
Evolving an environment model forrobot localizationMarc EbnerEberhard-Karls-Universit�at T�ubingenWilhelm-Schickard-Institut f�ur InformatikArbeitsbereich RechnerarchitekturK�ostlinstra�e 6, 72074 T�ubingen, Germanyebner@informatik.uni-tuebingen.deAbstract. The use of an evolutionary method for robot localizationis explored. We use genetic programming to evolve an inverse functionmapping sensor readings to robot locations. This inverse function is aninternal model of the environment. The robot senses its environment us-ing dense distance information which may be obtained from a laser range�nder. Moments are calculated from the distance distribution. These mo-ments are used as terminal symbols in the evolved function. Arithmetic,trigonometric functions and a conditional statement are used as primi-tive functions. Using this representation we evolved an inverse functionto localize a robot in a simulated o�ce environment. Finally, we analyzethe accuracy of the resulting function.1 MotivationRobots are usually equipped with a variety of sensors that can be used to sensetheir environment. Information from these sensors can be used to create aninternal model of the environment. Such models can be very helpful to the robotin moving from one place to another. Sometimes, however, it may be necessarythat the robot relocalizes itself if it has lost track of its current position. Thismay happen if the robot performs a movement due to an external force thatis not sensed by the internal sensors or if odometry errors accumulate. We areexploring the use of an evolutionary method to evolve a representation of theenvironment that can be used for robot localization. Before we describe ourevolutionary approach to robot localization we give a brief review about existingapproaches.2 BackgroundA detailed overview about traditional methods for self localization of a mobilerobot is given by Talluri and Aggarwal [16]. They classify the di�erent methodsinto four categories: landmark-based methods, methods using trajectory inte-gration and dead reckoning, methods using a standard reference pattern, and



methods using a priori knowledge of a world model which is matched to the sen-sor data. Often, the world model is constructed using sonar sensors, a laser range�nder or from a set of images. Basic methods for map learning are reviewed byThrun et al. [18]. The information from di�erent types of sensors may be fusedto create a three dimensional map of the environment [21].Talluri and Aggarwal [14,15, 17] used visual information to locate a mobilerobot in an outdoor environment. Image features are used to search for thecurrent position in a model of the environment. Burgard et al. [5] used positionprobability grids to estimate the absolute position of a mobile robot equippedwith sonar sensors. Yamauchi and Beer [23] incrementally built a topologicalmap of the environment using information from the robot's odometry. Kurz [11]constructed a topological map from ultrasonic range data using a self-organizingfeature map. Von Wichert [19] and von Wichert and Tolle [20] developed aself-organizing visual environment representation for a mobile robot. Geometricmoments calculated for image segments are used to relocate the robot insidea topological map created from an omnidirectional view of the environment.Crowley et al. [6] used principal components of range data for position estimationof a mobile robot. First, training scans are used to generate a lookup tablemapping eigenvalues of the range data to possible robot positions. The acquiredrange data projected into eigenspace is used as an index into this table anda number of candidate poses are extracted. A Kalman �lter is used to rejectinvalid hypotheses as the robot moves. Beetz et al. [3] also used an active methodfor relocalization for a mobile robot. Whenever the robot has lost track of itsposition it performs an action which will minimize the uncertainty taking a costcriteria to perform the action into account. For an experimental comparison oftwo localization methods, Markov localization and scan matching, see Gutmannet al. [7].Balakrishnan and Honavar [1] followed a biologically motivated approach tospatial learning for robot localization. They developed a computational modelof the hippocampus. Their simulated mobile robot incrementally constructs aneural model of the experienced environment. Sensor readings that have notbeen experienced previously are remembered together with position informationobtained from dead reckoning. Later, if similar sensor readings are experienced,the position information is recalled and used to correct possible localizationerrors. Yamada [22] evolved behaviors for a mobile robot to recognize di�erenttypes of environments.Our approach to robot localization is completely di�erent from traditionalmethods. We are trying to evolve a function that estimates the robots positiongiven the current sensor readings. Thus the whole system is under evolutionarycontrol. We try to evolve an internal representation of the environment. Nordinand Banzhaf [12, 13] previously evolved a world model using genetic program-ming with linear genotypes [2] for robot control. They evolved a function whichestimates the expected �tness for possible motor commands given the currentsensor readings. A planning process searches the space of possible motor com-mands using the evolved function to predict the expected �tness of the action.



The best action is executed on the real robot. The resulting actual �tness of thisaction is stored along with sensor readings and motor commands in a memorybu�er. This memory bu�er is used by a learning process to evolve the functionto predict �tness values before the action is executed.
Fig. 1. Where in the map shown on the left is the robot located given the shown sensorreadings? The correct location is shown on the right.3 Evolving an environment model for robot localization
Fig. 2. Two examples for ambiguous sensor readings. If the robot travels through along corridor it will get the same sensor readings for all points along a line parallel tothe corridor [5]. If the robot is in a large room it will not be possible to tell in whichcorner the sensor readings were taken. In addition to the actual position of the robotthree other positions are also possible.In our experiments it is assumed that the robot perceives its environmentusing a laser range �nder or a ring of sonar sensors. The environment is perceivedlike a oor plan. Robot simulators usually use a oor plan to calculate distance



information for the sensors. There exists a mappingM from the robot's positionP to sensor values S. M : P World����! STo localize a mobile robot using the sensor information we are trying to invertthis mapping. That is, we are trying to �nd a mapping M�1 which estimatesthe robot position P for the current sensor values S (Figure 1).M�1 : S Model����! POf course, it is often not possible to �nd an inverse mapping as the examples inFigure 2 show. Without any point of reference this task cannot be solved. Pointsof reference that are usually available include doors, windows or objects whichare distributed inside a room such as a desk and some chairs. The location ofthese objects can be used to disambiguate the sensor readings.Traditional methods usually rely on some type of matching method to locatethe robot inside the world model using the current sensor readings. Often thesemethods only locate the robot inside a model up to some prespeci�ed grid res-olution. Di�erently from these traditional methods, we are trying to evolve aninverse function which converts sensor readings into a map location. If it is indeedpossible to �nd such a function it would be possible to continously localize therobot for all possible sensor readings. On a real mobile robot the method couldbe used to associate sensor readings with position information obtained usingthe robot's odometry. The evolved inverse function represents the robot's modelof the world. It could later be used to relocate the robot if odometry informationbecomes inaccurate or is completely absent due to a system malfunction.4 Symbolic regression using genetic programmingTo evolve the inverse mapping from sensor readings to robot localizations we areusing genetic programming [8, 10, 2]. Koza [9] has shown that genetic program-ming can e�ectively be used to search for a function described by a �nite numberof mappings. To apply genetic programming to the task of robot localization we�rst have to de�ne the set of input variables.The task of �nding a function which maps raw range values to position inthe environment is a very di�cult task due to the number of variables. Thereforewe preprocess the raw range values. This preprocessing has to have a number ofrequirements. Its major purpose is to perform a data reduction to reduce the sizeof the search space. Relevant features of the environment should be ampli�ed andno valuable information should be lost. In addition, the reduced set of variablesshould vary smoothly with a change in position of the robot. Because we aretrying to estimate the position (x and y coordinates) of the robot the resultingset of variables should be independent of the robot's orientation.In our experiment we calculated the moments of the distribution of rangevalues [4]. The following set of terminals was used.



{ Moments Mx = 1nPni=1 (Range(i))x (x=f1,2,3,4g),{ Central moments CMx = 1nPni=1 (Range(i) �M1)x (x=f2,3,4,5g),{ Moments of �rst derivative DMx = 1nPni=1 (�Range(i))x (x = f2,3,4,5g),{ and the ephemeral random constants RAND (range [0,1)), RAND10 (range[0,10)), and RAND100 (range [0,100)).The following elementary functions were used:{ Arithmetic functions: +,-,*,/ where the division operation evaluates to 1 ifthe absolute value of the divisor is less than 10�10.{ Trigonometric functions: SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2,{ and the conditional statement IFLTE.whereASIN(x) = 8><>:�2 x > 1��2 x < �1asin(x) otherwise , ACOS(x) = 8><>:0 x > 1� x < �1acos(x) otherwise ,TAN(x) = (0 j cos(x)j < 10�10sin(x)cos(x) otherwise .Provided that the sensors are placed dense enough the resulting moments arenearly independent of the orientation of the robot. For our experiments we haveused 720 sensors. This is a typical number of sensor readings available from astandard laser range �nder.5 Experiments
Fig. 3. Environment used during the experiments (left). Black areas show possiblepositions for �tness cases (right).For our experiments we have used the simulated environment shown in Figure3. The environment shows a oor plan of a section from a hypothetical o�ce



building with size 7:5m � 6m. The task is to evolve a representation of theenvironment using 1000 �tness cases (associations between sensor readings androbot location) which are distributed over the environment. The �tness casesare randomly distributed over the black areas shown in Figure 3. We evolvedone individual for the x coordinate and another individual for the y coordinate.The error of the individual which tries to recall the x coordinate is calculatedaccording to error = 1n nXi=1 (xactual � xestimated)2 (1)where xactual is the actual x coordinate of the robot, xestimated is the valueestimated by the evolved individual and n is the number of �tness cases. Theestimated position is truncated if it falls outside an area of a size twice as large asthe original map. The error of the individual which calculates the y coordinate iscalculated in the same way. The adjusted �tness of each individual is calculatedas �tnessadj = 11+error .We performed �ve runs for each coordinate using di�erent random seeds toinitialize the �rst generation. A population size of 1000 individuals was used.Tournament selection with size 7 was used and crossover, reproduction and mu-
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AvgFig. 4. Adjusted �tness for all generations averaged over 5 runs. The graph on the leftshows the statistics for the x coordinate, the one on the right shows the statistics forthe y coordinate.tation probabilities were set to 85%, 10% and 5% respectively. The run wasaborted after 5000 generations. Figure 4 shows the resulting �tness statisticsaveraged over �ve runs for the two coordinates. The task of evolving an inversefunction for the y coordinate seems to be easier than the task for the x coor-dinate. The best individuals of the �ve runs were combined to form a singleindividual consisting of two trees. This individual was tested on 10 additionalrandom �tness cases. The result of this test is shown in Figure 5. The robotis shown in the current location and the estimated position is marked with asmall circle. The estimated location is very accurate for most locations but also



di�ers by a large amount for some locations. To locate points where the error oflocalization was correct up to a certain error we used an additional 1000 �tnesscases. Figure 6 shows locations where position estimation was accurate up to 1m(left) and locations where position estimation di�ered by more than 1m (right).
Fig. 5. Generalization results for 10 additional �tness cases. The robot is shown in thecorrect position. The estimated position is marked with a small circle.6 Conclusion and directions for further researchOur experiments have shown that it is possible to evolve an internal world modelfor robot localization using genetic programming.To reduce the size of the searchspace moments of the distribution of sensor readings are calculated. The mo-ments are used to amplify relevant features of the environment while maintain-ing as much information as possible. Using the genetic programming paradigmwith the moments as terminals and arithmetic functions, trigonometric func-tions and a conditional statement as elementary functions we evolved a singlefunction which approximates the inverse mapping from sensor readings to robotpositions.The estimated position could be �ltered as the robot moves to improve theaccuracy of the method. Also, other input representations might be more suitablefor the task of robot localization. These could also be placed under evolutionarycontrol.7 AcknowledgementsThis work was supported in part by a scholarship according to the Landes-graduiertenf�orderungsgesetz. For our experiments we used the lil-gp Program-ming System [24].
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