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Abstract. Computer vision algorithms are currently developed by look-
ing up the available operators from the literature and then arranging
those operators such that the desired task is performed. This is often a
tedious process which also involves testing the algorithm with different
lighting conditions or at different sites. We have developed a system for
the automatic generation of computer vision algorithms at interactive
frame rates using GPU accelerated image processing. The user simply
tells the system which object should be detected in an image sequence.
Simulated evolution, in particular Genetic Programming, is used to au-
tomatically generate and test alternative computer vision algorithms.
Only the best algorithms survive and eventually provide a solution to
the user’s image processing task.

1 Introduction

Software development of computer vision algorithms is usually quite difficult.
In several other fields, e.g. developing graphical user interfaces, the customer
is able to specify how the product should look and how it should react to the
user’s input. In most cases, developing the software is rather straight forward
were it not for communication problems between the customer and the software
development company. The difficulty lies in understanding the customer and
finding out what the customer actually wants. However, in the field of Computer
Vision, for many difficult problems it is not known how the problem may be
solved at all.

Suppose that the task is to program a software which recognizes different
objects. The customer would be able to provide images which show the object
which should be recognized. The task of the software engineer would be to write
a piece of software which recognizes these objects in an image sequence taken by
a video camera. The software engineer would then develop the required software
in his lab and take the software and equipment to the site where it should be
used. Quite often, the software developed in the lab may behave different when
installed outside the lab.
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This may be due to different lighting conditions. A computer vision algo-
rithm usually depends on the given environment. Different algorithms may be
needed when there is little light available compared to when there is a lot of
light available and consequently there is little noise in the data. Development
of computer vision software is usually a tedious process with many iterations of
testing and modification.

In the field of evolutionary computation [1], where simulated evolution is
used to find optimal parameters for a given problem, methods have been de-
veloped to automatically evolve computer programs. This field is called Genetic
Programming (GP) [2, 3]. Currently, it is not possible to evolve large scale soft-
ware such as a word processor through Genetic Programming. However, Genetic
Programming has been used very successfully to evolve variable sized structures
for problems such as analog and digital circuit design [4], antenna design [5],
robotics or design of optical lenses [6].

With this contribution, we will show how the software development of com-
puter vision algorithms may be automated through the use of Genetic Program-
ming. Until recently, it was very difficult to evolve computer vision algorithms
due to the enormous computational resources which are required. With the ad-
vent of powerful programmable graphics hardware it is now possible to accelerate
this process such that computer vision algorithms can be evolved interactively
by the user. This considerable reduces development times of computer vision
algorithms.

The paper is structured as follows. First we will have a look at the field of
evolutionary computer vision in Section 2. Section 3 shows how Genetic pro-
gramming may be used evolve computer vision algorithms. GPU accelerated
image processing is described in Section 4. A case study of an experimental sys-
tem which is used to evolve computer vision algorithms is described in Section
5. Section 6 gives some conclusions.

2 Evolutionary Computer Vision

Evolutionary algorithms can be used to search for a solution which is not im-
mediately apparent to those skilled in the art or to improve upon an existing
solution. They work with a population of possible solutions. Each individual of
the population represents a possible solution to the given problem. The solution
is coded into the genetic material of the individuals. Starting from the parent
population a new population of individuals is created using Darwin’s principle
“survival of the fittest”. According to this principle, only those individuals are
selected which are better than their peers at solving the given problem (usu-
ally above average individuals are selected). The selection is usually performed
probabilistically. Above average individuals have a higher probability of getting
selected than individuals which only perform below the population average. The
selected individuals will breed offspring. Those offspring are usually not identical
to their parents. Genetic operators such as crossover and mutation are used to
recombine and change the genetic material of the parents. This process contin-
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ues until a sufficient number of offspring have been created. After this, the cycle
repeats for another generation of individuals.

In the field of evolutionary computer vision, evolutionary algorithms are used
to search for optimal solutions for a variety of computer vision problems. Early
work on evolutionary computer vision was started by Lohmann in the 1990s. He
showed how an method can be evolved which computes the Euler number of an
image using an Evolution Strategy [7].

Initially, evolutionary algorithms were used to evolve low-level operators such
as edge detectors [8], feature detectors [9, 10], or interest point detectors [11].
They were also used to extract geometric primitives [12] or to recognize targets
[13]. Evolutionary algorithms may of course also be used to evolve optimal op-
erators for the task at hand [14]. Poli noted in 1996 that Genetic Programming
would be particularly useful for image analysis [15]. Johnson et al. have used
Genetic Programming successfully to evolve visual routines which detect the
position of the hand in a silhouette of a person [16].

Evolutionary computer vision has become a very active research area in the
last couple of years. Current work still focuses on the evolution of low-level
detectors [17]. However, research questions such as object recognition [18] or
camera calibration [19] are also addressed. Due to the enormous computational
requirement, most experiments in evolutionary computer vision are performed
off-line. Experiments in evolutionary computer vision can take from one day to
several days or even weeks depending on the difficulty of the problem. Once
an appropriate solution has been found, it may of course be used in real time.
Recently, it has become increasingly apparent that the graphical processing unit
(GPU) can be used to speed up general processing done by the central process-
ing unit (CPU). Computer vision algorithms are particularly amenable to GPU
acceleration due to the similarity between the computations required for image
processing and those performed by the GPU when rendering an image.

3 Genetic Programming for Automated Software

Evolution

Evolutionary Algorithms are quite frequently used for parameter optimization.
However, for automatic software induction we need to apply Genetic Program-
ming, an evolutionary method which is used to evolve variable sized structures
in general and computer programs in particular [2, 3]. Genetic Programming can
either be used to evolve a computer algorithm from scratch or to improve upon
an existing solution. The genetic operators are used to arrange the program in-
structions contained in the individual such that over the course of evolution the
individual performs its intended function.

A computer vision algorithm usually consists of a sequence of image process-
ing operators which are known from the literature. These operators are applied to
an input image or to a sequence of images. If one wants to solve a new computer
vision problem one has to decide in what order and with which parameters the
operators should be applied. For many difficult problems, this is an experimental
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Fig. 1. (a) Tree-based Genetic Programming (b) Linear Genetic Programming (c)
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process. Genetic Programming can be used to automate this process. Here, Ge-
netic Programming is used to automatically search the space of possible image
processing operators. The instructions of the computer program correspond to
image processing operators.

Current research on Genetic Programming focuses on three main paradigms:
tree-based GP, linear GP and Cartesian GP. The three paradigms are illustrated
in Figure 1. Tree-based Genetic Programming works with a representation where
the individuals are represented by trees. The internal nodes of the tree are the
instructions of the program [20]. The external nodes hold the input to the pro-
gram. If this representation is used for evolutionary computer vision, the external
nodes represent the input image and the nodes operate on the entire image. The
genetic operators crossover and mutation are used to manipulate the structure
of the individual. When the crossover operator is applied, two individuals are
selected from the population and two randomly selected sub-trees are exchanged
between the two parent individuals. When the mutation operator is applied to
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create an offspring, a node is selected at random and is replaced with a newly
generated sub-tree.

Linear GP uses a linear sequence of instructions [21]. The instructions operate
on a set of registers. The input to the program is supplied via the registers.
The instructions are used to modify the content of the registers. The output
of the program is read out from the output registers. Again, genetic operators
such as crossover and mutation are used to manipulate the linear sequence of
instructions. If this representation is used for evolutionary computer vision, then
the registers represent the entire image or a pixel from the image.

Cartesian Genetic Programming works with a representation where the op-
erators or functions are arranged into a n×m matrix [22]. The input is provided
on the left hand side of the matrix. The operator located in a given column can
process the data which is available from any previous column. The output is
read out from one or more output nodes on the right hand side of the matrix.

4 GPU Accelerated Image Processing

Evolution of computer vision algorithms at interactive rates is only possible
with hardware acceleration. Current PCs are equipped with powerful graphics
hardware which can be used to accelerate the image processing operations. The
graphics hardware is even used to perform computations which are completely
unrelated to computer graphics. It has successfully been used to implement algo-
rithms such as sorting, searching, solving differential equations, matrix multipli-
cations or computing the fast Fourier transform. Owens et al. [23] give a detailed
survey on general-purpose computation on graphics hardware. Different appli-
cations such as the simulation of reaction-diffusion equations, fluid dynamics,
image segmentation, ray tracing or computing echoes of sound sources have all
been implemented on the GPU.

Several different packages are available which facilitate the development of
GPU accelerated algorithms. Buck et al. [24] have developed a system for general-
purpose computation on programmable graphics hardware by using the GPU as
a streaming coprocessor. The Compute Unified Device Architecture (CUDA)
package is available from Nvidia [25]. With CUDA it is possible to use the
GPU as a massively parallel computing device. It is programmed using a C like
language.

Image processing operators can be readily mapped to the programming para-
digm which is used when rendering images. Hence, several researchers have used
the GPU to implement computer vision algorithms. Fung et al. [26] implemented
a projective image registration algorithm on the GPU. A hierarchical correlation
based stereo algorithm was implemented by Yang and Pollefeys [27, 28]. Fung and
Mann [29] showed how simple image operations such as blurring, down-sampling
and computing derivatives and even a real-time projective camera motion track-
ing routine can be mapped to the GPU programming paradigm. Fung et al. [30]
have developed a computer vision software OpenVIDIA which can be used to
develop computer vision algorithms on the GPU.
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We now have a look at how the GPU can be used to evolve computer vision
algorithms at interactive rates. Current graphics hardware is highly optimized for
rendering triangles [31]. In computer graphics, a triangle is defined by its three
vertices in three-dimensional space. Additional information such as normal vec-
tor, material properties or texture coordinates are usually stored with each ver-
tex. The graphics hardware then maps this triangle onto a two-dimensional plane
with discrete pixels. This usually occurs in several stages. The three-dimensional
coordinates are first transformed into eye coordinates, i.e. relative to the camera.
The coordinates lying within the view frustum are then further transformed into
a unit cube. This has the advantage that clipping becomes easier. The rasterizer
maps all coordinates within the unit cube to the discrete raster positions of the
output image.

The information which is required to color the pixel within a triangle are
obtained by interpolating data from the vertices. Originally, the steps taken by
the GPU to render a triangle was fixed. It could not be modified by the user. This
changed in 1999, when programmable stages were introduced into the graphics
pipeline [23]. With modern graphics hardware it is now possible to execute small
programs, called vertex and pixel shaders, which perform various computations
either per vertex or per pixel in order to determine the color or shader of a
vertex or pixel. The code of the vertex shader is usually used to transform the
coordinates of the vertex into the unit cube, the clip space. At this stage, all
data which is required by the pixel shader is set up. This data includes the
normal vector or texture coordinates both of which are specified per vertex. The
rasterizer interpolates this data. It is then available for each pixel of the triangle.
The code of the pixel shader is basically used to compute the color of each pixel
using the interpolated data for every pixel of the triangle.

The shader programs (vertex and pixel shaders) are set up to process four-
dimensional 32-bit floating-point vectors. These vectors are four-dimensional
because four-dimensional homogeneous coordinates are used to process three-
dimensional Cartesian coordinates. These vectors are also used to store the color
components red, green and blue together with a transparency value.

When pixel and vertex shaders were first introduced, they had to be pro-
grammed using a special kind of assembly language. The commands from this
assembly language were mostly dedicated to performing various computations
which are frequently needed during the lighting computation when coloring a
pixel. A drawback of this approach was that the code was difficult to port to
a different graphics card. Later, high-level C-like languages appeared, e.g. Cg
[32], developed by Nvidia, and the Open Graphics Library Shading Language
(OpenGLSL) [33]. With these C-like languages it is now considerably easier to
write pixel and vertex shaders which can be executed on a variety of different
graphics cards. The code written for the vertex and pixel shaders is compiled by
the graphics driver wherever it is executed.

We will be using the OpenGL Shading Language to program the vertex and
pixel shaders. Image processing operations are mapped to the GPU by sending
four vertices to the GPU. These vertices constitute a quad which represents our
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Texture Declaration
uniform sampler2D textureColor;

float sx=1.0/width; float sy=1.0/height;
Blur Shader

gl_FragColor.rgb=texture2D(textureColor,gl_TexCoord[0].st,3);

Gradient Shader
vec2 dx[4]={vec2(-sx,.0),vec2(.0,sy),vec2(sx,.0),vec2(.0,-sy)};

vec4 color,delta;

float gradient=0.0;

color=texture2D(textureColor,gl_TexCoord[0].st,0);

for (int i=0;i<4;i++) {

delta=color-texture2D(textureColor,gl_TexCoord[0].st+dx[i],0);

gradient+=dot(delta,delta);

}

gl_FragColor.rgb=2*sqrt(gradient);
Laplacian Shader
vec4 color;

vec2 dx[4]={vec2(-sx,.0),vec2(.0,sy),vec2(sx,.0),vec2(.0,-sy)};

color=4*texture2D(textureColor,gl_TexCoord[0].st,0);

for (int i=0;i<4;i++)

color-=texture2D(textureColor,gl_TexCoord[0].st+dx[i],0);

gl_FragColor=5*color;

Fig. 2. Shader code which was used to create the output images shown in Figure 3.
This demonstrates how easily computer vision operators can be implemented using the
OpenGL Shading Language.

image. The pixel shader is used to perform the image processing operation in
parallel for all pixels of the input image. The input image is stored in a texture
which is made available to the pixel shader through texture operations. Figure 2
shows the OpenGLSL code for three different image operators (Blur, Gradient,
Laplacian). The output of these three pixel shaders for a sample image is shown
in Figure 3.

Input Image Blur Shader Gradient Shader Laplacian Shader

Fig. 3. Output images generated using the four pixel shaders shown in Figure 2.

The blur shader uses the mip mapping mechanism of OpenGLSL to com-
pute a blurred input image. The mip mapping mechanism is usually used to
down-sample textures. The blur shader can be implemented with a single line
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of code. The gradient shader reads adjacent pixels of the texture, computes the
differences and sums up the squared differences over all three color channels. The
Laplacian shader reads out the center and surrounding pixels. It then computes
the differences between these two. The output of the Laplacian falls within the
range [-1,1]. It is therefore mapped to [0,1] for display. These three examples
show how easy it is to use the GPU for computer vision applications.

5 Evolving Computer Vision Algorithms Interactively

We have created an object recognition vision system which allows the user to
automatically evolve computer vision algorithms at interactive rates. The sys-
tem is equipped with a video camera from which input images are gathered.
Alternatively, the system can also process images from video sequences. The
user specifies the object which should be recognized using the mouse pointer.
The user keeps pressing the mouse button as long as the object is located un-
derneath the mouse pointer. This is the teaching input used by the system.

Our system works with a parent population of µ individuals. Initially, these
individuals are generated entirely at random. The output of the three best in-
dividuals is always shown on the screen as shown in Figure 4. The task of the
evolved computer programs is to locate the object, which was specified by the
user, as closely as possible. The pixel with the largest response, where the RGB
colors are interpreted as a 24-bit number, is taken as the position of the object.
If several pixels have a response of 0xFFFFFF, then the center of gravity is
computed.

rectangular
markers of
three best
individuals

individual

output of best
individual

teaching input

output of 2nd best
output of 3rd best

Fig. 4. System overview. The input image is shown in the upper left hand corner. The
remaining three images show the output of the best three individuals of the population.
The teaching input (specified by the user using the mouse) is the yellow marker. The
three rectangular markers (shown in red, green, and blue) show the position located
by the best three individual.

The Cartesian Genetic Programming paradigm [22] is used as a representa-
tion for the individuals. Each individual consists of a set of connected nodes. For
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each node, we have to specify the function which is computed by this node. We
also have to specify how a given node is connected to previous nodes. This set of
connected nodes is not evolved directly. Instead, one works with a linear repre-
sentation which can be readily mapped to the set of connected nodes. The first
number specifies the function computed by the first node. The second number
specifies the first argument which can be used be this node and the third number
specifies the second argument. The fourth number specifies the function of the
second node and so on. The functions which are available to the individuals are
taken directly from the OpenGL shading language. The representation is fully
described by Ebner [34].

Starting from the parent individuals, we create offspring by using the crossover
operator with a probability of 70%. In other words, 70% of the offspring are cre-
ated by recombining the genetic material of parent individuals. The remaining
30% of the offspring are created by simply reproducing a parent individual. For
a mutation, a randomly chosen byte is either decreased by one or increased by
one or the entire string is mutated with a mutation probability of 2/l where l
is the length of the string in bits, i.e. on average, we will have two mutations
per offspring. In addition to those offspring which are generated from the parent
population, the same number of individuals are also generated at random. This
allows for a continuous influx of new genetic material.

Individuals are evaluated by computing the distance between the position,
which is specified by the user, and the position which is returned by the individ-
ual. This is our error measure or fitness function. Since our input is dynamically
changing, we also re-evaluate the parent individuals. We then sort the µ parents
and λ offspring according to fitness.

The best µ individuals are selected as parents for the next generation among
both parents and offspring. This is a so called (µ + λ) Evolution Strategy. Note
that we are working with a redundant representation. Two individuals which
differ in their genetic representation can actually compute the same function.
That’s why only one individual for every fitness value is considered for selection.
This is an effective method of diversity maintenance in our context. We then
repeat this process of reproduction, variation and selection for every input image.

Our system, consisting of an Intel Core 2 CPU running at 2.13GHz and a
GeForce 9600GT/PCI/SEE2 graphics card, achieves a frame rate of 4 Hz while
evaluating 23 individuals, each processing an input image of size 320x240, for
each generation. The speedup is 17 if two high level operators followed by a 2×2
matrix of simpler operators are used compared to an all software implementation
of the same algorithm. The speedup increases to 24.6 if four high level operators
are used.

This system was tested on several different image sequences (shown in Figure
5). Object detectors which have been evolved so far, include ducks in a pond,
traffic signs as well as an interest point on a building. An object detector which
is able to locate the object with a reasonably small error was evolved in less
than 120 generations, i.e. within 30 seconds with a frame rate of 4Hz. Manually
writing these detectors would have taken considerably longer. As the graphics
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bus stop sign

ducks in a pond

interest point

Fig. 5. Results obtained with three evolved object detectors. The three rectangular
markers (in red, green and blue) show the position of the object located by the three
best individuals of the population. The best output (shown in red) corresponds closely
to the object or part of the image which should be located.

hardware gets more powerful, we will be able to evolve increasingly complex
detectors.

6 Conclusions

With current advances in computer graphics hardware it is now possible to
automatically generate computer vision algorithms at interactive rates. This
reduces development times considerable and also allows laymen, not having any
previous experience with the programming of computer vision algorithms, to
automatically generate such algorithms. This is a step towards the programming
of computers by telling them what the user wants and without explicitly telling
the computer exactly what to do.
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