Evolving a task specific image operator
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Abstract. Image processing is usually done by chaining a series of well
known image processing operators. Using evolutionary methods this pro-
cess may be automated. In this paper we address the problem of evolving
task specific image processing operators. In general, the quality of the
operator depends on the task and the current environment. Using genetic
programming we evolved an interest operator which is used to calculate
sparse optical flow. To evolve the interest operator we define a series of
criteria which need to be optimized. The different criteria are combined
into an overall fitness function. Finally, we present experimental results
on the evolution of the interest operator.

1 Motivation

A large number of standard image processing operators are available to solve
a particular problem. In general, the required operators depend on the current
task and environmental conditions. In our work we are trying to evolve image
processing operators which perform optimal for the task and the given envi-
ronmental conditions. To evolve the image operators we have chosen genetic
programming [14, 15, 2] because it allows the evolution of hierarchical structures
which are often required to solve image processing tasks. The sample problem
which we address here 1s the evolution of an interest operator which is used to
compute sparse optical flow. We show how an interest operator can be evolved
which is optimal according to multiple criteria which are specific to the applica-
tion. Before we present our experimental results we briefly discuss related work
of using evolutionary methods for image processing tasks.

2 Background

A number of researchers have used evolutionary algorithms for image processing
tasks. The methods used range from evolutionary programming [3], structure
evolution [18] a variant of an evolution strategy, to genetic algorithms [25,26,
13,4]. A growing number of researchers are using genetic programming.
Tackett [30] evolved a symbolic expression for image classification based on
image features. Koza [15] and Andre [1] evolved character detectors using genetic
programming. Johnson et al. [11] evolved Ullman’s visual routines [32] using
genetic programming to locate the left and right hand in an image showing the



silhouette of a person. Poli [21] applied genetic programming to the task of image
segmentation. Daida et al. [5] used genetic programming to extract pressure-
ridges from satellite images of arctic sea ice. Harris and Buxton [9] used genetic
programming to evolve one-dimensional edge detectors. Poli and Cagnoni [22]
evolved algorithms for image enhancement using interactive program evolution.
Winkeler and Manjunath [33] used genetic programming for face detection.

Considerable work has been done in the area of feature extraction and track-
ing. A match between interesting points extracted from an image sequence or
from a pair of stereo images can be established easily [36,34]. Knowledge about
point correspondences may be used to establish a three-dimensional model of
the world. A number of different methods have been developed to extract inter-
esting points from an image. Moravec [20] developed an interest operator which
extracts points with a high variance of pixel values in four directions: horizontal,
vertical and both diagonals. Smith [29] developed a corner finder which extracts
points where the size of the region belonging to the current pixel in a small
neighborhood is a local minimum. Other methods range from using the deter-
minant of the Hesse matrix to find regions of high curvature [27,19], corner
detection [27], difference of Gabor filters [36], detection of symmetry [24,35] to
the use of entropy [12]. Shi and Tomasi [28] argue that good features are those
for which the tracker works best. Extracted features (textured regions) are mon-
itored by calculating a dissimilarity measure computed from an affine model of
image motion. Features with a high dissimilarity measure should be abandoned.
Lew et al. [17] developed an adaptive method for feature selection. From a set
of features they select a subset which maximizes the error distance between the
correct match and other possible matches.

Genetic programming has so far been rarely used for the construction of
image processing operators. Ebner [6] used genetic programming to evolve op-
erators to extract edges from digitized images and evolved an approximation to
the Moravec interest operator [7]. In difference to the previous work no existing
operator is used for computing the fitness of an evolved individual. In this paper,
we only specify the desired properties of the operator and integrate them into a
measure of the individual’s fitness.

3 Evolving an interest operator

As asample application we have chosen to evolve an interest operator. The points
extracted by the operator are used to calculate sparse optical flow. Optical flow
is calculated by establishing corresponding points between the previous image
and the current image. It is assumed here that the optical flow can be quite
large. This might occur if the camera moves very fast or, equivalently, if delays
between subsequent images are long. In this case the calculation of optical flow
is simplified by focusing the search only on interesting points in the image.
Correspondences are established by comparing the pixels in a small area around
the interesting points. The goal i1s to extract only those points which can be
localized accurately in the next image. To achieve this goal we are trying to



optimize a number of different properties of the operator. We start by describing
the different properties qualitatively which are formalized later. The following
properties were used here.

a) The number of established matches should be large. Tf only a single point is
extracted for every image, localizing the point is easy. However, obtaining a
dense flow field is usually desirable.

b) The quality of the match should be good. Tf some error measure describes the

difference between pixel values in a small area surrounding the two matched

points then this measure should be small.

A threshold is used to determine when a match can be considered adequate.

Thus a match is not found for every extracted point. Therefore the ratio

between matched points and number of extracted points should be high,

that 1s, a match should be established for most of the extracted points.

Otherwise it would be possible to extract almost every point and let the

search procedure weed out the unnecessary points. However, this is precisely

the task the operator should perform.

d) The matches should be unambiguous. For each point all other points are
considered as a possible match. Therefore the difference between the error
measure of the best match and the second-best match should be large indi-
cating clearly which of the possible matches is the correct one.

e) The optical flow field should be smooth with only a few discontinuities. That
is, nearby flow vectors should have approximately the same direction.

f) The density of the flow field may be regulated by introducing a term that
tries to achieve a flow field with a maximum density that is distributed over
the image.
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We now formalize the different optimization criteria. Let I(t) be the image
taken at time t. First, the evolved operator is applied to this image. Non-local
maxima are suppressed and all points where the pixel value is larger than a
threshold ¢; are extracted. Let F'(t) be the extracted interesting points of image
I(t). Given two images I(t1) and I(t2) taken at times ¢ and #s, respectively, a
correspondence between the points in F(t1) and F(t2) is established. Given a
point (z1,y1) € F(t1) we calculate the following error measure e for every point
(z9,y2) € F(t2) that is within a specified distance of the original point.
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where I(t) is obtained by smoothing image I(t) with a Gaussian filter and w and
h specify the width and height of the patch which is used to calculate the error
measure. The point (22, y2) for which the error measure is minimal is chosen as
the corresponding point. In addition a threshold is used to reject bad matches.
Therefore a match is only established provided that e is less then a threshold ¢5.
Let Fy,(t) be the points for which a match could be established. Let n, be the



number of points in F(¢1) and let n,, be the number of points for which a match
could be established. Then the following measures of operator quality were used
for our experiments.

a) Number of matches:
m) = Ny (2)
b) Quality of matches:
1 1
my=— Y, (3)
Nm (#,9) € Fom (1) 14 emln(x: y)

where emin (21, 1) = Ming yyep@,) €(21, Y1, 2, y) is the minimum of the error
measure e. The measure ms is analogous to Pratt’s figure of merit which is
used to judge the performance of edge detectors [10].
c) Match percentage:
Nm

d) Match ambiguity:

1 _ .
my = n_ Z Znext Ei: y; — :mAln Ei: y; (5)
m (2,9)€ P (1) max\Z, Y min\Z%, Y
where emax (%1, Y1) = MaX(e y)ep(t,) €(T1,y1,%,y) is the maximum of the

error measure e. Let (2, ym) be the point for which the error measure is
minimal. Then the value of the error measure for the second-best match is

defined as enext (21, Y1) = MiN(e y)e P12\ (@m,ym) € (21, Y1, 2, ).
e) Flow smoothness:

1
ms = - Z s(z,y) (6)
P (e y)er(t)

where s 1s a smoothness measure calculated for a small neighborhood around
the point. Let Fi(s,y) be the points inside the neighborhood of point (z,y).

Fyey () ={" ) € FOIW(2' — ) + (v —y)? < es} (7)
Then the smoothness measure is calculated as
1 Az Az + AyAy
Z 14 rAr + AyAy
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s(x,y) =

(l‘lay')GFN(a:,y) (t1

where (Axz, Ay) is the computed optical flow of point (z,y).
f) Maximum flow field density:

1 . dmin(xy y)
meg = E Z mln{w,l.()} (9)
(v, y)EF(t1)

where dmin (2, y) is the distance in pixels between point (2, y) and its nearest
point and dgeg is the desired minimum distance between the extracted points.



4 Using genetic programming to evolve image operators

Genetic programming is especially suited to combine simple elementary func-
tions into a complex hierarchical image processing operator. To apply genetic
programming to the evolution of an image processing operator we have to define
the set of terminal symbols, the set of primitive functions and a suitable fitness
measure. We now describe each of these in turn.

4.1 Terminal symbols

The input image [ was our only terminal symbol. The pixel values were normal-
ized to the range [0, 1].

4.2 Primitive functions

As primitive functions we used the following set of unary and binary functions.
Let Ig be the image that results from the application of a primitive function to
an input image I in the case of an unary function and two input images /; and
I5 in the case of a binary function. Image coordinates are denoted with z and y.
Unary primitive functions:

— Square root (Sart): Ir(z,y) = /|1 (2, )]
— Square (Square): Ig(z,y) = I(z,y) - I(2,y)
— Gabor filters (Gabor0,...,Gabor7):
Ip(z,y) =1 [¥(, ¥, f,0;)(z — o' y—y)de'dy]|
with @ (z,y, f,0) = exp(i(fxcosf + fysinf) — ﬁa;%ygl),
c=m, f=7%and 0; = ﬂ With J €{0,...,7} (as defined in [16]).
— Average (Avg3x3) IR(x y) =3 L 1<”<1I($ +i,y+7)
— Median filter (Median3x3): Ig(z,y) = Median{I(z+i,y+j)|—1<i,j <1}

— Gaussian filter (Gauss):
/2 12

Tr(z,y) fe B Iz — 2,z —y)dz'dy with ¢ = 1.0.
— Derivative of Gausswn n x direction (GaussDx):

Ir(2,y) = \/ﬁoﬁ (e~ mzl [z — 2!y — o )da'dy with ¢ = 1.0.
— Derivative of Gausswn 1n y direction (GaussDy):

Ir(z,y) = \/ﬁoﬁ [ye” o7 (74 )I(x—x’,y—y’)d:v’dy’ with ¢ = 1.0.

Binary primitive functions:
— Addition (+): Ir(z,y) = Ii(z,y) + (2, y)
— Subtraction (=): Tr(z,y) = Ii(z,y) — Ia(z,y)
— Multiplication (*): Ir(z,y) = Ii(z,y) - Ia(2,y)
1 if Iy(z,y) =0

- Protected division (/): Tn(x,y) = Ii(2z,y)/I2(2,y) otherwise

Figure 1 shows how some of the primitive functions could be used to build an
operator which calculates the determinant of the Hesse matrix.
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[GaussDx] [GaussDy] [GaussDy]

Fig. 1. Example of an existing operator which was manually constructed from the set
of primitive functions.

4.3 Fitness measure

The different criteria have to be integrated into one fitness measure. We have to
do multi-objective optimization to evolve a detector which is optimal according
to all of the criteria. An overview about multi-objective optimization is given
by Fonseca and Fleming [8]. To integrate the different measures into one we
calculate the average of each measure over all fitness cases. Let m(i) be the
average of the measure m for the individual ¢. Next, we normalize them across
all individuals in the population. This gives us a selection probability p.(7) =
% for each criterion ¢ and individual 7. The selection probabilities were
co;nbined into a single fitness function f = ], p;. The combined fitness reaches
its maximum value only if all of the different selection probabilities have a large
value. The normalization is not necessary for the multiplicative contribution of
the different measures. We normalize them, because in other experiments an
additive contribution was used.

Name of operator m1 mo ms M4 ms me |Absolute fitness
Kitchen-Rosenfeld [27] 54.3310.9850(0.4669|0.6710|0.9294(0.6154 9.592
Det(HJ) 27, 19] 51.6710.9853(0.5386|0.7396|0.9635[0.6568 12.83
Moravec [20] 49.33(0.9848(0.5242(0.6912(0.9359|0.7293 12.01
SUSAN [29] 77.0010.9867(0.5426(0.5318|0.9195(0.6042 12.18
Diff. of Gabor ﬁlters[36] 64.00(0.9865|0.5967(0.5803[0.9348|0.6891 14.08
Evolved 131.0 [0.9871(0.7814]0.5504|0.9170{0.6620 33.77

Table 1. Comparison between different interest operators and the evolved interest
operator. Absolute fitness is computed as fitness = IT;/m; which is used as an absolute
measure to compare the different operators.



Fig. 2. Image sequence which was used during evolution.

Response of the operator:

Extracted points:
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Fig. 3. Best individual from generation 50. The first row shows the response of the
evolved operator. The second row shows the extracted interesting points. The third
row shows the computed sparse optical flow.



4. Image sequence which was used to test the evolved operator.
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Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 5. Results of the evolved operator on a test sequence.



Response of the operator:

Fig. 6. Best individual from the first generation.

4.4 Results

With the above representation we evolved an interest operator. We used a se-
quence of 4 images with sizes 128 x 128 shown in Figure 2. The major parameters
of the run were as follows. We used a population size of 500 individuals. The
experiment was run for 50 generations. A limit of 1000 nodes and a maximum
possible depth of the trees of 17 was used. Tournament selection with size 7 was
used and crossover, reproduction and mutation probabilities were set to 85%,
10% and 5%, respectively. The results of the experiment are displayed in Figure
3. The first row shows the response of the best evolved operator from generation
50. The second row shows the extracted interesting points and the third row
shows the computed sparse optical flow. The evolved operator was tested on
an additional image sequence shown in Figure 4. The results achieved with the
evolved operator on the test sequence is shown in Figure 5. The response of the
best operator which was found in the first generation of the experiment applies

™

the Gabor2 operator twice. It extracts edges which are oriented in direction %



Response of the operator:

Extracted points:

Fig. 7. Results achieved with the Kitchen-Rosenfeld corner detector [27].

(Figure 6). Table 1 shows the performance of the evolved operator in compari-
son to the Kitchen-Rosenfeld corner detector [27], the determinant of the Hesse
matrix [27,19], the Moravec operator [20], the SUSAN operator [29], and the dif-
ference of Gabor filters [36]. The results of these operators are shown in Figure 7,
Figure 8, Figure 9, Figure 10 and Figure 11 respectively. For some quality mea-
sures the evolved operator performed better than the other operators whereas
for others it performed worse. Selection, however, is done according to the over-
all fitness. The evolved operator clearly outperformed the existing operators in
terms of the overall fitness.

As can be seen the evolved operator highlights regions in the image that are of
particular interest for the calculation of sparse optical flow. Some wrong matches
are also produced. This is due to the fact that the operator combines different
possibly contradicting measures. For instance the number of points extracted
should be high and at the same time the matches should be unambiguous. Fitness
statistics for the experiment can be found in Figure 12. Except for the Gaussian
filter all of the available functions occurred in the evolved individual. The division



Response of the operator:

Extracted points:

Fig. 8. Results achieved with the determinant of the Hesse matrix [27,19].

operation, derivative of the Gaussian in y direction, average, Gabor filters, the
square root and the square function were used several times.

5 Conclusion

We have shown that task specific image operators may be evolved using genetic
programming. Different criteria are used to evolve operators which are optimal
for the task at hand. As a sample task we evolved an interest operator for the
computation of sparse optical flow. The following criteria were used to evolve
the interest operator. a) A large number of matches should be produced. b) The
quality of the matches should be good. ¢) The relation of matched points to
unmatched points should be high. d) Matches should be unambiguous, e) the
flow field should be rather smooth and f) have a maximum density. These criteria
led to the evolution of an operator which can be used to extract interesting points
from an image.



Response of the operator:

Extracted points:

Fig. 9. Results achieved with the Moravec operator [20].

Provided that the fitness evaluation can be done fast enough it might be pos-
sible to construct adaptive vision systems which are able to adapt themselves
to changing environmental conditions. Just as the pupil’s diameter adapts to
changing brightness conditions [31] an artificial visual system might evolve opti-
mal or near optimal image processing operators on the fly. At present, however,
the evolution is performed offline and evolution of an operator from scratch takes
several days to complete on a single PC.
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Response of the operator:

Fig. 10. Results achieved with the SUSAN operator [29].
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