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Abstract. Recognizing arbitrary objects in images or video sequences
is a difficult task for a computer vision system. We work towards auto-
mated learning of object detectors from video sequences (without user
interaction). Our system uses object motion as an important cue to de-
tect independently moving objects in the input sequence. The largest
object is always taken as the teaching input, i.e. the object to be ex-
tracted. We use Cartesian Genetic Programming to evolve image pro-
cessing routines which deliver the maximum output at the same position
where the detected object is located. The graphics processor (GPU) is
used to speed up the image processing. Our system is a step towards
automated learning of object detectors.

1 Motivation

A human observer has no problems in identifying different objects in an image.
How do humans learn to recognize different objects in an image? Enabling a
computer vision system to perform this feat is a daunting task. However, we try
to work towards this goal. An ideal computer vision system would be able to
automatically learn different object detectors from scratch. It is obviously highly
desirable to develop self-adapting and self-learning vision systems which work
without human intervention [4]. We have developed an evolutionary computer
vision system which is able to automatically generate object detectors without
human intervention.

Our system is based on a previously developed evolutionary vision system
using GPU accelerated image processing [6]. Input to the system is a continuous
stream of images. Each input image is processed by several different computer
vision algorithms. The best algorithm is used to supply the overall output, i.e. to
detect objects in the input image. Evolutionary operators are used to generate
new alternative algorithms. The original system required user interaction to
identify the objects to be detected. We have extended this system such that no
user interaction is required.

For humans, motion serves as an important cue to identify interesting objects.
Our system detects differences between consecutive images in order to detect in-
dependently moving objects in the image. Each detected object is equipped with



a 2D motion model which describes the motion of the object on the screen [3].
This motion model is continuously updated based on the motion differences be-
tween two consecutive images. By directly transforming a sequence of difference
images into a 2D motion model, the computational resources needed to compute
the teaching input, is reduced to a minimum. As soon as one or more objects
have been detected in the input sequence, the system always focuses on the
largest object. The center of the object is taken as the teaching input.

The paper is structured as follows. In Section 2 we give a brief overview
about related research in evolutionary computer vision. Section 3, describes how
motion is used to obtain the teaching input. The GPU accelerated evolutionary
vision system is described in Section 4. Experiments are presented in Section 5.
Conclusions are provided in Section 6.

2 Evolutionary Computer Vision

Evolutionary algorithms can be used to search for a computer vision algorithm
when it is not at all clear what such an algorithm should look like. Evolution-
ary algorithms can also be used to improve upon an existing solution. Work in
evolutionary computer vision started in the early 1990s. Lohmann has shown
how an Evolution Strategy may be used to find an algorithm which computes
the Euler number of an image [15]. Early research focused on evolving low-level
operators, e.g. edge detectors [8] or feature detectors [20]. However, evolutionary
algorithms were also used for target recognition [12].

In theory, evolutionary methods can be used to evolve adaptive operators
which would be optimal or near optimal for a given task [7]. Poli noted very
early on, that Genetic Programming [13] would be particularly useful for image
processing [19]. Genetic Programming has been used to address a variety of dif-
ferent tasks in computer vision. Johnson et al. have evolved visual routines using
Genetic Programming [11]. Current work in evolutionary computer vision ranges
from the evolution of low-level detectors [22], to object recognition [14] or even
camera calibration [9]. Cagnoni [2] gives a taxonomic tutorial on evolutionary
computer vision.

Experiments in evolutionary computer vision usually require enormous com-
putational resources. Each individual of the population has to be evaluated over
several generations. That’s why experiments in evolutionary computer vision are
usually performed off-line. A notable exception (also working with on-line learn-
ing) is the work of Mussi and Cagnoni [17]. In our context, multiple alternative
image processing algorithms have to be applied to each incoming image. This
is only possible through the use of GPU accelerated image processing. Before
we describe our evolutionary computer vision system, we first describe how the
teaching input is obtained from the input sequence.



3 Fast Detection of Moving Objects in Image Sequences

We have developed a fast method for detecting independently moving objects
in image sequences. It is assumed that the camera remains stationary while the
image sequence is taken. If the camera itself moves, then information about the
ego-motion of the camera could be used to compute a quasi-stationary camera
sequence [3].

The method is fast, because image processing operations are reduced to a
minimum. Image processing operations are costly because they are applied at
least once to every pixel. Operations such as convolution or averaging are par-
ticularly costly if they are applied in image space because they require a sliding
window and multiple surrounding pixels are accessed for each image pixel.

Thus, we only compute a difference image between two successive images
and use this information to update object hypotheses [3]. The approach could
be considered to be a minimalistic variant of a particle filtering approach [1,10]
where only a single particle is used per object. We compute the average of the
differences of the three channels red, green and blue. Differences smaller than
than 10% from the maximum (assumed to be noise) are set to zero. We continue
by only considering differences larger than this threshold.
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Fig. 1. Differences between two consecutive images are assigned to the nearest object
which is predicted from a previous time step. The coordinates of the object predictions
(x, y) for the current time step are given by the center of gravity which is computed
using all pixels assigned to the object. Two extracted objects are shown.

Let us assume that we have a set of previously extracted objects, i.e. a pre-
diction where objects will be located in the current image. Each object consists
of a center of gravity with coordinates p = (x, y) and also has an associated
velocity v = (vx, vy) with which it moves across the image (Figure 1). Each
object also has an associated standard deviation in x- and y-direction (σx, σy).
The standard deviations determine the extent of the object. Each pixel with a



difference larger than the threshold contributes to the nearest object. In case
a pixel difference cannot be assigned to any object prediction, a new object is
created. For newly created object predictions, the center of gravity as well as the
standard deviations describing the shape of the object are continuously updated
as new pixels are assigned to it.

The center of gravity for the updated object position is computed using all
pixels which are located within a distance no more than twice the standard
deviation from the center of the object. Pixels further away are assumed to
belong to a different object. The standard deviations describing the extent of
the object are updated using the same pixels. Let p(t0) and p(t1) be the positions
of the object at time steps t0 and t1 respectively. The difference d = p(t1)−p(t0)
between the object position for the previous image and the current image is used
to update the motion vector of the object. We filter this difference to obtain a
smooth approximation of the actual motion vector v using

v(t1) = 0.9v(t0) + 0.1d. (1)

If an object does not have any associated pixel differences, then the old motion
vector is simply added to the center of gravity to predict the new object position
for the next time step. If an object does not have any associated pixel differences
for three consecutive images, then the object is deleted.
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Fig. 2. Nearby objects are merged if they are close to each other.

After existing objects have been updated and new objects have been detected,
we iterate over all objects to find objects which need to be merged (Figure 2).
Let p1 and p2 be the center of gravities of two different objects at the same
time step. New objects (for which no motion vector exists yet) are merged if the
distance between their center of gravities is smaller than twice the sum of their
standard deviations, i.e. if

p1 − p2 ≤ 2(σ1 + σ2) (2)

with σi =
√

σ2

x,i + σ2

y,i. Existing objects are merged only if the distance between

their center of gravities is less than the sum of their standard deviations. They
are also merged if the distance is less than twice the sum of their standard
deviations provided that they approximately move in the same direction, i.e.
their motion vector differs by less than 10%.
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Fig. 3. Moving object detected in two video sequences. The yellow circle marks the
detected object. (a) radio-controlled car (b) toy train.

Figure 3 shows how a moving objects are detected and tracked over several
frames in two image sequences. We will use the same sequences to evolve a
detector for these objects.

4 A GPU Accelerated Evolutionary Vision System

Ebner [6] has developed a GPU accelerated evolutionary vision system. When
searching for a solution to a computer vision algorithm, one basically has to as-
semble computer vision operators in the correct order and also has to decide with
which parameters these operators are applied. We are using Cartesian Genetic
Programming [16] to automatically search the space of optimal algorithms.

The system works with a (nx × ny) matrix of image processing operators
as shown in Figure 4. In addition to this matrix, a set of n1 high level image
processing operators are applied to the input image. We will refer to all of these
operators as processing nodes. Each individual of the population codes for an
arrangement of image processing operators. High level operators use the original
image as input and also create an image as output. Low level operators can have
either one or two inputs. Low level operators only perform point operations, i.e.
low level operators can be computed by iterating once over all image pixels.

High level operators include operators such as the original image at different
scale levels or with a small offset, derivatives in the x- and y-direction, the
Laplacian, the gradient magnitude, computation of gray scale images from RGB,
segmentation or a convolution. Note that the individuals only have access to a
single image frame. We deliberately do not supply two different frames to the
system. Individuals should be able to recognize objects in single image frames.

The output of the high level operators is processed by the low level operators
inside the (nx × ny) matrix. Data is always fed from left to right. A particu-
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Fig. 4. Sample individual. A linear byte array is mapped to an image processing pro-
gram consisting of n1 high level operators and a processing matrix of nx×ny low level,
point operators. The output is averaged to obtain the resulting image.

lar node has only access to the data stored in the previous column. The wiring
for this matrix is completely under the control of evolution. Low level operators
include arithmetic operations, step functions, gate functions, maximum and min-
imum operations and related functions which access the output from either one
or two nodes. The parameters used inside the nodes are also under the control
of evolution. A full description of the operators is given by Ebner [6]. The same
system is used here except that the constants (0, 0.5 and 1) have been moved
from the set of high level operators to the set of low level operators.

Most of the operators are taken directly from the specification of the OpenGL
Shading Language (OpenGLSL) [21]. The OpenGL Shading Language was used
to accelerate the image processing because it allows easy access to scale spaces
which is particularly important for the implementation of the high level oper-
ators. It is not clear whether a CUDA [18] implementation would provide any
advantage to the GPU acceleration method used here.

Each individual transforms the input image into some other image, the out-
put image. The output image is computed by averaging the output of the ny

rightmost nodes. In order to determine where the object is detected by an indi-
vidual, we iterate over all image pixels. The position with the maximum output
(RGB components are treated as an integer) is taken as the object position. If
more than one pixel has the same maximum value, we compute the center of
gravity of these pixels. More than 20 pixels having the same maximum value are
discouraged by assigning a bad fitness value. We want to the system to clearly
mark the detected object in the image.

This representation is referred to as a n1 +nx ×ny representation. It is fully
described by Ebner [5,6]. The system works with a linear genotype. Each node



has three associated parameters. The first parameter determines the operator
used. The remaining two parameters are either used as parameters for the image
processing operator or are used to determine from which previous node the input
is received. Each parameter is represented by 8 bits in the genotype.

Each genotype is mapped to the representation shown in Figure 4. A set of
np individual constitutes the parent population. From the parent population, no

offspring are generated by applying genetic operators. An additional nr offspring
are generated randomly. Mutation and crossover are used as genetic operators.
For each incoming image, parent as well as offspring are evaluated. The best np

individuals among parents and offspring become the parents for the next input
image. When selecting new parents, no double fitness values are allowed. Indi-
viduals with the same fitness are assumed to be identical. Using this approach
we try to encourage a diverse population of parent individuals.

The fitness of an individual is simply the Euclidian distance between the
position detected by the individual and the desired position which is computed
using the method described in the previous section.

5 Experiments

For our experiments, we have used np = 3 parents which generate no = 20 off-
spring and nr = 20 randomly generated offspring. Offspring are generated using
two point crossover with a crossover probability of pcross = 0.5. The remaining
individuals are generated through mutation. The mutation operator either uses
a GA-style mutation with a bit wise probability of pmut =

2

l
where l is the length

of the genotype in bits, or increases or decreases one of the parameters by one.
This is to allow also smooth changes of the parameters. A gray code could have
been used instead to achieve the same effect.

Given the automated method to extract moving objects, we have objective
data to work with and we can rigorously analyze how the method works. This is
in contrast to the previous method, where the user had to manually select the
object which should be extracted. We work with two video sequences (sample
images are shown in Figure 3). The first video sequence shows a radio-controlled
car moving around. It consists of 2097 image frames (1m:24s) of size 512× 288.
The car has a pronounced color which only occurs on the car and not on other
objects shown in the sequence. In other words, it is quite easy to come up with
an object detector for this car. A simple color filter will do the job. The second
video sequence shows a toy train moving around on a track in circles. It consists
of 1581 image frames (1m:03s) of size 512× 288. The toy train is mostly colored
in yellow and red. The same red color can also be found on a wagon which
is always present in the image. The yellow color is also shown on the wagon.
However, the yellow color on the wagon takes up only a smaller area compared
to the yellow on the train.

For our experiments, we turn the evolutionary process on, as long as the
desired position differs by more than 25 pixels from the detected position by
the individual. The size of the car is approximately 45 × 50 pixels and the toy
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Fig. 5. Average number of restarts for the two image sequences (radio-controlled car
and toy train). The standard deviation is also shown.

train is approximately 34 × 24 pixels. Evolution is turned off if the detected
position is very close to the actual position, i.e. the difference between the two
is less than 10 pixels for five consecutive frames. If this happens, then only the
parent individuals are evaluated and no new offspring are generated. Once the
fitness, i.e. the error, rises to more than 25 pixels, then the evolutionary process
is turned on again. Note that the individuals do not have to be re-initialized due
to the continuous injection of random individuals into the population.

We evaluate how easy or difficult it is to evolve solutions using different
n1 + nx × ny representations. For both image sequences, we measure how often
evolution has to be restarted. As described above, evolution has to be restarted
if the object is no longer tracked. If evolution has to be restarted only once
in a while, then the evolved detectors are very general. If evolution has to be
restarted frequently, then the detectors are not general. Such detectors depend
on the orientation and/or the size of the object in the image. Figure 5 shows
the results for both image sequences. Five experiments were carried out using
different random seeds to compute the average.

For the radio controlled car, evolution was only required for 4.5% of the
image frames (averaged across all representations and experiments). For 95.5%
of the image frames, the object was successfully detected. The object was de-
tected on average with an accuracy of 7 pixels. For the toy train, evolution was
only required for 14.6% of the image frames (averaged across all representations
and experiments). For 85.4% of the image frames, the object was successfully
detected. The object was detected on average with an accuracy of 8 pixels.

It is apparent that the toy train is more difficult to recognize. The data also
shows that the problem gets more difficult as the size of the representation is
increased. Thus, we want to keep the complexity of the representation minimal
while still making sure that the solution is still inside the search space.

Figure 6 shows how long evolution was required to come up with a solution
depending on the representation used. Again, the more complex the representa-
tion, the longer it took to find good solutions. The toy train sequence is clearly
more difficult for the system. For the toy train sequence, it is not sufficient to
only use a color detector. The system also has to take the arrangements of the
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Fig. 6. Number of evolutionary steps. The standard deviation is also shown.

colors into account. To come up with an effective detector for the toy train, the
system would have to archive good solutions and to create an overall detector
which would recombine the output of several archived detectors. Establishing an
archive of detectors will be our next research goal.

6 Conclusions

We have created a GPU accelerated evolutionary image processing system. The
system automatically detects moving objects in a video sequence taken with a
stationary camera. The coordinates of the detected objects are used to evolve
object detectors which are able to recognize the object in a single image. We
deliberately use one cue (motion) to train an object detector which is able to
recognize objects in images when this cue is not available. The long term goal of
this research is to come up with a system which automatically generates object
detectors. Our system is a step towards automated learning of object detectors.
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