
Evolution of hierarchical translation-invariantfeature detectors with an application tocharacter recognitionMarc EbnerEberhard-Karls-Universit�at T�ubingenWilhelm-Schickard-Institut f�ur InformatikK�ostlinstra�e 6, 72074 T�ubingen, Germanyebner@informatik.uni-tuebingen.deAbstract. The task of feature extraction is usually performed by chain-ing a series of well known elementary operators. We are trying to auto-mate the process by using a genetic algorithm to evolve the requiredfeature detectors. In this case one only needs to specify the �tness func-tion for the given problem. In this paper we present our results with theevolution of feature detectors for the task of character recognition.1 Introduction1.1 MotivationIn image processing one is often faced with the task of extracting certain fea-tures from an image. Usually this problem is approached by selecting certainwell known operators such as edge extraction or Gaussian smoothing and ap-plying them to the images to get the desired result for the problem at hand.We are trying to automatically evolve feature detectors for arbitrary tasks usingevolutionary algorithms. The process of feature extraction may then be reducedto formulating an appropriate �tness function. In this paper we show that au-tomatically evolved feature detectors can be successfully applied to the task ofextracting an example character from a set of characters using the digits zerothrough nine.1.2 BackgroundRoth and Levine [3] have used a genetic algorithm [4] to evolve feature detectorsto extract geometric elements. A necessary prerequisite is that the elements canbe described by an equation in the form f(�x; �a) = 0 where �x is a point on theelement and �a are the parameters of the equation.Katz and Thrift [1] have generated image �lters for target recognition witha genetic algorithm. To extract an object from an image they have used a singlelinear �lter. To classify an extracted object they have used a �xed number oflinear �lters with a �xed size which resulted in a single feature vector. Thisfeature vector is then used for classi�cation. A special 2D-crossover operation isused to evolve the �lters. This 2D-crossover cuts out an area of the �lter andswaps the contents with the corresponding area selected from the other parent.



Koza has successfully applied his genetic programming paradigm [5] to the�eld of letter recognition [6]. He evolved detectors which were able to recognizethe letter \I" or \L". The detectors examine the pixel grid by moving overthe pixels and looking if the pixel at the current position is set or not. Kozaintroduced �ve automatically de�ned functions [6] which enabled the detectorsto examine the pixels in the local area around them at the current position.Andre [2] has evolved individuals which locate a particular number or letterin an image using genetic programming [5]. The detectors are required to lookfor the features by moving themselves over the image. They are equipped with�ve 3 � 3 hit-miss matrixes which can be used for a matching operation at thecurrent location. Andre also used a 2D-crossover operation to evolve the hit-missmatrixes. Two random areas of equal size are selected from the two parents andexchanged to create two o�spring.Lohmann [7] used structure evolution to evolve an operator which computesthe Euler number [11] of an image. Lohmann evolved the parameters and thestructure of a local �lter. The sum of all local �lters then gives the output for thecomplete image. Each local �lter has a 3� 3 input �eld. Elements are combinedusing binary multiplication. Finally the output of the local detector is the sumover all binary products of the input �eld.Johnson et al. [10] used Genetic Programming to evolve visual routines. Theyused point operators, feature detectors and point list �lters as primitive functionsfor the problem of determining the position of the left or right hand in a silhouetteof a person.Kr�oner and Schulz-Mirbach [13] focused on the task of adaptive calculationof invariant features. They used a �xed hierarchy of transfer functions which aresymmetric in their input arguments. The weights of the transfer functions aretrained by minimizing an error measure on the number of incorrectly classi�edpatterns.2 Evolution of hierarchical translation-invariant detectorsTo evolve our feature detectors we have used a variant of an evolutions strategy[12] called structure evolution. Lohmann [8, 9, 7] introduced structure evolutionto evolve individuals containing discrete and continuous variables. For our fea-ture detectors, we have used variable sized hierarchical individuals much like theindividuals used in the genetic programming paradigm [5].2.1 Individuals
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iBand(n )Band(1) Op Op OpOp OpFig. 1. General structure of one individual.Each individual (�gure 1) is an array of a set of elementary detectors. Itconsists of input detectors, hidden detectors and output detectors analogous to



the neurons of a neural net [14]. Each of the elementary detectors has a prede�nedstructure. The types used as elementary detectors are described in the followingsubsection. To impose a hierarchical treelike structure on the resulting detectoreach elementary detector may receive input from one or two other elementarydetectors. This input consists of a single band image. Each detector is onlyallowed to use the output of the detectors to its left. Thus using this methodwe automatically generate a tree structure. An individual with its correspondinghierarchical structure can be found in �gure 4.The input that the individual receives is also part of this structure. For everyband in the input image we place a detector in the individual which simplyoutputs the particular band. All input detectors are located at the beginning ofthe array. If we have a ni band input image, the lower ni detectors in the arraysupply the individual bands to be used for processing by the following detectors.2.2 Input to the detectorsThe input to the detectors consists of several bands calculated from the inputimage. In case of a single band image the input is exactly this single band inputimage. The bands calculated from an color input image could be the individualcolor components red, green and blue or hue, saturation and intensity or both.2.3 Elementary operators
Weights ScalingOperator Operand1 Operand2Fig. 2. Structure of one elementary operator.Our evolving feature detector is composed of several elementary operators(�gure 2). These elementary operators constitute the set of primitive functions[5] for our algorithm. We have provided the system with monadic and dyadicoperators. Monadic operators operate on a single band image. Dyadic operatorsoperate on two single band images.In the following text fi(x; y) denotes the output of the i-th feature detectorat position (x; y). We set the resulting output image by looping over all imagepositions. Every operator only uses local information. Let N (x; y) be the setof points p in the neighbourhood of (x; y) which the operator can use for itscalculation. The weight from point p to the operator i is given by wpi. Thefactor a is used to scale the result.Monadic operators For a monadic operator the input image is given by Iop(i).Maximum fi(x; y) = amaxp2N(x;y)fwpi � Iop(i)(p)gMinimum fi(x; y) = aminp2N(x;y)fwpi � Iop(i)(p)gSum fi(x; y) = aPp2N(x;y)wpi � Iop(i)(p)Product fi(x; y) = aQp2N(x;y) I(p)Sum of Gaussian fi(x; y) = aPp2N(x;y) �(wpi; Iop(i)(p))Product of Gaussian fi(x; y) = aQp2N(x;y) �(wpi; Iop(i)(p)) where �(x; y) isde�ned as �(x; y) = e�(x�y)2=� and � is a scaling parameter with a �xed value.



Dyadic operators For a dyadic operator the input images are Iop1(i) andIop2(i).Maximum fi(x; y) = aPp2N(x;y) wpimaxfIop1(i)(p); Iop2(i)(p)gMinimum fi(x; y) = aPp2N(x;y) wpiminfIop1(i)(p); Iop2(i)(p)gSum fi(x; y) = aPp2N(x;y)wpi(Iop1(i)(p) + Iop2(i)(p))Di�erence fi(x; y) = aPp2N(x;y)wpi(Iop1(i)(p)� Iop2(i)(p))Product fi(x; y) = aPp2N(x;y)wpi(Iop1(i)(p) � Iop2(i)(p))3 EvolutionTo evolve the feature detectors described here we have to evolve the structureof the complete detector as well as the weights associated with each elementarydetector. Since the structure evolution is associated with discrete steps and theweights are continuous variables, which need to be optimized, we use structureevolution [7] to evolve the detectors.Structure evolution consists of an encapsulated evolutions strategy [12] wherethe continuous parameters are evolved in the inner loop and the discrete param-eters are evolved in the outer loop.We use mutation on the scaling factor a and the weights w and single pointcrossover on the linear array consisting of the scaling factor a and the weightsw in the inner loop whereas for the outer loop we only use mutation. Mutationin the outer loop consists of a random elementary detector which is added atthe far right of the individual. This random detector receives input from one ortwo (depending on the elementary function of the detector) other elementarydetectors or input detectors. The operands are chosen with uniform probability.However, other probability distributions can also be used (e.g. one which has ahigher probability of selecting higher order elementary detectors).Since the two operators of the newly added detector are chosen from the list ofexisting detectors there always remains the possibility of starting over by choos-ing the input detectors as operands. Since the operands are chosen with uniformprobability from the list of detectors the probability of starting over decreases asthe size of the individual increases. In the beginning, while the individual is stillsmall, the algorithm may start over several times evolving detectors for di�erentfeatures. As the size of the individual increases the probability of choosing oneof the hidden detectors as operands increases. This produces a series of moreand more specialized detectors.Fitness is calculated by summing over the squared di�erences between actualand desired output: �tness = � 1nPp2Image(od(p)� o(p))2 where od(p) and o(p)is the desired and actual output at position p and n denotes the number of pointsused for the comparison. Since we are using operators with a square mask weexclude the boundary pixels of the image in calculating the �tness measure.4 ExperimentsWe have performed a number of experiments with the system. Two of them havebeen selected for presentation here.



4.1 Detector for multiple symbolsFig. 3. Symbols used in �rst experiment.We have applied our algorithm to the task of �nding a translation invari-ant �lter for four di�erent yellow symbols (with RGB color [230,230,30]). Thesymbols are shown in �gure 3. Input to the detector consists of the bands hue,saturation and intensity with the range [0,1]. The symbols are presented to theinput detectors in a completely random order. Note that the �rst two symbolsare a subset of the third symbol. Thus is should be relatively easy for the algo-rithm to develop individuals which are successful in detecting them. The thirdand fourth symbol are completely independent.As a neighbourhood N (x; y) for the elementary detectors we have chosenN (x0; y0) = f(x; y) j jx0 � xj � 1 and jy0 � yj � 1g. This gives everyelementary detector a neighbourhood of 3�3 points which can be used as input.The desired output for the individuals is 1.0 at the center of the symbol. Nonegative examples have been presented in this experiment. Negative examplesare only present implicitly since the same detector is applied to all positions ofthe input image. A perfect individual must have at least depth 2 to determine,if the �rst, second or fourth individual is shown. The third individual can bedetected by an individual of depth zero due to the prominent center of thesymbol. A perfect detector could be produced for all four symbols using onlythe elementary detectors which have been presented above. This detector worksby using three elementary detectors. Each detects either a horizontal, vertical ordiagonal line of size 7. The �tness for this experiment and the resulting individual
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Fig. 4. Improvement of maximum �tness for the �rst experiment with a [5; 25(5+25)150 ]evolution strategy (pMut = 0:1, pCross = 0:6). The mutation probability of the outerloop was set to 0.5. The structure shown on the right is the resulting individual. Inputbands are colored with a light gray and the output detector is colored with a dark gray.



is shown in �gure 4. One can clearly see two di�erent responses of the algorithmdepending on the input presented. The algorithm quickly evolved a detectorfor the �rst three symbols and �nally incorporated the fourth symbol. Sincewe present the symbols in a completely random order this is analogous to theproblem of �nding an optimum of a generation dependent �tness function.4.2 Character recognitionAs a second experiment we have applied our detector to the problem of �ndingone character from a set of characters. The characters we have used for the resultsreported here have been introduced by Andre [2] for a problem called \the singleexample digit discrimination task". The problem was to return a \yes" responsefor the example digit and a \no" for all others. Since our detectors di�er fromthose used by Andre we did not present the digits in isolation and then calculatedthe �tness. Instead we generated a random 4� 4 matrix with numbers from theset f0; : : : ; 9g. This gives us a 29 � 29 pixel image with 16 digits (digits areseparated by one pixel and the border is 3 pixels wide on all four sides) which ispresented as input to the detectors. This single band image has a 1.0 for everyset pixel in the digit and a 0 otherwise. The desired output consisted of a 1.0 atthe center of all example digits.Because the matrix of digits is constantly changing the resulting detectorhas to focus its attention. Only the information in a 5� 5 area of the matrix isrelevant in determining if an example digit has been found. Pixels outside of the6� 6 area of the digit had to be neglected for the desired response.As a neighbourhood N (x; y) for the elementary detectors we have again cho-sen N (x0; y0) = f(x; y) j jx0 � xj � 1 and jy0 � yj � 1g. We have beenable to evolve a correct detector for every digit. In �gure 6 the maximum�tnessstatistics for the problem of locating the corresponding digits are shown.Fig. 5. Numbers used in second experiment (from [2]).5 Conclusion and ongoing researchThe experiments presented here have shown that it is possible to automaticallyevolve hierarchical translation-invariant feature detectors using structure evo-lution. Increasingly complex detectors may be evolved using a single mutationoperation starting from primitive individuals.We are currently evolving feature detectors for several di�erent problemsincluding feature extraction from real world images. In using real world imagesit is interesting to see which input detectors will actually be used in the solutionto a particular problem and which will be neglected.
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Fig. 6. Improvement of maximum �tness for the digits zero through nine (shownfrom left to right, top to bottom). Detectors for zero and one were evolved with a[5; 25(5+25)50] evolution strategy. Detectors for two, three, four, seven, eight and ninewere evolved with a [5; 30(5+30)50 ] evolution strategy. The detector for �ve was evolvedwith a [5; 30(5 + 30)100] evolution strategy and �nally the detector for six was evolvedwith a [5; 30(5+30)75 ] evolution strategy. We have set pMut = 0:1 for all detectors andpCross = 0:6 except for the detectors �ve, seven and eight where pCross = 0:9. Themutation probability of the outer loop was set to 0.5.
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