

have a logarithmic response function as proposed by
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Fig. 1 Visual stimulus for experiments (a) - (d) as presented on the screen.

Faugeras (1979) or the response function follows a cube

root or a square root (see Hunt (1957)). We use a cube

root response function because the cube root relation-
ship is also used for the CIE L∗u∗v∗ color space (In-

ternational Commission on Illumination, 1996). As de-

tailed in Ebner et al (2007), both the cube root law

and a logarithmic response can be made similar to each

other with a proper choice of parameters. Thus we have,

oretina = o1/3
exp. (32)

Presumably inside V4, local space average color is

computed. LetN(x, y) be the neighborhood as described

above, then local space average color a(x, y) is com-
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Fig. 2 Movement of the eyeball for stimuli (a-d). (a): the eyeball moves only slightly (b): the motion of the eyeball is larger
(c): smooth pursuit motion from right to left (d): smooth pursuit motion from right to left

Table 2 Parameters for computational experiments.

Color Patch Color (L∗u∗v∗) RGB

red [40.40, 0.23, 0.46] [0.1767, 0.0958, 0.1231]
green [40.40, 0.17, 0.47] [0.0627, 0.1303, 0.1168]
blue [50.60, 0.20, 0.44] [0.1970, 0.1791, 0.2677]
yellow [50.60, 0.19, 0.50] [0.1660, 0.2038, 0.1134]
achromatic test patch [50.60, 0.20, 0.47] [0.1959, 0.1878, 0.1843]
bright achromatic patch [60.60, 0.20, 0.47] [0.2981, 0.2857, 0.2804]
dark achromatic patch [40.40, 0.20, 0.47] [0.1190, 0.1141, 0.1119]
red illuminant [40.40, 0.23, 0.46] [0.1767, 0.0958, 0.1231]
green illuminant [40.40, 0.17, 0.47] [0.0627, 0.1303, 0.1168]

puted using

a′(x, y) :=
1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′) (33)

a(x, y) := oretina(x, y) · pa + a′(x, y) · (1− pa). (34)

We have used pa = 0.001705 as described above. If no

retinal input exists, i.e. if oretina = [0, 0, 0], then only

averaging occurs using:

a(x, y) :=
1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′). (35)

A color constant descriptor is computed by essentially

subtracting local space average color from the measured

color. Since this process involves additional neural pro-

cessing, we have included a temporal averaging of local

space average color. Let ã(x, y) be the current temporal

average, then the temporal average is updated using

ã(x, y) := pta(x, y) + (1− pt)ã(x, y) (36)

with pt = 0.1.

The color constant descriptor is then computed us-

ing

occ(x, y) := oretina − ã(x+ dx, y + dy) (37)

with dx = 6 and dy = 6, i.e. temporal average of lo-

cal space average color is slightly offset compared to

the measured color. We describe below why this offset
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Fig. 3 Visual stimulus for experiments (a) - (d) as measured by the retinal receptors.

is necessary. Alternatively, we could also envision that

the computed temporal average or local space average

color is shuffled to a certain extent, i.e. the correspon-

dence between the measured color and local space av-
erage color is not perfect. This is quite likely given that

the brain is a developmental system. Indeed, a local

disordering of image data may have certain advantages

(Koenderink and van Doorn, 1999, 2000).

To evaluate the computational model, we compute

reflectance estimates. As in the gray world assumption,

we assume that reflectances are uniformly distributed

in the image. Therefore, we add a constant offset k with

k =

(

n
∑

i=0

i

n

)1/3

(38)

and n = 10000 to the color constant descriptors and

then apply the inverse of the cube root function to ob-

tain reflectance estimates R̃.

R̃ = (|occ(x, y) + [k, k, k]|)
3.0

(39)
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Fig. 4 (a) Color constancy results for an informed observer and two naive observers (data from Werner (2007)). (b) Angular
error obtained using the computational model. Vertical bars denote the standard deviation. Note that the angular error is
minimal for perfect color constancy, whereas Werner’s color constancy measure is maximal for perfect color constancy. Thus,
the computational model qualitatively models Werner’s results.

We compute the average reflectance estimates over all

pixel values of the test patch. Let R̃d be the estimated

reflectance under the canonical illuminant D65 and let
R̃e be the estimate under a non-standard illuminant.

We compare these two estimates by computing the an-

gular error e between the two.

e = cos−1 R̃eR̃d

|R̃e||R̃a|
(40)

This color constancy measure is zero for a perfect match

between the two estimates. Note that Werner’s color
constancy index amounts to perfect color constancy for

a maximum of 1, while our color constancy measure

amounts to perfect color constancy for a minimum of

0. Figure 4(b) shows the results obtained from the com-
putational model.

The computational model is completely determinis-

tic. However, when a moving stimulus is used, then the

output depends on the position of the test patch and on
the position of the background. Therefore, we have av-

eraged the output of our model over all possible initial

conditions (with a granularity of 100 runs per stimulus)

for experiments (b-d). Conditions where the stimuli is
at the far right or left of the scene were excluded. This

resulted in 82 different conditions for the moving stim-

ulus. Figure 4(b) shows the angular error e between the

estimated reflectance under a standard D65 illuminant

and a non-standard illuminant. The standard deviation

is also shown. A smaller angular error corresponds to
better color constancy. Color constancy is significantly

better (at 99% confidence level) during experiment (d)

when compared to color constancy during experiment

(a).

Werner also conducted an experiment with a color

checkerboard pattern using stimuli (a) and (d). This

color checkerboard pattern is shown in Figure 5(a).
Figure 5(b) shows the Werner’s color constancy index

obtained in these experiments. Figure 5(c) shows the

angular error obtained with our computational model.

Again, the performance is significantly better in exper-
iment (d) compared to experiment (a).

In an additional experiment, Werner looked at the

dependence of the color constancy measure in relation
to the speed of the stimulus with which it moved across

the screen. Werner varied the stimulus from 2.4
◦

s to

14.4
◦

s . The horizontal size of the entire scene was 19.8
◦.

Hence, the left to right motion of the stimulus was com-

pleted in 8.25s (slowest speed) or 1.375s (fastest speed).

The results from this experiment are shown in Figure
6(a). Again, our computational model also shows a de-

pendence on the speed of the target patch as shown in

Figure 6(b).
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Fig. 5 (a) Color checkerboard pattern. (b) Color constancy index using the color checkerboard pattern and human subjects
(data from Werner (2007)). (c) Angular error for stimuli (a-d) using the color checkerboard pattern and the computational
model.

7 Analysis

Note that our results are obtained by pure bottom up

computation. No motion detectors are required. The re-
sults are obtained as an effect of the algorithm used. Let

us now analyze the results shown in Figure 4 and Fig-

ure 5 in more detail. Figure 7 shows local space average

color computed by our algorithm for the four different
stimuli (a) static scene, (b) motion parallax, (c) global

motion and (d) object motion using the color checker-

board pattern. In the model, local space average color

is computed in a cube root color space. In order to visu-

alize local space average color, we have applied the in-
verse transform as described above. Each image shown

in Figure 7 shows the local estimate of the illuminant.

The color of the illuminant at pixels located inside the

center of a patch are slightly biased towards the prod-
uct of the reflectance of the patch times the color of the

illuminant. Note that all input pixels are a product of

the reflectance of the object patch and the illuminant.

The illuminant scales all pixels. Thus, we can divide by

the color of the illuminant and illustrate the effect in

a better way. Figure 8 shows the color bias for experi-

ments (a-d). In experiment (a), the viewer perceives a
static scene. Hence, the center pixels of each patch are

biased towards the color of the object patch. The col-

ors in between are intermediate values. Because of this

non-uniform bias, each color constant descriptor which
is computed for the test patch will have a slightly dif-

ferent value. That’s why we took the average over the

color constant descriptors of the test patch to compute

the perceived color of the test patch. Given the com-

putational algorithm as described above, it is of course
clear, that color constancy would be perfect for a gray

checkerboard background and a gray test patch. That’s

why an offset between the estimated illuminant and the

input is assumed when computing the color constant
descriptor.

The motion parallax stimulus (b) is very similar to

the static stimulus (a) when considering the stimulus
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Fig. 6 (a) Color constancy as a function of speed (experimental data from Werner (2007)). (b) Results from the computational
model. Note that the angular error should be minimized whereas the color constancy index should be maximized for perfect
color constancy. Hence, the results again match qualitatively.

(a) static (b) motion parallax (c) global motion (d) object motion

Fig. 7 Local space average color computed by the computational model.

(a) static (b) motion parallax (c) global motion (d) object motion

Fig. 8 Bias with respect to the illuminant for experiments (a-d).

from an eye-centered coordinate system. Hence, local

space average color is quite similar to experiment (a).
The only difference is that the test patch appears to

move across the image close to the fovea. This enables

the observer to perceive the stimulus in different posi-

tions relative to the background. Because of this, color
constancy will improve during experiment (b) when

compared to experiment (a). For global motion (c), the

patch is fixated. This results in black stripes at the bor-

der where no input is obtained from the screen. Hence,
there is less bias from the background. Finally during

object motion (d), the background appears to move be-

hind the test patch. Since local space average color is

computed iteratively, each background pixel either has
the color of an illuminated yellow patch, followed by

an illuminated red patch or it has the color of an il-
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luminated green patch followed by an illuminated blue

patch. The iterative averaging leads to an overall av-

erage of the two neighboring patches, i.e. the bias is

reduced as is shown in Figure 8(d). Therefore, color

constancy performance is best, when the object moves
across the background.

Given what we have just illustrated, it is also clear

that color constancy will depend on the speed of the tar-

get patch across a checkerboard pattern. If the target

patch remains stationary, then we have a static scene.
As the target starts to move slowly across the back-

ground, color constancy will improve because a better

estimate of the illuminant can be obtained. The bias (as

described above) is reduced. Color constancy improves

as the speed of the stimulus is increased. Why does color
constancy eventually decrease? Well, the decrease is

due to the processing speed of the brain/computational

model. In order to understand how this works, consider

a camera taking a video of a turning wheel. Initially,
the wheel is at rest and the spokes are stationary. As

the wheel starts to turn, we see how the wheel turns in

on direction. Then the speed of the wheel is increased.

Eventually, it will turn so fast that the processing speed

(frame rate) cannot take up with the motion of the
wheel. The spokes will become blurry. It will appear

that the wheel slows down and eventually comes to

rest. As the speed is increased even further, it will ap-

pear that the wheel turns into the opposite direction
even though this is not really the case. If the speed of

the target patch is increased to a certain point, then

the visual image that is used to compute local space

average color will be equivalent to a static image. For

high speeds, the object will be moving so fast, that the
object will blend with the background.

8 Conclusion

We have shown that Ebner’s model of color percep-

tion is able to reproduce results from perceptual exper-

iments. Previously it had been thought that these re-
sults would require an influence from high-level motion

processes on color processing in the brain. However, the

results show that this is not necessary. The computa-

tional model, which we have presented here, computes a

color constant descriptor purely bottom up. No motion
detection occurs at any point in the color constancy

algorithm. It is only required for eye movements. Be-

cause of the eye movements, the output is dependent on

whether the object, the background or both moves. It
all depends on the signal reaching the retinal receptors.

Thus, for the model presented here, color constancy is

dependent on motion but high-level motion or any kinds

of input from motion processing to color constancy pro-

cessing is not required.
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sität Tübingen, Germany, in
1999. He received the venia
legendi in 2006 from the
Julius Maximilians Univer-
sität Würzburg, Germany. Dr.
Ebner has received a Heisen-

berg Scholarship from the
German Research Foundation

(DFG). In May 2008, he moved to the Universität Tübingen.
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