
EXTRACTION OF MOVING OBJECTS WITH AMOVING MOBILE ROBOTMarc Ebner ��Wilhelm-Schickard-Institut f�ur InformatikEberhard-Karls-Universit�at T�ubingenArbeitsbereich RechnerarchitekturK�ostlinstra�e 6, 72074 T�ubingen, Germanyebner@informatik.uni-tuebingen.deAbstract: An algorithm for the extraction of multiple moving objects from an RGBvideo sequence has been developed. The video sequence is taken with a camera whichis attached to a mobile robot. Since both the camera and the robot may be moving,the stationary background is moving relative to the camera. Compensation for theknown camera motion is done in order to achieve fast extraction of moving objects.Since the camera and the robot are computer controlled the necessary transformationmatrixes of the corresponding camera motion can be readily calculated.Keywords: Moving Objects, Image motion compensation, Image analysis, MobileRobots, Robot vision1. INTRODUCTION1.1 MotivationMobile robots are supposed to work in an envi-ronment which is also occupied by people andother mobile robots. Therefore it is important thatthe robot is able to derive which objects in itsvicinity are itself moving and which belong to thestationary background.Video sequences supply a large amount of in-formation about the environment (Nagel, 1986).Moving objects can be determined using visualinformation alone. However, on an autonomousmobile robot there also exists an algorithm whichcontrols the robot. This information can be usedto speed up the extraction of moving objects.1.2 BackgroundSeveral di�erent approaches have been developedto extract moving objects from a video sequence.

Most of them calculate the optical ow (Horn andSchunck, 1981) for the images and extract themoving objects along the discontinuity boundariesof the optical ow. Smith and Brady (1994, 1995)have applied this approach successfully. Nelson(1991) has developed two ways to extract mov-ing objects with an arbitrary moving camera. He�rst extracts regions showing motion which isinconsistent with the camera motion. However,information about camera movements is deriveddirectly from the images. The second approachdetermines regions which show a highly accel-erated movement. Denzler and Niemann (1996)have recently introduced active rays which allowfast real time extraction of moving contours. Thisapproach is especially suited for homogeneouscontours. Denzler and Niemann proposed to ex-tend their approach to region based features. Fortranslatory movement of the camera the imagescan be transformed into polar space (Jain, 1984)where moving objects can easily be separated fromthe stationary background. This approach has alsobeen followed by Frazier and Nevatia (1990). Mur-



TFig. 1. Camera movement.ray and Basu (1994) used the information aboutrotatory camera movement to compensate for thecamera movement and to extract moving edgesusing a pan/tilt camera.In this paper the approach taken by Murray andBasu is followed. However, on a mobile robot onehas to compensate for arbitrary camera move-ment. For the calculations in this paper the no-tation of Craig (1989) is used. Let C(t1)P =[X(t1); Y (t1); Z(t1)] be an object point in thecamera frame fC(t1)g at time t1. The same pointhas coordinates C(t2)P = [X(t2); Y (t2); Z(t2)] inthe camera frame fC(t2)g at time t2. If the cam-era motion (�gure 1) from fC(t1)g to fC(t2)g isC(t2)C(t1)T one hasC(t2)P= C(t2)C(t1)T � C(t1)P (1)2664X(t2)Y (t2)Z(t2)1 3775=0BB@r11 r12 r13 txr21 r22 r23 tyr31 r32 r33 tz0 0 0 11CCA2664X(t1)Y (t1)Z(t1)1 3775 (2)Using perspective projection with focal length fthe new coordinates at time t2 can be calculated(Murray and Basu, 1994). Large letters are usedto denote three dimensional coordinates and smallletters to denote image plane coordinates.x(t2) = f X(t2)Z(t2) (3)= f r11X(t1) + r12Y (t1) + r13Z(t1) + txr31X(t1) + r32Y (t1) + r33Z(t1) + tz (4)= f r11x(t1) + r12y(t1) + fr13 + f txZ(t1)r31x(t1) + r32y(t1) + fr33 + f tzZ(t1) (5)y(t2) = f Y (t2)Z(t2) (6)= f r21X(t1) + r22Y (t1) + r23Z(t1) + tyr31X(t1) + r32Y (t1) + r33Z(t1) + tz (7)= f r21x(t1) + r22y(t1) + fr23 + f tyZ(t1)r31x(t1) + r32y(t1) + fr33 + f tzZ(t1) (8)Since Murray and Basu only need to compensatefor rotatory camera motions they assume that thedistance of the objects in view is large. This givesthe following expression for the new coordinates.

limZ(t1)!1x(t2) = f r11x(t1) + r12y(t1) + fr13r31x(t1) + r32y(t1) + fr33 (9)limZ(t1)!1 y(t2) = f r21x(t1) + r22y(t1) + fr23r31x(t1) + r32y(t1) + fr33 (10)For rotatory motions one can take the limit Z !1, however, for translatory camera motions thedistance of every point projected onto the cameraimage has to be known. Thus one would have tosolve the structure from motion problem �rst.In this paper equation 5 and equation 8 areused to compensate for arbitrary camera motionsto predict the new image. It is assumed thatthe depth di�erences of the scene in view ofthe camera are small compared to the distancefrom the camera to the objects in view. Thusall distances Z(t1) are approximated by using anaverage value �Z as the distance of the points.Equation 11 and equation 12 calculate the motion�eld (Horn, 1986) of a plane located at a distance�Z from the camera. The average distance of thepoints to the camera is continuously calculatedand updated as described in the algorithm below.2. SYSTEM ARCHITECTUREThe algorithm described here has been developedby the author in (Ebner, 1996). It consists oftwo main parts. The �rst part detects changeswhich have occurred from one image to the nextby compensating for the known ego-motion. Thesecond part extracts the moving objects usingthe detected regions as input. Moving objectsare extracted by creating a hypothesis about themoving objects that might be in the sequence.If a hypothesis can be validated in the followingimages, the object will be turned into a movingobject. An overview of the individual steps of thealgorithm can be seen in �gure 2. In the followingtwo sections each of the steps is described indetail. 3. CHANGE DETECTIONThe algorithm for change detection previouslyonly operated on gray scale video sequences andhas now been extended to full color video se-quences. The �rst part of the algorithm now op-erates on all three bands (red, green and blue).It has also been tried to convert the RGB imagesinto HSI (hue, saturation and intensity) space andextract the moving objects there. However the hueis subject to changes whenever the saturation islow. Also there are only few su�ciently saturatedpixels in the environment where the experimentswere performed.
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Fig. 2. Algorithm to extract moving objects. Inputto the algorithm is the image I(t1), movingregions MR(t1), motion hypotheses MH(t1)and the moving objects MO(t1) that havepreviously been extracted. The algorithmthen calculates these sets for time t2. See textfor a full explanation of the individual steps.3.1 Compensation for known camera movementThe algorithm operates on two images I(t1) andI(t2) taken at times t1 and t2 respectively. Thealgorithm �rst compensates for the known cameramotion C(t2)C(t1)T. The predicted image ~I(t2) at timet2 is calculated from the image I(t1) at timet1. Every point of the image is transformed asdescribed above.x(t2) = f r11x(t1) + r12y(t1) + fr13 + f tx�Zr31x(t1) + r32y(t1) + fr33 + f tz�Z (11)y(t2) = f r21x(t1) + r22y(t1) + fr23 + f ty�Zr31x(t1) + r32y(t1) + fr33 + f tz�Z (12)To estimate the average distance �Z from thecamera to the objects in view, equation 11 andequation 12 are used to derive the distances ofthe interesting points which are extracted directlyfrom the images. The correspondence betweeninteresting points is established as described inthe next subsection. The distance of the interest-ing points can only be calculated reliably if the

camera has made a large translatory movementfrom one image to the next. If no moving objectshave been extracted yet incorrect distances mightaccidentally be calculated due to the movementof points which belong to a moving object. Thesedistances are eliminated using an median �lterwhich assumes that more interesting points arelocated on the background rather than on theobjects.3.2 Elimination of oscillationsSince the camera is attached to a mobile robot,thecamera is subject to oscillations. For the exper-iments shown here a pan/tilt-camera has beenused. Thus one has to eliminate horizontal andvertical oscillations of the camera. The oscillationscannot be calculated from the information sup-plied by the controllers. Therefore the necessaryshift in the horizontal and vertical direction arederived directly from the images.To calculate the required horizontal and verticalshift the set of interesting points from image I(t2)is extracted. The set of interesting points fromimage I(t1) has already been extracted in theprevious iteration of the algorithm. The coordi-nates can be transformed to their correspondingpoints in the predicted image ~I(t2). Point corre-spondences can then be found using a standardcorrelation technique (Jain et al., 1995).Let ~F (t2) be the set of interesting points ofimage ~I(t2) and F (t2) be the set of interestingpoints of image I(t2). The set of interesting pointscan be determined with any standard featuredetection operator. Here the Moravec interestoperator (Moravec, 1977) which extracts pointswith high variance of the surrounding pixel valueshas been used. The following measure is calculatedfor every point (x1; y1)2 ~F (t2) and (x2; y2)2F (t2)which describes the goodness of the match.c = w Xb2fR;G;Bg w2Xi=�w2 h2Xj=� h2�~Ib(x1 + i; y1 + j)� Ib(x2 + i; y2 + j)�2 (13)where w = �1 +p(x2 � x1)2 + (y2 � y1)2�. Thefactor w is one if both points have the samecoordinates. It increases with the distance of thetwo points. Thus preference is given to a closematch rather than a match of two distant points.Two equally good matches could otherwise occurif several identical objects occur in the scene. Sinceit is assumed that the camera motion has beencompensated the close match is the correct one.To eliminate outliers the median of all shifts istaken as the shift for the whole image.



3.3 Determination of changesTo detect any changes that have occurred fromtime t1 to time t2 the di�erence image betweenthe predicted and the actual image is calculated.The di�erences are calculated for each band indi-vidually. Then absolute values of the di�erencesare summed up. This leaves a single band imagedescribing the changes that have occurred.3.4 Elimination of small inaccuraciesThe predicted image can only be as good as thedata used for the calculations. The accuracy of thepredicted image depends on the matrix describingthe camera motion. The predicted image may beincorrect due to inaccurate or outdated informa-tion from the controllers or it may be incorrect dueto a large di�erence between the actual distanceof the points and the assumed distance.The summed di�erence image is processed usingmorphological operations to eliminate any smallinaccuracies that may have occurred in the pro-cess of image prediction. This approach has beenintroduced by Murray and Basu (1994). First agray level closing operation with a 5 � 5 mask isused, followed by a gray level opening operationwith a 9� 9 mask. Finally the image is binarizedusing a thresholding operation.4. EXTRACTION OF MOVING OBJECTSFor the following text several sets are de�ned.Each set may contain several regions or objects.Regions which have been detected as changes inthe di�erence image are called \Moving Regions".An object is called a \Motion Hypothesis" as longas it has not been validated yet.MR(t) =Moving Regions at time tMH(t) =Motion Hypotheses at time tMO(t) =Con�rmed Moving Objects at time tThe set of moving objects MO(t) is the �naloutput of the algorithm. The objects in MH(t)and MO(t) also posses a motion vector describingthe motion of the object in the image plane.It is assumed that the sets MR(t1), MH(t1) andMO(t1) are available from the previous iterationof the algorithm. For the �rst iteration of thealgorithm each is initialized with the empty set.Since it is assumed that the camera motion isknown, one can also calculate the sets gMR(t2),gMH(t2) and gMO(t2), i.e. the predicted movingregions, hypotheses and objects at time t2. Theobjects in gMH(t2) and gMO(t2) also have beenmoved according to their motion vector. The sets

MR(t2), MH(t2) and MO(t2) are initialized withthe empty set at the beginning of each iteration.4.1 Determination of Moving RegionsDue to the use of morphological operations toprocess the di�erence image one gets several dis-connected regions that might actually belong tothe same object. Therefore those regions that be-long to the same object need to be combined.Two heuristics are used to combine the regions.The �rst is the distance between two regions.Two regions are joined into one if the distancebetween the two closest points of the regions isbelow some threshold. Let DR(t2) be the set ofresulting regions.Assuming that some moving objects have beenextracted previously these objects are used as asecond heuristic to combine the regions. Usingthe set of moving objects MO(t1) and the regionsextracted from the di�erence image DR(t2) the setof moving regions MR(t2) is calculated as follows.For every region R2DR(t2) take the convex hullof all points of the objectsO2MO(t2) that overlapor are completely contained in R. The resultingconvex hull will be placed in MR(t2) if it is notempty, otherwise R will be placed in MR(t2).4.2 Determination of Motion HypothesesIt is assumed that every motion hypothesis has a�xed lifetime of several iterations of the algorithm.During its lifetime a motion hypothesis needsto be validated in order to become a movingobject. For every object H 2 gMH(t2) that hasnot yet exceeded its lifetime the convex hull ofall points of the regions R 2DR(t2) that overlapor are completely contained in H is taken. Theresulting convex hull will be placed in MH(t2). Ifthe hypothesis can be validated during its lifetimeit is placed in MO(t2) instead.Taking the moving regions gMR(t2) and MR(t2)new motion hypotheses are calculated. For everyR1 2 gMR(t2) and R2 2 MR(t2) a new motionhypothesis H is added to MH(t2), which has thesame position and size as R2, if the two RegionsR1 and R2 are likely to have been caused bythe same object. For our algorithm size has beenused as a compatibility measure. Note that thispossibly adds many incorrect motion hypothesesto MH(t2). The motion hypotheses that havebeen added because of an incorrectly assumedcorrespondence will be removed later on becausethe hypothesis will most likely not be validated.The motion vector of H is calculated using thecenter of mass of both regions and the timedi�erence t2 � t1. Thus it is assumed that the
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Fig. 3. Camera model with attached frames.motion of the objects is a smooth one in the imageplane and no sudden changes of direction occur. Amoving object O2gMO(t2) may become a motionhypothesis if no region R2MR(t2) touches O.4.3 Determination of Moving ObjectsFor every object O 2 gMO(t2) the convex hull ofall points of the regions R 2DR(t2) that overlapor are completely contained in O is taken. Theresulting convex hull will be placed in MO(t2). Ifthe convex hull is empty the object O is placedback in MH(t2) and its lifetime is reset to give itanother chance.5. CALCULATION OF CAMERA MOTIONLet a point with world coordinates WP havecoordinates C(t1)P at time t1 in the coordinatesystem of the camera frame fC(t1)g. The samepoint has coordinates C(t2)P at time t2. ThusWP = WC(t1)T � C(t1)P = WC(t2)T � C(t2)P (14)where WC(t1)T and WC(t2)T describe the transfor-mation from the corresponding camera frames toworld coordinates.The position of a point at time t2 can be calcu-lated given the position of the point at time t1and the known camera transformations:C(t2)P = WC(t2)T�1 �WC(t1)T � C(t1)P (15)The transformation from the world frame to thecamera frame is described as a transformationfrom the world frame fWg to the robot basefR(t)g and a transformation from the base frameto the camera frame fC(t)g. Thus one hasWC(t1)T = WR(t1)T � R(t1)C(t1)T (16)
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Fig. 4. Movement of the robot base.and WC(t2)T = WR(t2)T � R(t2)C(t2)T (17)This leads to the following expression for the pointC(t2)P in the camera frame fC(t2)gC(t2)P = C(t2)R(t2)T � R(t2)W T �WR(t1)T � R(t1)C(t1)T � C(t1)P(18)= C(t2)R(t2)T � R(t2)R(t1)T � R(t1)C(t1)T � C(t1)P (19)The individual transformation matrixes can becalculated in a straightforward way for a stan-dard pan/tilt-camera (�gure 3) using the Denavit-Hartenberg parameters of table 1. For the cam-era used here the distances L are as follows:L1 = 0:19m, L2 = �0:10m, L3 = 0:065m andL4 = 0:025m. The camera system is actually astereo camera system but only the right or theleft camera is used. The mobile robot is able toperform rotatory and translatorymovements of itsbase. Let w be the rotatory and v the translatoryvelocity of the robot base at time t1 then thematrix which approximately describes the robotmovement (for small �t) is given by:R(t2)R(t1)T = RZ(�w(t2�t1)) �DX (�v(t2�t1)) (20)where DX is a matrix describing the translatorymotion of the robot along the X axis and RZ is amatrix describing the rotatory motion of the robotabout the Z axis. The frame de�ned for the robotbase can be found in �gure 4.To get a very accurate image prediction one has touse the most up to date information as possible.However a distributed client/server architecture isused for the control of the camera and the robot.Due to the delays involved, it is very di�cult ifnot impossible to get exact data about the currentlink angles needed for the calculations.The image time stamps are the most accurateinformation available since they are set directlyby the kernel whenever an image is grabbed. Afteran image is grabbed it is supplied with the currentlink angles and link velocities of the camera andthe speed of the robot. The current link angles aretaken from time t1 whereas the new link angles arecalculated using the link position and velocitiesfrom time t1 and the time di�erence (t2 � t1). Itsu�ces to know only the approximate position ofthe camera. However it is very important to havethe relative motion that has occurred during thetime the images have been grabbed.



Fig. 5. Sequence and extracted moving object.6. EXPERIMENTSA video sequence taken with a RWI B21 mobilerobot driving with a linear velocity of 4:6 cms andan angular velocity of 8�s has been recorded. Inother experiments linear velocities of up to 20 cmsand angular velocities of up to 35�s were used. Themoving object has been a human walking aroundin a room. The extracted moving object can befound in �gure 5. The object shown here has beenextracted o�-line from an image sequence. Oneiteration took about 1:43s for an image of size128�128 on a 133MHz Pentium for one iterationprocessing all three bands (red, green & blue).The algorithm currently takes about 0:269s on a133MHz Pentium for one iteration on a 64�64image sequence if all three bands are used. If themoving objects are extracted using a single bandgray scale image an iteration of the algorithmtakes 0:137s on 64� 64 images. This translatesto 3.7 fps for color and 7.3 fps for gray scaleimages. The �rst part of the algorithm (changedetection) takes about 97% of the time of thewhole algorithm. Thus special hardware to processthe images and detect the changes would speed upthe algorithm considerably.7. CONCLUSIONIn this paper an algorithm which extracts mov-ing objects from a color video sequence has beenpresented. The algorithm �rst compensates theknown ego-motion of the mobile robot by calculat-ing the camera transformation and predicting theresulting image movement. It has been shown howthe information supplied by the control algorithmof a mobile robot can aid in the fast extraction ofmoving objects.
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