On the Evolution of Interest Operators using Genetic Programming
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Abstract Marr's operator [11]. Lampinen and Oja [17] developed a neu-
ral network-based feature extraction and classification system
Interest operators play an important role in computer visigar distortion tolerant pattern recognition. Kohonen [13] devel-
Depending on the type of the environment some features naed adaptive feature detectors using an adaptive-subspace self
prove to be more advantageous than others. Thus detecgigianizing map architecture.
of interesting features has to be made adaptive such that thgtner researchers used evolutionary algorithms to extractim-
best features according to some measure are extracted. WeygSreatures. Lohmann [19, 20] evolved an image filter which
trying to evolve such feature detectors using genetic prograftermined the Euler number of an image using an evolution
ming. In this paper we describe our results where the desikgdtegy [25]. Rizki et al. [26] evolved feature detectors which
operator, which is a Moravec interest operator, is directly Spegjserate on a stack of images to which morphological operations
fied. We show that the problem is a rather difficult one. Only §fith structuring elements at different resolutions were applied.
approximation to the Moravec operator could be evolved UsiRgth and Levine [27] extracted geometric primitives using ge-
several sets of elementary functions. netic algorithms [7, 6]. Katz and Thrift [12] generated image
filters for target recognition using a genetic algorithm. Bhat-
tacharjya and Roysam [3] used evolutionary optimization for
model based object recognition at low signal to noise ratios.

Interest operators play an important role in computer vision [g], 12CKett [29, 28] has applied genetic programming to the task

They highlight points which can be found easily using simp feat,“ref C'ass"‘cat:?”ﬁ He exF’e”memfd with m‘l’mem' and
correlation methods. They can be used to calculate accuf3ig"Sity features which are extracted from an already seg-
distance information and for map building [23]. However n_rg;ente_d region as well as p_r|m|t|ve features such as the mean
interest operator is suitable for all types of environments. Wensﬂy_or standard dewatlpn. Tackett used thes_e features in
mobile robot which may be operating in different types of eHje te_rmmal set of the algorithm, they are not subjected to an
vironments should be able to adapt its vision system such tﬂg’f‘p“"incess- Kciza [16] evolved dert]ecltors for letter recog-
the robot can extract relevant information from its surroundin@gIon which were able 1o discriminate the letters “I" and *L".
that can be used best according to some measure. he detectors moved themselves over the binary pattern and
We are currently trying to equip a mobile robot, a Rwi 820U/ a(;\alyze the pixels in a localx 3Ine|ghdporhoqd. Alr}dre
with this type of capability. In this paper we are trying to find & US€d genetic programming to evolve 2-dimensional feature

simple interest operator, the Moravec interest operator [23, :[eptors gsmg X3 h|t-(;n|s.s-matr(;x§_s.. Thz tﬁSk was ]thd"z.
using genetic programming [14, 15]. The Moravec opera minate between one designated digit and the rest of the dig-

detects points where the minimum of the sum of squared dis: The individuals moved themselves over the image and were

ferences between adjacent pixels in four directions, horizon Le to compzlare their SL(erround|_ngs with the hlt-mlss-n"nlatrlxe”s.
vertical and both diagonals is a local maximum. The followin%’ nson et al. [9] used genetic programming to evolve Ull-

section gives a short summary of related work in the area gn's Visual Routines [30] for the task of determining the lo-
adaptive feature detection. cation of hands in the bitmap silhouette of a person. Although

Johnson et al. are working on real camera data, they are using
preprocessed data for the evolution, namely the bitmap silhou-
2 Background ette which are binarized images obtained by using a blue screen
to segment the person from the background.
Several researchers used neural nets for adaptive feature detétle previously used structure evolution, developed by
tion. Barrow [2] found weights of a neural net to converge intaohmann [20, 21] a variant of an evolution strategy [25] to
edge masks after the model is being trained on natural imageslve hierarchical feature detectors which we applied to the
using a Hebbian type learning rule. Linsker [18] showed thatask of character recognition [4]. Using one simple structure
layered self-adaptive neural network developed averaging cadlsanging operator we showed that an increasingly complex de-
center-surround cells and orientation selective cells in sucdestor evolved from simple filter operations. In [5] we evolved
sive layers using random noise as input and a Hebbian-tgolge detectors using genetic programming by approximating
learning rule. Joshi and Lee [10, 11] modeled retinal respones Canny edge detector. In this paper we are focusing on the
using a neural net and showed that the weights learned witkk of evolving an interest operator. In contrast to the work of
the backpropagation learning algorithm approximate the Laplahnson et al. [9] we are working with raw image data that is
cian of the Gaussian function. Thus backpropagation leanu preprocessed except for scaling of the pixel intensities.

1 Motivation



BASE

BASEU { Avg4x4 }

BASE U { Sum4x4}

BASE U { Sum4x4, Pi3, Add3, Max3, Min3

BASE U { Sum4x4, Pi3, Add3, Max3, Min3,
Pi4, Add4, Max4, Min4}
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Table 1: Different sets of elementary functions used for the
experiments.

Ig(z,y) = I(z,y) - I(z,y). Shift left (ShiftL): Ir(z,y) =
I(z + 1,y). Shift right (ShiftR):Ig(z,y) = I(z — 1,y). Shift
Figure 1: Structure of Moravec operator. up (ShiftV): Ir(z,y) = I(x,y + 1). Shift down (ShiftD):
Igr(z,y) = I(z,y —1). Average in4 x 4 area (Avg4x4):

) . ) Ir(2,y) = 15 2. _s<ijen [(@ + i,y + j). Sumind x 4 area

3 Evolution of interest operators using (sumaxayn(e,y) =S ;. (@ +iy+ ). |
enetic proarammin The following binary functions were used: Subtraction (-

g Prog g ): In(r,) = I(z,y) — Liz,y). Division () In(z,y) =

To evolve interest operators which are being optimized accofe@, ¥)/ 2 (z, ). Multiplication (*): Ir(z,y) = ©(z,y) -
ing to some measure, we are using genetic programming. TRg ¢). Addition (+): Tr(z,y) = ©(z,y) + I>(z,y). Min-
we need to specify the set of terminals, the set of elementdym (Min): Ir(z,y) = min{li(z,y), I>(z,y)}. Maximum

functions, the fithess measure, the parameters for the run af@&): [r(z,y) = max{l(z,y), I>(z,y)}.

criterion to terminate the run [14]. In addition we used the following N-ary functiorfsv €
{3,4}). Multiplication (PiN): Ir(z,y) = N=NI(z,y).
Addition (AddN): Ig(z,y) = .=V Ii(z,y). Minimum
(MinN): Ig(z,y) = min{;(z,y)li € {1,...,N}}. Maxi-

We selected a gray scale representation of the input imagénasn (MaxN):Ig(z,y) = max{[;(z,y)}i € {1,...,N}}.

our sole terminal. The image intensities are scaled to the range

[0,1]: Thus the terminal sef pecomeéT = {Image. Other 3 Fitness measure

terminal sets can also be envisaged. For instance one coulduSe

the three color bands red, green and blue or hue, saturationagehw fitness measure to be minimized we selected the squared
intensity or some combination of them and let evolution selgaikel differences between the actual and the desired output of
the terminals which are suited best for the task at hand. the operator. For our problem raw fitness equals standardized

3.1 Set of terminals

fitness.
3.2 Set of primitive functions 5
fitnessaw(Ind) = > “(U(Ind(l,)) +
The set of primitive functions has to be powerful enough such |
that the problem at hand may actually be solved. The Moravec 1 2
interest operator is usually written as p Z ((ind(1:))(p) — (Moravedl:))(p))")
pEl;
Ir(z,y) = min{
S (@ y) - I +1,y))7, where the five images for the different fitness cases are given
w—2<a! <o+2y—2<y <y +2 as{ly,...,I5}, pis apoint from the image andis the number
> S U@L y) -1y +1)7, of points in the image. The evolved operator is denoted by
z—2<a’ <z+2 y—2<y’ <y+2 Ind and the desired operator is denoted by Moravec. The term
3 S (@ +Ly) - IEy + 1), U(Ind(I;)) evaluates to a large value for a uniform image and
o< a2 Y2y <yt to zero otherwise.

> Yo (@) -IE + 1,y +1)7
r—2<z'<z+2y—2<y’'<y+2

4 Experiments
This expression operating on pixel values can be rewritten into
an expression consisting entirely of elementary functions opéfe performed five experiments with a population size of 4000
ating on whole images. The structure of the Moravec operaitadividuals to evolve feature detectors which approximate the
using the such elementary functions is shown in figure 1. Tiesponse of the Moravec operator. Crossover probability has
resulting image is filtered by suppressing non-local maxima dmekn set to 85%, reproduction rate has been set to 10% and
applying a thresholding operation to extract interesting poirtkee mutation rate has been set to 5%. We used ramped half
from the images. and half initialization and fithess proportionate selection with
In the following text the images used as operands are denaieer-selection. Five fithess cases are evaluated. The five pic-
by I or I; wherei € {1,...,4} and the resulting image istures used during the evolution are shown in figure 4. Each
denoted bylr. The following unary functions were used: run was aborted after 50 generations. For each experiment we
Negation (Neg): Ir(z,y) = —I(z,y). Absolute value performed three different runs. For the experiments we used
(Abs): Igr(z,y) = |I(z,y)]. Square values (Square)different sets of elementary functions. The following base set



of elementary functions was used for all experiments: Best individual of generation 50 with set 5

BASE = {Neg, Abs, Square, ShiftL, ShiftR,
ShiftU, ShiftD, -, /, *, +, Max, Min}

The different sets of elementary functions used for the experi-
ments are shown in table 1.

The base set of elementary functions is sufficient to evolve a
Moravec interest operator. There seems to be one elementary
function missing, namely Sum4x4. However this elementary
function can be constructed using the shift operations and the
add operation. The absence of the Sum4x4 elementary function
complicates the search for a correct interest operator consider-
ably, because the Sum4x4 elementary function is used 4 times
in the correct individual. In each of these places a subroutine
performing the desired summation would have to be evolved.
This would be a task where automatically defined functions
[15] might simplify the problem. We wanted to see what solu-
tions are found if no automatically defined functions are used. Best individual of generation 50 with set 3

Next we augmented the base set with the operator Avg4x4.

Now genetic programming has the possibility of evolving ’

the constant 16 to produce the required elementary func- 0 @
tion Sum4x4 (e.g. Sumdx4d= 16 - Avg4x4 wherel6 =

Squar¢Squarg; + 1)). Then we added the required function ) ) (o)
to the base set. Finally we added the min, max, +, * operators

with arity 3 and arities 3 and 4 to the base set. (nes) () ()

The best individual of all runs was found in generation 50

using set 5: (Min3 (Sum4x4 (Square (- (Min Image Image) ’ @ @
(ShiftU Image)))) (Sum4x4 (Square (- (Neg (- (Min (Abs (Min @ @ @ @
Image Image)) Image) (ShiftL Image))) (/ (ShiftD (ShiftR (-
(Max3 Image Image Image) Image))) (Square (Max3 Image @ @
Image Image)))))) (Sum4x4 (Square (- (Neg (- (Min (Abs (Min
Image Image)) Image) (ShiftL Image))) (/ (ShiftD (ShiftR (- (= () )
(Max4 Image Image Image Image) (ShiftR Image)))) (Sum4x4
(ShiftL Image))))))).- (- () O
Set 3 had the highest average adjusted fithess at generation @ @ @ @ @ @ @ 0

50. The structure of the best individuals found with the sets 5

and 3 are shown in figure 2. To make sure that random search @ @ @ @ ‘
by itself did not already produce an interest operator we exam-
ined generation 0 of the runs which produced these individuals. (e CEONC

The structure found by random search in generation 0 both only o . )

emphasize vertical edges. The best individual found with seti§ure 2: Two best individuals which approximate the Moravec
approximates the Moravec operator quite closely. Howeverrnterest operator (the one on top was found using set 5, the one
is not a 100% correct individual. The fitness is especially goBglow was found using set 3). Both individuals have been man-
for 4 pictures where the sum of the squared pixel differend&lly simplified.

is less than 0.0005. The result that an interest operator with a
seemingly simple structure is rather difficult to evolve is quite 0.997
surprising. Figure 3 shows the average adjusted fithess of best-
of-generation individual for all of the base sets. The features
detected by the best evolved interest operator can be seen in
figure 4. The first two rows in figure 4 show the result of the
Moravec operator. The next two rows show the response of
the Moravec operator before a suppression of non-local max-
ima has been applied. Next, the best individual of generation
0 (found by random search) in the run that produced the clos-
est approximation to the Moravec interest operator is shown.
The following two rows show the best approximation to the
Moravec interest operator found during the experiments. The
final two rows show the features extracted by the best evolved %% 0 07 1= 20 25 30 a5 20 5 =0
individual superimposed on the original images after the non- Generations

local maxima suppression and thresholding operator has begjure 3: Fitness statistics for all experiments. Each curve has
applied. been computed as the average of three runs. Following the stan-

Note that although the response of the evolved operator ggrq definition, adjusted fitness is to be maximized.
proximates the response of the Moravec operator very closely,

0.996
0.995
0.994
0.993
0.992
0.991

0.989

Adjusted Fitness (best-of-generation)

0.988 |’




the actually detected features may still differ. This is due to
the fact that a non-local maxima suppression and thresholding
operation has been applied that was not included in the fitness
function. The task was to approximate the operator response
and not to extract the same features. The best evolved interest
operator has also been applied to a set of five previously un-
seen images. The results are shown in Figure 5. The features
in the top two rows were extracted with a Moravec interest op-
erator. The next two rows show the response of the Moravec
interest operator. The following two rows show the response of
the best evolved individual. The final two rows show the fea-
tures detected by the evolved detector after a non-local maxima
suppression and a thresholding operation has been applied.

5 Conclusion and ongoing research

We have shown that genetic programming evolved feature de-
tectors which approximate the Moravec interest operator. How-
ever a 100% correct individual has not been found using a pop-
ulation size of 4000 and terminating the evolution after 50 gen-

erations. This could be due to the particular structure of the

operator at the top of the tree which could be difficult to find.

We are currently experimenting with fitness functions that
are not based on any existing operator. Such a fithess measure |
only describes the desired characteristics of the interest opera-
tor. In addition we are experimenting with high level operators
such as edge detection, Gaussian smoothing and Gabor filters

1)

i

/

which augment the set of elementary functions.
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For our experiments we used the lil-gp Programming Sys-
tem, version 1.01 [31]. For image processing we used the Vista
software environment [24].
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