
A Real-Time Evolutionary

Object Recognition System

Marc Ebner

Eberhard-Karls-Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Abt. Rechnerarchitektur, Sand 1, 72076 Tübingen
marc.ebner@wsii.uni-tuebingen.de

http://www.ra.cs.uni-tuebingen.de/mitarb/ebner/welcome.html

Abstract. We have created a real-time evolutionary object recognition
system. Genetic Programming is used to automatically search the space
of possible computer vision programs guided through user interaction.
The user selects the object to be extracted with the mouse pointer and
follows it over multiple frames of a video sequence. Several different alter-
native algorithms are evaluated in the background for each input image.
Real-time performance is achieved through the use of the GPU for image
processing operations.

1 Motivation

Current vision systems are usually not adaptive to their environment. Algo-
rithms which have been developed in the laboratory often break when the vision
system is moved to a different environment. The only component of a vision sys-
tem which is currently adaptive is the automatic white balance of the camera.
Recently, Ebner [1] proposed building an adaptive on-line evolutionary visual
system. Such a system would adapt itself to the current environment. Evolu-
tionary algorithms would be used to search for an algorithm which would always
perform optimally for the given environmental conditions.

Suppose we are given some algorithm which extracts or detects a person
in an image. The algorithm would perform flawlessly provided that there is
enough light available to illuminate the person in the image. During sunset, the
algorithm may have to be modified to extract or detect the same person. At
night when there is likely going to be a lot of noise in the image data, additional
modifications have to be made to the algorithm to perform the same task it did
during daylight.

Ebner [1] suggested to run multiple, slightly modified algorithms in the back-
ground in addition to the main algorithm. The main algorithm would take the
input image, compute an output and present this output to the user. The system
would also evaluate the modified algorithms using the same input image. The
algorithm with the best performance would become the main algorithm for the
next input image. Clearly, such a system would require enormous computational
powers.

A computer vision algorithm usually applies several image processing oper-
ators to an input image. Such algorithms often struggle to maintain real-time
performance. How will it then be possible to run multiple algorithms in paral-
lel? The rise of powerful graphics processing units provides a solution to this
problem.

Below, we will show how we created an experimental real-time evolutionary
vision system by exploiting the power of the graphics processing unit. The paper
is structured as follows. We first provide a brief review of related research in the
field of evolutionary computer vision in Section 2. In Section 3, we describe
how our real-time evolutionary vision system works. Details on how this system
is mapped to the graphics hardware is presented in Section 4. The system is
evaluated on several image sequences in Section 5. Conclusions are provided in
Section 6.

2 Evolutionary Computer Vision

In evolutionary computer vision, evolutionary algorithms are often used to search
for a solution which is not immediately apparent to those skilled in the art or to
improve upon an existing evolution. Early work on evolutionary computer vision
started in the early 1990s. Lohmann, a pioneer in the field, advocated the idea
and showed how an Evolution Strategy may be used to find an algorithm which
computes the Euler number of an image [2]. In relatively early work, evolutionary
algorithms were mostly used to evolve low-level operators, e.g. edge detectors [3],
feature detectors [4], or interest point detectors [5]. They were also used for target
recognition [6].

However, early on, it was clear that in principle these techniques could be
used to create fully adaptive operators which would be optimal or near optimal
for the task at hand [7]. It was also clear that Genetic Programming would
be particularly useful for image analysis [8]. Johnson et al. were successful at
using genetic programming to evolve visual routines [9]. Today, evolutionary
computer vision has become a very active research area. Current work ranges
from the evolution of low-level detectors [10], to object recognition [11,12] or
camera calibration [13]. A taxonomic tutorial and introduction into the field is
given by Cagnoni [14].

Due to the enormous computational requirements, experiments in evolution-
ary computer vision are usually performed off-line (see Mussi and Cagnoni [15]
for a notable exception). Once an appropriate algorithm has been evolved, it may
of course be used in real time. Genetic algorithms [16] or Evolution Strategies
[17] are mostly used to improve already existing algorithms, i.e. they are used
for parameter optimization while Genetic Programming [18,19] is used to evolve
an algorithm from scratch. Since we are interested in the most general scheme
for the evolution of algorithms, we will be using Genetic Programming to search
the space of possible solutions.

3 A Real-Time Evolutionary Object Recognition System

In searching for an optimal computer vision algorithm, one has to answer the
question in what order and with which parameters should the known operators
from the literature be applied to the input image to achieve the desired output.
The instructions of the evolved computer program correspond to the operators
from the computer vision literature. Possible representations which could be
used to evolve image processing algorithms include tree-based GP, linear GP or
Cartesian GP. For our experiments, we will be using Cartesian Genetic Program-
ming [20] because this GP variant is readily mapped to the graphics hardware
as we will describe below.

Similar to the Cartesian GP paradigm, we will be working with a (nx × ny)
matrix of image processing operators as shown in Figure 1. In addition to this
matrix, we will be using a vector of n1 input images (column 0) which will serve
as input to the operators stored in the matrix. The output computed by one
operator located at position (x, y) in the matrix can be computed by combining
the output computed by any of the cells located at column x− 1. The processed
image data is finally available in column nx. We denote this representation as a
n1 + nx × ny representation. Many algorithms known from the literature can be
fit into this scheme.

0
0.5

1 ImageConv4
(61,251)

2
1.0

3
sqrt

4
clamp1

5
gateGc(0.04)

6
reflect

node matrix with n n nodes
number
of node

column 0 with n nodes

node function
node parameters

1

yx

output
nodes

Fig. 1. Cartesian Genetic Programming representation of an individual.

Table 3 shows the list of operators which are available for column 0. The first
three operators, 0.0, 0.5 and 1.0 simply return a gray image where all colors are
set to the color vec3(0.0,0.0,0.0), vec3(0.5,0.5,0.5), vec3(1.0,1.0,1.0)
respectively. The operator Image outputs the input image. Argument 1 is used to
offset the image by mapping the one byte argument to an offset vector as shown in
Figure 2(a). A byte value of 0 is mapped to no offset. The vector moves clockwise
and radially outward as the byte value increases. The maximum distance from
the center is 10 pixels. The second byte argument is used to set the appropriate
scale (see Figure 2(b) and (c)). The range [0, 255] is mapped to the scale [0, 4]. A
scale of 0 is just the original input image. A scale of 1 denotes a down-sampled

(a) (b) (c)

Fig. 2. (a) one byte is used to specify an image offset. The offset is determined by
moving a vector clockwise and radially outward as the byte value increases. (b) image
at scale 0 (c) image at scale 4.

version of the original image where a 2 × 2 area of pixels is averaged for every
image pixel.

The operators DX and DY compute the derivative in the x- and y-direction
respectively. The operator Lap computes the Laplacian and the operator Grad
computes the gradient magnitude. For all these operators, the two byte argu-
ments again denote offset and scale of the input image which is used for the
computation. The operator ImageLogDX outputs the logarithm of the derivative
in the x-direction. This is a so called color constant descriptor [21] which only de-
pends on the reflectance on the patch but not on the illuminant. Such descriptors
are particularly useful for object detection when the lighting conditions change.

The operator ImageIdw, can be used to compute a gray scale image from the
input image. The output of this operator oi = wrcr+wgcg+wbcb with i ∈ {r, g, b}
is computed using RGB weights wi ∈ {−1, 0, 1, 2} The RGB weights are stored
in the second byte argument. The first byte argument is used to store the offset
and the scale of the image as before. Similarly, the operator ImageChrom can be
used to compute chromaticities. For this operator, the output is computed using
oi = wici/(cr + cg + cb).

The operators ImageGC1, ImageGC4, ImageGC16 provide the input image con-
volved with a filter matrix which is stored in the two byte arguments. A 3 × 3
filter matrix is used with two bits per weight wi ∈ {−1, 0, 1, 2} with i ∈ {1, ..., 8}.
The center element is not included. Let N be the neighborhood of the current
pixel, then the output is computed as

oi =
∑

(x,y)∈N

wici. (1)

The operator ImageGC1 places the neighboring pixels directly around the cur-
rent pixel. The operator ImageGC4 increases the distance of the neighboring
pixels from the current pixel radially outward by a distance of 4. The operator
ImageGC16 increases this distance to 16 pixels. An additional convolution op-
erator ImageGCd is provided which uses a variable sized distance of the pixels
from the current pixel. The first byte argument is used to specify the weights
wi ∈ {−0.5, 0.5} with i ∈ {1, ..., 8}. The second byte argument is used to specify
the distance of the pixels within the range [0, 64].

Fig. 3. Operators available for column 0.
Function of Operator Name Args Arg 1 Arg 2

zero 0.0 0 unused unused
half 0.5 0 unused unused
one 1.0 0 unused unused
identity Image 2 offset scale
horizontal derivative DX 2 offset scale
vertical derivative DY 2 offset scale
Laplacian Lap 2 offset scale
gradient Grad 2 offset scale
color constant desc. ImageLogDX 2 offset scale
gray scale image ImageIdw 2 offset/scale RGB weights
chromaticities ImageChrom 2 offset/scale RGB weights
convolution (dist. 1) ImageGC1 2 conv. weights conv. weights
convolution (dist. 4) ImageGC4 2 conv. weights conv. weights
convolution (dist. 16) ImageGC16 2 conv. weights conv. weights
convolution ImageGCd 2 conv. weights distance
segmentation ImageSeg 2 levels scale

The operator ImageSeg is used to segment or discretize the image into a
discrete number of regions. The first byte argument specifies the number of
allowed pixel values and the second byte argument specifies the scale of the
image which is used for the computation.

A nx × ny matrix of operators is used to combine the image data which has
been made available in column 0. The list of operators which can be used in this
nx × ny matrix is shown in Table 4. Many of these operators are taken directly
from the specification of the OpenGL Shading Language (OpenGLSL) [22]. The
data is fed through the matrix from left to right. First, column 1 is evaluated,
then column 2 and so on. Each node of the matrix either takes one or two
arguments. The first byte argument specifies from which node in the previous
column the input value v1 is read out. A modulo operation is used to map the
byte argument to the range [0, nx]. Similarly, the second byte argument specifies
the input node used for v2. Some operations only take a single argument. In this
case, the second byte argument is ignored. Some operators use the second byte
argument as a constant c2. This constant is computed using c2=b/255.

The functions performed by the operators are shown in the last column of
Table 4 using the syntax of the OpenGL shading language. Functions include
standard operations such as addition, subtraction, multiplication, division as well
as specialized functions for image processing which extract one of the channels
or uses a color channel as a gate function. Other functions, which were included
in the function set, are functions which are mostly used for computer graph-
ics applications. Those functions were included simply because they are readily
available from the OpenGLSL function set.

The overall output of the detector can be computed once the last column
has been evaluated. To compute the overall output, we average the output of all

Fig. 4. Operators available for the nodes of the nx × ny matrix.
function of operator name args computed function

pass through id 1 v1
absolute value abs 1 abs(v1)
scalar product dot 1 vec3(dot(v1,v1))
square root sqrt 1 sqrt(v1)
normalize norm 1 normalize(v1)
clamp clamp(0,1) 1 clamp(v1,0.0,1.0)
step function step(0) 1 step(vec3(0),v1)
step function step(0.5) 1 step(vec3(0.5),v1)
smooth step function smstep(0,1) 1 smoothstep(vec3(0),vec3(1),v1)
red channel red 1 vec3(v1.r,0,0)
green channel green 1 vec3(0,v1.g,0)
blue channel blue 1 vec3(0,0,v1.b)
channel average avg 1 vec3((v1.r+v1.g+v1.b)/3)
channel minimum min 1 vec3(min(min(v1.r,v1.g),v1.b))
channel maximum max 1 vec3(max(max(v1.r,v1.g),v1.b))
mark minimum comp. equalMin 1 equal(v1,vec3(min(min(v1.r,v1.g),v1.b)))
mark maximum comp. equalMax 1 equal(v1,vec3(max(max(v1.r,v1.g),v1.b)))
use red channel as gate gateR 1 ?(v1.r>0) vec3(v1.g):vec3(a.b)
use green channel as gate gateG 1 ?(v1.g>0) vec3(v1.r):vec3(a.b)
use blue channel as gate gateB 1 ?(v1.b>0) vec3(v1.r):vec3(a.g)
use red channel as gate gateRc 2 ?(v1.r>c2) vec3(v1.g):vec3(v1.b)
use green channel as gate gateGc 2 ?(v1.g>c2) vec3(v1.r):vec3(v1.b)
use blue channel as gate gateBc 2 ?(v1.b>c2) vec3(v1.r):vec3(v1.g)
step function step 2 step(vec3(c2),v1)
addition + 2 v1+v2
subtraction - 2 v1-v2
multiplication * 2 v1*v2
division / 2 v1/v2
minimum min 2 min(v1,v2)
maximum max 2 max(v1,v2)
clamp clamp0 2 clamp(v1,v2,vec3(1))
clamp clamp1 2 clamp(v1,vec3(0),v2)
mix mix 2 mix(v1,v2,0.5)
step step 2 step(v1,v2)
less than lessThan 2 vec3(lessThan(v1,v2))
greater than greaterThan 2 vec3(greaterThan(v1,v2))
dot dot 2 vec3(dot(v1,v2))
cross cross 2 cross(v1,v2)
reflect reflect 2 reflect(v1,v2)
refract refract 2 refract(v1,v2,0.1)

operators in column nx. In other words, we output the average behavior of the
detectors in the last column. Because of this, modifications to a single element
towards the right hand side of the matrix have a relatively small effect on the
overall output.

2nd best individual 3rd best individual

best individualinput image

and 3rd best individual
markers of best, 2nd best

(teaching input)

desired
position

Fig. 5. System overview. The user manually specifies the position of the object which
should be extracted in the upper left hand sub-window. The output of the three best
individuals is shown using markers (overlayed on the input image). The images which
are computed by the three best individuals are also shown.

Obviously, it would also be possible to use a different method to compute the
overall output. For instance, we could also multiply the output of the detectors
located in the last column. In this case, all detectors would have to have a high
output for the overall detector to respond at all. However, such an object detector
would most likely be highly fragile. All detector outputs have to be non-zero for
the overall detector to output anything at all.

Experiments in the field of evolutionary computer vision are usually very
expensive with respect to the computational requirements. Each individual of
the population represents a possible algorithmic solution for a given problem.
Each solution has to be evaluated on the input image or sets of input images.
We will be working with an input stream of images which is continually being
processed by the system. Due to clever use of the graphics processing unit, our
system is able to evaluate multiple individuals for every input image.

Our task will be to locate certain objects in the input stream. The user is
able to tell the system which object should be extracted by moving the mouse
pointer over the object and then pressing the left mouse button (see Figure 5).
The position of the mouse pointer is then used for computing the fitness of the
individuals as long as the button is pressed. The detected object position as well
as the processed image of the three best individuals of the population is always
output onto the screen. Once the user releases the mouse button, the images are
still being processed, however, evolution is halted and the output of the three
best individuals is continued to be shown.

Figure 1 shows the entire setup for a sample individual. It is straightforward
to map this representation to a linear bit string genome by concatenating all
the parameters. The parameters of column 0 are stored first, followed by the
parameters for the nx ×ny matrix read out from top to bottom and from left to
right.

4 GPU Accelerated Image Processing

We have used the graphics processing unit (GPU) to accelerate the image pro-
cessing operators. Fung et al. [23] noticed very early on that image processing
tasks can be mapped to the graphics hardware. Today, graphics hardware is
used to accelerate a variety of tasks from the simulation of reaction-diffusion
equations to fluid dynamics or image segmentation [24]. Nvidia has developed
the Compute Unified Device Architecture (CUDA) [25]. This architecture al-
lows the programmer to use the GPU as a massively parallel computing device.
The CUDA architecture is highly suited for accelerating image processing oper-
ations. However, we have chosen to use the OpenGL shading language for our
implementation. OpenGLSL has the advantage of providing easy access to scale
spaces through mip mapping. Currently, it is not known whether a CUDA im-
plementation would provide a significant speedup over the approach followed
here.

Our choice of operators and representation which were described in the pre-
vious section were largely fixed by the syntax of the OpenGL shading language.
OpenGLSL is usually used to render realistic computer graphics in real-time. It
is highly optimized to render triangles and planar polygons. For added realism,
textures can be applied to these triangles and polygons. So called pixel shaders
can be used to individually program the operation which is performed by the
GPU whenever the rasterizer renders a single pixel.

The pixel shaders can be programmed using a C-like language, the OpenGL
shading language. Each pixel shader has access to multiple textures. We imple-
mented the above representation by rendering a single rectangle which has the
same size as the input image and which consists of four vertices. The rasterizer
executes the code of the pixel shader for every pixel of the rectangle. The current
input image is provided to the pixel shader as a texture. The operations listed in
Table 3 are implemented by reading out the texture. For instance, the following
OpenGLSL code reads out the input image with an offset of (3,4) and at a scale
of 2.

vec3 c=texture2D(texture0,gl_TexCoord[0].st+vec2(3,4),2).rgb;

The three component vector c then holds the down-sampled data from the input
image.

All high level operations such as edge detection, computation of the Lapla-
cian, convolution or segmentation are implemented through the OpenGLSL. The
result of these operations can then be combined through binary operations such
as multiplication, computation of maximum values or through gate functions.
Obviously, in computer vision one also wants to apply multiple image process-
ing operators in sequence. For instance, one would like to apply a convolution
and then an edge detector to the convolved image. However, it is currently not
possible to implement such operations using the OpenGLSL with a single pass
through the graphics pipeline. One would have to use multiple passes through the
graphics pipeline and the image data would have to be exchanged between the
GPU and the CPU for each pass. This transfer between GPU and CPU would

be a severe bottleneck. In the future, the OpenGLSL may allow write operations
to textures. If this were possible, we would be able to compute multiple image
processing operations with a single pass through the pipeline. Unfortunately, at
present, this is not a possibility.

5 Experiments

Our system works with a parent population of µ individuals. We basically use
a (µ + λ) Evolution Strategy to evolve our pixel shader programs. All parents
are re-evaluated for each input image because the input image is continuously
changing. New parents are selected among the parents and the offspring by
sorting them in ascending order according to their fitness and then selecting the
best µ parents. Since the representation that we use is highly redundant, the
µ best parents will all be identical after several iterations. That’s why we sort
parents and offspring according to fitness and then select the µ best parents
which all have different fitness values. This provides a simple form of diversity
maintenance.

In addition, half of the offspring for every iteration are generated from scratch
using the random number generator. This also provides a steady influx of alterna-
tive algorithms and prevents the system from converging to a single point inside
the search space. The other half of the offspring are generated by recombining
two parent individuals with a crossover probability of pcross = 0.7.

All offspring are mutated by selecting one of two mutation operations at
random. The first mutation operation is a standard GA-like mutation operation
with a mutation probability of pmut = 2

l
where l is the size of the genome in bits.

The second mutation operation selects one byte of the individual at random and
increases or decreases that byte at random. This allows for small incremental or
decremental changes to arguments which specify offsets or scale. Alternatively,
a gray code could also have been used to achieve the same effect.

The task of the individuals is to detect objects in an image sequence which are
specified interactively by a human operator by moving the mouse over the object
and holding the mouse button pressed as long as the evolved object detector is
not good enough. Our training set consists of those input images where the
mouse button is pressed and our testing test consists of all other images. No
image is used twice during an evolutionary run.

The evolved object detector outputs an entire image. The detected object po-
sition is determined by locating the pixel with the highest value. Each pixel with
RGB components [r, g, b] is interpreted as a 24-bit number. If several pixels have
the value FFFFFF , we compute the center of gravity of these pixel positions.
Fitness is computed based on the difference (measured in pixels) between the
detected object position and the object position which is manually determined
by a human operator.

We tested our system on several different image sequences. Each detector
receives as input only a single image. Naturally, the shape of an object can vary
from one image to the next. Its colors will also vary slightly from one image to

input image output created by best individual

d
u
ck

s
in

a
p
on

d
b
u
s

st
op

in
te

re
st

p
oi

n
t

Fig. 6. Output of three evolved object detectors. The located output of the three best
evolved individuals are marked in red, green, and blue respectively. In all three cases,
we were able to evolve an individual which is able to detect the object or part of the
image which should be located.

the next (this is also the case for a stationary camera and a stationary object
due to noise in the sensor). A successful detector must therefore become robust
against small distortions or noise in the data.

We were able to evolve detectors which detect ducks in a pond, interest points
on a building or traffic signs. The object was usually located with a reasonably
small error after relatively short time. Manually writing detectors which perform
the same task would have taken considerably more time than was required to
evolve the detectors.

In some cases, the object color provided a strong cue on where the object is
located. However, we were also able to show that it is possible to evolve detectors
which were not based on color. Figure 6 shows three different image sequences
which were used to test our system. The task for the first sequence was to detect
ducks in a pond. The task for the second image sequence was to detect the sign
of a bus stop. The task for the third sequence was to detect an interest point
located on a building. In many cases, we were surprised on the robustness of the

detectors. Quite often, the detectors were able to tolerate medium changes in
appearance and/or the scale of the object.

Our system is able to achieve a frame rate of 4.5 Hz while evaluating 23
alternative individuals in the background and also visualizing the results of the
three best individuals. This frame rate is achieved with a 2+2×2 representation
on an Intel Core 2 CPU running at 2.13GHz and a GeForce 9600GT/PCI/SEE2.
In other words, more than one hundred individuals are evaluated per second. The
image sequences had a size of 320x240.

6 Conclusions

We have shown how a real-time evolutionary system can be built based on the
OpenGL shading language which evaluates multiple alternative algorithms in the
background for every input image. Our system is based on a Cartesian Genetic
Programming representation. High-level image processing operations are used as
input nodes. The output of these operations is then recombined using elementary
functions which are available from the OpenGL shading language. At present,
it is not possible to apply multiple image processing operations such as edge
detection or a convolution in sequence without transferring the output of one
operation back to the CPU. Our representation is streamlined to match the
architecture of the GPU hardware and thereby fully exploiting the power of the
GPU. With future GPU hardware, it could be possible that write operations to
texture are also allowed. This would increase the power of the present approach
considerably.

References

1. Ebner, M.: An adaptive on-line evolutionary visual system. In Hart, E., Paechter,
B., Willies, J., eds.: Workshop on Pervasive Adaptation, Venice, Italy, IEEE (2008)
(in press)

2. Lohmann, R.: Bionische Verfahren zur Entwicklung visueller Systeme. PhD thesis,
Technische Universität Berlin, Verfahrenstechnik und Energietechnik (1991)

3. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming
1996, Proc. of the 1st Annual Conf., Stanford University, Cambridge, MA, The
MIT Press (1996) 309–314

4. Rizki, M.M., Tamburino, L.A., Zmuda, M.A.: Evolving multi-resolution feature-
detectors. In Fogel, D.B., Atmar, W., eds.: Proc. of the 2nd American Conf. on
Evolutionary Programming, Evolutionary Programming Society (1993) 108–118

5. Ebner, M.: On the evolution of interest operators using genetic programming. In
Poli, R., Langdon, W.B., Schoenauer, M., Fogarty, T., Banzhaf, W., eds.: Late
Breaking Papers at EuroGP’98: the 1st Europ. Workshop on Genetic Program-
ming, Paris, France, The University of Birmingham, UK (1998) 6–10

6. Katz, A.J., Thrift, P.R.: Generating image filters for target recognition by genetic
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(9)
(1994) 906–910

7. Ebner, M., Zell, A.: Evolving a task specific image operator. In Poli, R., Voigt,
H.M., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C., eds.: Joint Proceedings
of the 1st Europ. Workshops on Evolutionary Image Analysis, Signal Processing
and Telecommunications, Göteborg, Sweden, Berlin, Springer-Verlag (1999) 74–89

8. Poli, R.: Genetic programming for image analysis. In Koza, J.R., Goldberg, D.E.,
Fogel, D.B., Riolo, R.L., eds.: Genetic Programming 1996, Proc. of the 1st Annual
Conf., Stanford University, Cambridge, MA, The MIT Press (1996) 363–368

9. Johnson, M.P., Maes, P., Darrell, T.: Evolving visual routines. In Brooks, R.A.,
Maes, P., eds.: Artificial Life IV, Proc. of the 4th Int. Workshop on the Synthesis
and Simulation of Living Systems, Cambridge, MA, The MIT Press (1994) 198–209

10. Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic pro-
gramming. In: Proc. of the Genetic and Evolutionary Computation Conf., Seattle,
WA, ACM (2006) 887–894

11. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE Transactions on Evolutionary Computation 11(5) (2007) 635–650

12. Treptow, A., Zell, A.: Combining AdaBoost learning and evolutionary search to
select features for real-time object detection. In: Proc. of the IEEE Congress on
Evolutionary Computation, Portland, OR. Volume 2., IEEE (2004) 2107–2113

13. Heinemann, P., Streichert, F., Sehnke, F., Zell, A.: Automatic calibration of camera
to world mapping in robocup using evolutionary algorithms. In: Proc. of the IEEE
International Congress on Evolutionary Computation, San Francisco, CA, IEEE
(2006) 1316–1323

14. Cagnoni, S.: Evolutionary computer vision: a taxonomic tutorial. In: 8th Int. Conf.
on Hybrid Intelligent Systems, Los Alamitos, CA, IEEE Comp. Society (2008) 1–6

15. Mussi, L., Cagnoni, S.: Artificial creatures for object tracking and segmentation.
In: Applications of Evolutionary Computing. Proc. EvoWorkshops 2008, Naples,
Italy, Berlin, Springer (2008) 255–264

16. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge,
MA (1996)

17. Rechenberg, I.: Evolutionsstrategie ’94. frommann-holzboog, Stuttgart (1994)
18. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means

of Natural Selection. The MIT Press, Cambridge, MA (1992)
19. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming -

An Introduction: On The Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, San Francisco, CA (1998)

20. Miller, J.F.: An empirical study of the efficiency of learning boolean functions
using a Cartesian Genetic Programming approach. In Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proc. of
the Genetic and Evolutionary Computation Conf., San Francisco, CA, Morgan
Kaufmann (1999) 1135–1142

21. Ebner, M.: Color Constancy. John Wiley & Sons, England (2007)
22. Rost, R.J.: OpenGL Shading Language. 2nd ed., Addison-Wesley, Upper Saddle

River, NJ (2006)
23. Fung, J., Tang, F., Mann, S.: Mediated reality using computer graphics hardware

for computer vision. In: Proc. of the 6th Int. Symposium on Wearable Computers,
ACM (2002) 83–89

24. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In:
Eurographics 2005, State of the Art Reports. (2005) 21–51

25. NVIDIA: Compute Unified Device Architecture. Programming Guide V.1.1. (2007)

