
On the Evolution of Edge Detectors forRobot Vision using Genetic ProgrammingMarc EbnerEberhard-Karls-Universit�at T�ubingenWilhelm-Schickard-Institut f�ur InformatikComputer ArchitectureK�ostlinstra�e 6, 72074 T�ubingen, Germanyebner@informatik.uni-tuebingen.deAbstractGenetic programming has been applied to the task of evolving edge detectors. Usingsimple elementary functions we have evolved edge detectors using the squared di�erencebetween the individual's response and Canny's edge detector as a �tness measure. Wepresent the best evolved individual and two individuals which specialized themselves todetect only vertical edges.1 MotivationImage processing is usually done by chaining a series of well known operators to solve aparticular problem at hand. We are trying to automate the process by evolving the necessaryprogram using Genetic Programming [11, 12] which consists of several elementary operators.Therefore one only needs to specify what the desired response should be but not how theimage operators are actually applied.Currently we are trying to equip a mobile robot with feature detectors which have adaptedthemselves to extract relevant features from the environment. These features can then beused during control and navigational tasks. As a �rst step we wanted to see if GeneticProgramming is able to develop certain high-level operators given the low-level operators asthe set of elementary functions. In this paper we present our results with the evolution ofedge detectors.2 BackgroundIn this section we brie
y review the related work of other approaches to the task of adaptivelydetermining edges and the application of evolutionary algorithms to solve image processingtasks.Joshi and Lee [3] modeled retinal ganglion cells and used backpropagation to train theirmodel to detect edges. The trained neural net approximated the Laplacian of the Gaussianfunction. Barrow [5] modeled processing in the retina and the lateral geniculate nucleusby a convolution with a di�erence of Gaussians kernel. Using a competitive learning rule,Barrow found that the weights converged into patterns resembling edge or bar masks. Barrowused real world images as input for his model. Linsker [13] has shown that the layers of afour layer linear feed-forward network adapt themselves to develop averaging cells, center-surround cells and orientation selective cells using random snow as input and a Hebbian

learning rule. His emphasis was on the self organisation of a perceptual network where nodesired output is presented. Kohonen [10] introduced an adaptive-subspace self-organizingmap which developed Gabor-type �lters if the colored noise input patterns are translated.Jeong and Kim [9] developed a method for adaptively determining the size of the Gaussian�lter used in edge detectors like the Marr-Hildreth edge detector or Canny's edge detector.The optimal size of the Gaussian is determined for every pixel by minimization of an energyfunction which has been de�ned such that the size is large at uniform intensity areas andsmall wherever there is a signi�cant change in intensities and that the size does not changeabruptly from pixel to pixel.Katz and Thrift [1] have used Genetic Algorithms [8] to evolve image �lters for recognitionand classi�cation of images. Roth and Levine [7] have applied Genetic Algorithms to the taskof geometric primitive extraction from images. Lohmann [14] used structure evolution avariant of an evolution strategy [17] to evolve detectors which determine the Euler numberof an image. Andre [2] used Genetic Programming to evolve 2-dimensional feature detectorsusing hit-miss matrixes and applied them to the task of letter recognition. Andre usedbinarized images for processing. Johnson et al. [15] used Genetic Programming to evolvevisual routines. The evolved visual routines were able to �nd the hands in images showingonly the silhouette of a person. Johnson et al. de�ned a high-level set of terminals such asthe centroid point of the silhouette and upper left and lower right points of the bounding box.3 Evolution of edge detectors using Genetic ProgrammingTo apply Genetic Programming [11, 12] to the task of evolving edge detectors we have to spec-ify the set of terminals, the set of elementary functions, the �tness measure, the parametersfor controlling the run and a criterion to terminate the run [11].3.1 Set of terminalsWe have converted the input image into a gray scale image with the range [0,1] and used thissingle band image as the single terminal for the results presented here. It would also havebeen possible to de�ne the set of terminals as the set of the three individual color bands red,green and blue. However we feel that automatically de�ned functions [12] have to be used toevolve feature detectors using this low level set of terminals.3.2 Set of primitive functionsWe have used the complete set or a subset of the following primitive functions for the problemof edge detection. Let I be the input image for the unary functions and I1 and I2 be the inputimages for the binary functions. IR is the resulting image. Image coordinates are speci�edby x and y.3.2.1 Unary functions� Negation (Neg) negates the image I : IR(x; y) = �I(x; y)� Absolute Value (Abs) calculates image with absolute pixel values: IR(x; y) = jI(x; y)j� Shift left (ShiftL) shifts the image I one pixel to the left: IR(x; y) = I(x+ 1; y)� Shift right (ShiftR) shifts the image I one pixel to the right: IR(x; y) = I(x� 1; y)

� Shift up (ShiftU) shifts the image I one pixel up: IR(x; y) = I(x; y + 1)� Shift down (ShiftD) shifts the image I one pixel down: IR(x; y) = I(x; y � 1)� Threshold (UThr) sets all pixels with values greater than zero to one and to zero oth-erwise: IR(x; y) = (1 I(x; y) > 00 otherwise3.2.2 Binary functions� Threshold (Thr) sets all pixels in I1 with values greater than the corresponding valuein I2 to one: IR(x; y) = (1 I1(x; y) > I2(x; y)0 otherwise� Subtraction (-) subtracts image I2 from I1: IR(x; y) = I1(x; y)� I2(x; y)� Division (/) divides every pixel value from image I1 by the pixel value from I2: IR(x; y) =I1(x; y)=I2(x; y)� Multiplication (*) multiplies every pixel value from image I1 with the pixel value fromI2: IR(x; y) = I1(x; y) � I2(x; y)� Addition (+) adds image I2 to I1: IR(x; y) = I1(x; y) + I2(x; y)� Mininum (Min) calculates for every pixel the minimum of both pixel value of I1 and I2:IR(x; y) = minfI1(x; y); I2(x; y)g� Maximum (Max) calculates for every pixel the maximum of both pixel value of I1 andI2: IR(x; y) = maxfI1(x; y); I2(x; y)g3.3 Fitness measureTo calculate the �tness of an edge detector we summed up the squared di�erences of the pixelvalues between actual and desired output of the detector. We used �ve �tness cases for theproblem presented here. The �ve images we used for the �tness calculations were all takenin our lab under everyday conditions and had the size 128 � 128. Raw �tness is calculatedas �tnessraw(Ind) = P5i=1 �U(Ind(Ii)) + 1n Pp2Ii (Ind(Ii(p))� Edges(Ii(p)))2� where the �veimages are given as fI1; : : : ; I5g, Ind(I) denotes the resulting image produced by the individualon the image I and Edges(I) are the desired edges which should be extracted from the imageI , p is an image point and n is the number of points in the image. U(Ind(Ii)) evaluates toa large value for images with uniform pixel values and zero otherwise. We added the termU(Ind(Ii)) to avoid the evolution of detectors which simply return a uniform image with pixelvalues like zero or another small value. This \detector" might otherwise have a quite good�tness since most pixels are not edge pixels and therefore have a value of zero.4 ExperimentsIn our experiments we used the Canny edge detector [16] as the desired edge detector. Theimage with the detected edges was thresholded to give a binary image where the edge pixelshave the value 1.0 and all others have been set to zero. The Canny edge detector uses aGaussian smoothing and nonlocal maxima suppression which was not included in the setof elementary functions. Thus we did not expect to develop a 100% accurate Canny edgedetector.

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0 5 10 15 20 25

A
dj

us
te

d
F

itn
es

s

Generation

Adjusted fitness of best-of-run individual

I

I

UThr

I

Neg

I

I

+

*

I I

Abs

/

Min

/

/

+

Abs

-

-

I

I

I I

Min

Figure 1: Fitness statistics for best individual and structure of best individual (manuallysimpli�ed). I denotes the input image.We experimented with di�erent sets of elementary functions and terminals. We used thefollowing base set of functions and terminals for all our experiments.BASE = fNeg;Abs; ShiftL; ShiftR; ShiftU; ShiftD;�; =; �;+;Max;Min; inBandIgwhere inBandI denotes the terminal intensity image with the range [0, 1]. In addition weused the following extensions to the base set:EXT = fUThr;Thr;Rgwhere R is the ephemeral random constant with the range [�1:0; 1:0). This ephemeral randomconstant denotes a uniform image where all pixel values are set to the value of the ephemeralrandom constant. We did not use a wrapper such as binarizing the image. We wanted to see ifGenetic Programming is able to determine the threshold automatically using the elementaryfunctions and the ephemeral random constant of the extension set.We constructed eight di�erent function sets using the base set and all possible subsetsof the extension set. Due to the long running times involved we were only able to performtwo runs for each of the di�erent sets. We have used a population size of 4000 individualsfor each of the runs. For the �rst run we imposed a limit of 1000 nodes and a maximumpossible depth of the trees of 17 and used �tness proportionate selection and the parameters(pcross = 0:9; prep = 0:1). For the second run we did not impose a limit on the number ofnodes and the maximum depth and used �tness proportionate selection with over-selectionand the parameters (pcross = 0:85; prep = 0:1; pmut = 0:05).Since we did not expect to evolve a perfect individual we terminated the runs after 25generations. The second of the two runs always produced a �tter individual than the �rst.The evolved edge detectors were tested on �ve additional images which have not been usedfor the �tness calculations. The individual which achieved the best results on the previouslyunseen images was evolved using the set of elementary functions BASE [fUThrg during thesecond of the two runs. The structure of the individual is as follows:

0.315

Min

Abs

I I

-

Min

Abs

I

0.254

+

I

NegFigure 2: Detectors for vertical edges (manually simpli�ed). I denotes the input image.(ShiftD (Min (Abs (- (- inBandI inBandI) (ShiftU inBandI))) (Min (ShiftU (/ (Abs (+ (-(- inBandI (Min (/ inBandI inBandI) (ShiftR inBandI))) (ShiftU inBandI)) (ShiftU (ShiftL(ShiftD (ShiftD inBandI)))))) (/ inBandI (Abs (Min (/ (ShiftD (Max (+ (* inBandI in-BandI) (ShiftR inBandI)) (Min (Min (ShiftU inBandI) (+ (+ (Max (- (Min inBandI inBandI)(ShiftR (ShiftD (* (ShiftD inBandI) (ShiftL inBandI))))) (* (* inBandI inBandI) (Min (Abs(Abs (+ inBandI inBandI))) (ShiftU (- (Abs inBandI) (Neg inBandI)))))) (ShiftU inBandI))(ShiftU (ShiftL (ShiftL (ShiftU (/ (* (* (ShiftR inBandI) (- inBandI inBandI)) (Neg (ShiftLinBandI))) (Neg (Neg inBandI))))))))) (* inBandI inBandI)))) (Neg inBandI)) (/ inBandIinBandI)))))) (ShiftR (ShiftL (ShiftL (UThr inBandI)))))))The parse tree of the same individual after manual simpli�cations have been applied isshown in �gure 1. The response of the detector to the images used for the �tness calculations isshown in �gure 3 and the response of the detector to the images used to test the generalizationcapabilities of the detector is shown in �gure 5.The �tness statistics are shown in �gure 1.The response of the best individual of the �rst random population of the run which evolvedthe best individual is shown in �gure 4. Its structure is:(ShiftD (Min (Abs (+ (- (- inBandI inBandI) (ShiftU inBandI)) (ShiftU (* inBandI in-BandI)))) (Min (ShiftU (/ (+ inBandI inBandI) (ShiftR inBandI))) (+ (UThr (ShiftL in-BandI)) (UThr (ShiftD inBandI))))))On the �rst of the two runs two interesting individuals emerged with the sets BASE [fUThr;Rg and BASE[fUThr;Thr;Rg. The individuals simply take the absolute di�erencebetween the pixels on the left and right side for every pixel. Finally both compute the resultas the minimum value between the absolute value of the di�erence and a small ephemeralrandom constant. These detectors are obviously good at detecting vertical edges and do notdetect any horizontal edges. The minimum operator acts like a threshold which sets largeedge values to a �xed value. The structures of both detectors are shown in �gure 2 aftermanual simpli�cations have been applied.5 Conclusion and ongoing researchThe results presented here have shown that genetic programming is able to evolve an edgedetector. Having shown this, we are interested in the question if Genetic Programming alsoevolves a structure capable of detecting edges given a �tness measure which does not directlyincorporate the edges as the desired output. We will also apply Genetic Programming tothe task of evolving general feature detectors which can be used during robot control andnavigation tasks.

Figure 3: The �rst line of images shows the images used for the �tness calculations. Thesecond line shows the edges detected with the Canny edge detector. The third line shows theresponse of the best individual found. The fourth line shows the response of the �rst of thetwo detectors for vertical edges. Finally the �fth and sixth lines show the binarized imagesof line three and four. The threshold has been manually chosen at 0.25 and 0.1 respectively.Figure 4: Response of the best individual generated during initialization of the run which�nally evolved the best individual of all experiments. This individual is not able to performedge detection.

Figure 5: The �rst line of images show the set of images which were used to test the gener-alization capabilities of the detectors. The second line shows the output of the Canny edgedetector. The third line shows the response of the best evolved edge detector. Finally thefourth line shows the binarized response of the best evolved edge detector with a manuallyset threshold of 0.25.6 AcknowledgementsThe author is currently supported by a scholarship according to the Landesgraduierten-f�orderungsgesetz.For our experiments we have used the lil-gp Programming System, version 1.01 [6]. lil-gpwas written by Douglas Zongker under the direction of Bill Punch. For image processing wehave used the Vista software environment [4].References[1] A. J. Katz and P. R. Thrift. Generating image �lters for target recognition by geneticlearning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):906{910, September 1994.[2] David Andre. Automatically de�ned features: The simultaneous evolution of 2-dimensional feature detectors and an algorithm for using them. In Jr. Kenneth E. Kin-near, editor, Advances in Genetic Programming, pages 477{494, Cambridge, Mas-sachusetts, 1994. The MIT Press.

[3] Anupam Joshi and Chia-Hoang Lee. Backpropagation learns marr's operator. BiologicalCybernetics, 70:65{73, 1993.[4] Arthur R. Pope and David G. Lowe. Vista: A software environment for computer visionresearch. In CVPR'94, 1994.[5] Harry. G. Barrow. Learning receptive �elds. In Proceedings of the 1st InternationalConference on Neural Networks, volume 4, pages 115{121. IEEE, 1987.[6] Douglas Zongker and Bill Punch. lil-gp 1.01 User's Manual (support and enhancementsBill Rand). Michigan State University, March 1996.[7] Gerhard Roth and Martin D. Levine. Geometric primitive extraction using a geneticalgorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):901{905, September 1994.[8] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.[9] Hong Jeong and C. I. Kim. Adaptive determination of �lter scales for edge detection.IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(5):579{585, May1992.[10] Teuvo Kohonen. Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics, 75:281{291, 1996.[11] John R. Koza. Genetic Programming, On the Programming of Computers by Means ofNatural Selection. The MIT Press, Cambridge, Massachusetts, 1992.[12] John R. Koza. Genetic Programming II, Automatic Discovery of Reusable Programs.The MIT Press, Cambridge, Massachusetts, 1994.[13] Ralph Linsker. Self-organization in a perceptual network. Computer, 21:105{117, 1988.[14] Reinhard Lohmann. Selforganization by evolution strategy in visual systems. In Hans-Michael Voigt, Heinz M�uhlenbein, and Hans-Paul-Schwefel, editors, Evolution and Opti-mization '89, pages 61{68. Akademie-Verlag, 1990.[15] Michael Patrick Johnson, Pattie Maes, and Trevor Darrell. Evolving visual routines. InRodney A. Brooks and Pattie Maes, editors, Arti�cial Life IV, Proceedings of the FourthInternational Workshop on the Synthesis and Simulation of Living Systems, pages 198{209, Cambridge, Massachusetts, 1994. The MIT Press.[16] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Machine Vision. McGraw-Hill,Inc., New York, 1995.[17] Ingo Rechenberg. Evolutionsstrategie '94. frommann-holzboog, Stuttgart, 1994.

