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Abstract

Interest operators play an important role in computer vision.
Depending on the type of the environment some features may
prove to be more advantageous than others. Thus detection
of interesting features has to be made adaptive such that the
best features according to some measure are extracted. We are
trying to evolve such feature detectors using genetic program-
ming. In this paper we describe our results where the desired
operator, which is a Moravec interest operator, is directly speci-
fied. We show that the problem is a rather difficult one. Only an
approximation to the Moravec operator could be evolved using
several sets of elementary functions.

1 Motivation

Interest operators play an important role in computer vision [8].
They highlight points which can be found easily using simple
correlation methods. They can be used to calculate accurate
distance information and for map building [23]. However no
interest operator is suitable for all types of environments. A
mobile robot which may be operating in different types of en-
vironments should be able to adapt its vision system such that
the robot can extract relevant information from its surroundings
that can be used best according to some measure.

We are currently trying to equip a mobile robot, a RWI B21
with this type of capability. In this paper we are trying to find a
simple interest operator, the Moravec interest operator [23, 22],
using genetic programming [14, 15]. The Moravec operator
detects points where the minimum of the sum of squared dif-
ferences between adjacent pixels in four directions, horizontal,
vertical and both diagonals is a local maximum. The following
section gives a short summary of related work in the area of
adaptive feature detection.

2 Background

Several researchers used neural nets for adaptive feature detec-
tion. Barrow [2] found weights of a neural net to converge into
edge masks after the model is being trained on natural images
using a Hebbian type learning rule. Linsker [18] showed that a
layered self-adaptive neural network developed averaging cells,
center-surround cells and orientation selective cells in succes-
sive layers using random noise as input and a Hebbian-type
learning rule. Joshi and Lee [10, 11] modeled retinal responses
using a neural net and showed that the weights learned with
the backpropagation learning algorithm approximate the Lapla-
cian of the Gaussian function. Thus backpropagation learns

Marr’s operator [11]. Lampinen and Oja [17] developed a neu-
ral network-based feature extraction and classification system
for distortion tolerant pattern recognition. Kohonen [13] devel-
oped adaptive feature detectors using an adaptive-subspace self
organizing map architecture.

Other researchers used evolutionary algorithms to extract im-
age features. Lohmann [19, 20] evolved an image filter which
determined the Euler number of an image using an evolution
strategy [25]. Rizki et al. [26] evolved feature detectors which
operate on a stack of images to which morphological operations
with structuring elements at different resolutions were applied.
Roth and Levine [27] extracted geometric primitives using ge-
netic algorithms [7, 6]. Katz and Thrift [12] generated image
filters for target recognition using a genetic algorithm. Bhat-
tacharjya and Roysam [3] used evolutionary optimization for
model based object recognition at low signal to noise ratios.

Tackett [29, 28] has applied genetic programming to the task
of feature classification. He experimented with moment- and
intensity features which are extracted from an already seg-
mented region as well as primitive features such as the mean
intensity or standard deviation. Tackett used these features in
the terminal set of the algorithm, they are not subjected to an
adaptive process. Koza [16] evolved detectors for letter recog-
nition which were able to discriminate the letters “I” and “L”.
The detectors moved themselves over the binary pattern and
could analyze the pixels in a local3� 3 neighborhood. Andre
[1] used genetic programming to evolve 2-dimensional feature
detectors using3 � 3 hit-miss-matrixes. The task was to dis-
criminate between one designated digit and the rest of the dig-
its. The individuals moved themselves over the image and were
able to compare their surroundings with the hit-miss-matrixes.
Johnson et al. [9] used genetic programming to evolve Ull-
man’s Visual Routines [30] for the task of determining the lo-
cation of hands in the bitmap silhouette of a person. Although
Johnson et al. are working on real camera data, they are using
preprocessed data for the evolution, namely the bitmap silhou-
ette which are binarized images obtained by using a blue screen
to segment the person from the background.

We previously used structure evolution, developed by
Lohmann [20, 21] a variant of an evolution strategy [25] to
evolve hierarchical feature detectors which we applied to the
task of character recognition [4]. Using one simple structure
changing operator we showed that an increasingly complex de-
tector evolved from simple filter operations. In [5] we evolved
edge detectors using genetic programming by approximating
the Canny edge detector. In this paper we are focusing on the
task of evolving an interest operator. In contrast to the work of
Johnson et al. [9] we are working with raw image data that is
not preprocessed except for scaling of the pixel intensities.
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Figure 1: Structure of Moravec operator.

3 Evolution of interest operators using
genetic programming

To evolve interest operators which are being optimized accord-
ing to some measure, we are using genetic programming. Thus
we need to specify the set of terminals, the set of elementary
functions, the fitness measure, the parameters for the run and a
criterion to terminate the run [14].

3.1 Set of terminals

We selected a gray scale representation of the input image as
our sole terminal. The image intensities are scaled to the range
[0,1]. Thus the terminal setT becomesT = fImageg. Other
terminal sets can also be envisaged. For instance one could use
the three color bands red, green and blue or hue, saturation and
intensity or some combination of them and let evolution select
the terminals which are suited best for the task at hand.

3.2 Set of primitive functions

The set of primitive functions has to be powerful enough such
that the problem at hand may actually be solved. The Moravec
interest operator is usually written asIR(x; y) = minfXx�2�x0<x+2 Xy�2�y0<y+2 �I(x0; y0)� I(x0 + 1; y0)�2 ;Xx�2�x0<x+2 Xy�2�y0<y+2 �I(x0; y0)� I(x0; y0 + 1)�2 ;Xx�2�x0<x+2 Xy�2�y0<y+2 �I(x0 + 1; y0)� I(x0; y0 + 1)�2 ;Xx�2�x0<x+2 Xy�2�y0<y+2 �I(x0; y0)� I(x0 + 1; y0 + 1)�2g
This expression operating on pixel values can be rewritten into
an expression consisting entirely of elementary functions oper-
ating on whole images. The structure of the Moravec operator
using the such elementary functions is shown in figure 1. The
resulting image is filtered by suppressing non-local maxima and
applying a thresholding operation to extract interesting points
from the images.

In the following text the images used as operands are denoted
by I or Ii wherei 2 f1; : : : ; 4g and the resulting image is
denoted byIR. The following unary functions were used:

Negation (Neg): IR(x; y) = �I(x; y). Absolute value
(Abs): IR(x; y) = jI(x; y)j. Square values (Square):

1 BASE
2 BASE[ f Avg4x4g
3 BASE[ f Sum4x4g
4 BASE[ f Sum4x4, Pi3, Add3, Max3, Min3g
5 BASE[ f Sum4x4, Pi3, Add3, Max3, Min3,

Pi4, Add4, Max4, Min4g
Table 1: Different sets of elementary functions used for the
experiments.IR(x; y) = I(x; y) � I(x; y). Shift left (ShiftL): IR(x; y) =I(x + 1; y). Shift right (ShiftR):IR(x; y) = I(x � 1; y). Shift
up (ShiftU): IR(x; y) = I(x; y + 1). Shift down (ShiftD):IR(x; y) = I(x; y � 1). Average in4 � 4 area (Avg4x4):IR(x; y) = 116P�2�i;j<2 I(x + i; y + j). Sum in4 � 4 area
(Sum4x4):IR(x; y) =P�2�i;j<2 I(x+ i; y + j).

The following binary functions were used: Subtraction (-
): IR(x; y) = I1(x; y) � I2(x; y). Division (/): IR(x; y) =I1(x; y)=I2(x; y). Multiplication (*): IR(x; y) = I1(x; y) �I2(x; y). Addition (+): IR(x; y) = I1(x; y) + I2(x; y). Min-
imum (Min): IR(x; y) = minfI1(x; y); I2(x; y)g. Maximum
(Max): IR(x; y) = maxfI1(x; y); I2(x; y)g.

In addition we used the following N-ary functions(N 2f3; 4g). Multiplication (PiN): IR(x; y) = �i=Ni=1 Ii(x; y).
Addition (AddN): IR(x; y) = Pi=Ni=1 Ii(x; y). Minimum
(MinN): IR(x; y) = minfIi(x; y)ji 2 f1; : : : ; Ngg. Maxi-
mum (MaxN):IR(x; y) = maxfIi(x; y)ji 2 f1; : : : ; Ngg.

3.3 Fitness measure

As raw fitness measure to be minimized we selected the squared
pixel differences between the actual and the desired output of
the operator. For our problem raw fitness equals standardized
fitness.

fitnessraw(Ind) = 5Xi=1(U(Ind(Ii)) +1n Xp2Ii ((Ind(Ii))(p)� (Moravec(Ii))(p))2)
where the five images for the different fitness cases are given

asfI1; : : : ; I5g, p is a point from the image andn is the number
of points in the image. The evolved operator is denoted by
Ind and the desired operator is denoted by Moravec. The termU(Ind(Ii)) evaluates to a large value for a uniform image and
to zero otherwise.

4 Experiments

We performed five experiments with a population size of 4000
individuals to evolve feature detectors which approximate the
response of the Moravec operator. Crossover probability has
been set to 85%, reproduction rate has been set to 10% and
the mutation rate has been set to 5%. We used ramped half
and half initialization and fitness proportionate selection with
over-selection. Five fitness cases are evaluated. The five pic-
tures used during the evolution are shown in figure 4. Each
run was aborted after 50 generations. For each experiment we
performed three different runs. For the experiments we used
different sets of elementary functions. The following base set



of elementary functions was used for all experiments:

BASE= fNeg, Abs, Square, ShiftL, ShiftR,

ShiftU, ShiftD, -, /, *, +, Max, Ming
The different sets of elementary functions used for the experi-
ments are shown in table 1.

The base set of elementary functions is sufficient to evolve a
Moravec interest operator. There seems to be one elementary
function missing, namely Sum4x4. However this elementary
function can be constructed using the shift operations and the
add operation. The absence of the Sum4x4 elementary function
complicates the search for a correct interest operator consider-
ably, because the Sum4x4 elementary function is used 4 times
in the correct individual. In each of these places a subroutine
performing the desired summation would have to be evolved.
This would be a task where automatically defined functions
[15] might simplify the problem. We wanted to see what solu-
tions are found if no automatically defined functions are used.

Next we augmented the base set with the operator Avg4x4.
Now genetic programming has the possibility of evolving
the constant 16 to produce the required elementary func-
tion Sum4x4 (e.g. Sum4x4= 16 � Avg4x4 where16 =
Square(Square( I

I + I
I )). Then we added the required function

to the base set. Finally we added the min, max, +, * operators
with arity 3 and arities 3 and 4 to the base set.

The best individual of all runs was found in generation 50
using set 5: (Min3 (Sum4x4 (Square (- (Min Image Image)
(ShiftU Image)))) (Sum4x4 (Square (- (Neg (- (Min (Abs (Min
Image Image)) Image) (ShiftL Image))) (/ (ShiftD (ShiftR (-
(Max3 Image Image Image) Image))) (Square (Max3 Image
Image Image)))))) (Sum4x4 (Square (- (Neg (- (Min (Abs (Min
Image Image)) Image) (ShiftL Image))) (/ (ShiftD (ShiftR (-
(Max4 Image Image Image Image) (ShiftR Image)))) (Sum4x4
(ShiftL Image))))))).

Set 3 had the highest average adjusted fitness at generation
50. The structure of the best individuals found with the sets 5
and 3 are shown in figure 2. To make sure that random search
by itself did not already produce an interest operator we exam-
ined generation 0 of the runs which produced these individuals.
The structure found by random search in generation 0 both only
emphasize vertical edges. The best individual found with set 5
approximates the Moravec operator quite closely. However, it
is not a 100% correct individual. The fitness is especially good
for 4 pictures where the sum of the squared pixel differences
is less than 0.0005. The result that an interest operator with a
seemingly simple structure is rather difficult to evolve is quite
surprising. Figure 3 shows the average adjusted fitness of best-
of-generation individual for all of the base sets. The features
detected by the best evolved interest operator can be seen in
figure 4. The first two rows in figure 4 show the result of the
Moravec operator. The next two rows show the response of
the Moravec operator before a suppression of non-local max-
ima has been applied. Next, the best individual of generation
0 (found by random search) in the run that produced the clos-
est approximation to the Moravec interest operator is shown.
The following two rows show the best approximation to the
Moravec interest operator found during the experiments. The
final two rows show the features extracted by the best evolved
individual superimposed on the original images after the non-
local maxima suppression and thresholding operator has been
applied.

Note that although the response of the evolved operator ap-
proximates the response of the Moravec operator very closely,
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Figure 2: Two best individuals which approximate the Moravec
interest operator (the one on top was found using set 5, the one
below was found using set 3). Both individuals have been man-
ually simplified.
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Figure 3: Fitness statistics for all experiments. Each curve has
been computed as the average of three runs. Following the stan-
dard definition, adjusted fitness is to be maximized.



the actually detected features may still differ. This is due to
the fact that a non-local maxima suppression and thresholding
operation has been applied that was not included in the fitness
function. The task was to approximate the operator response
and not to extract the same features. The best evolved interest
operator has also been applied to a set of five previously un-
seen images. The results are shown in Figure 5. The features
in the top two rows were extracted with a Moravec interest op-
erator. The next two rows show the response of the Moravec
interest operator. The following two rows show the response of
the best evolved individual. The final two rows show the fea-
tures detected by the evolved detector after a non-local maxima
suppression and a thresholding operation has been applied.

5 Conclusion and ongoing research

We have shown that genetic programming evolved feature de-
tectors which approximate the Moravec interest operator. How-
ever a 100% correct individual has not been found using a pop-
ulation size of 4000 and terminating the evolution after 50 gen-
erations. This could be due to the particular structure of the
operator at the top of the tree which could be difficult to find.

We are currently experimenting with fitness functions that
are not based on any existing operator. Such a fitness measure
only describes the desired characteristics of the interest opera-
tor. In addition we are experimenting with high level operators
such as edge detection, Gaussian smoothing and Gabor filters
which augment the set of elementary functions.
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