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Abstract

In evolutionary computer vision, algorithms are usually
evolved which address one particular computer vision prob-
lem. Quite often, a set of training images is used to evolve an
algorithm. Another set of images is then used to evaluate the
performance of those algorithms. In contrast of this standard
form of algorithm evolution, it is proposed to develop a
vision system which continuously evolves algorithms based
on the task at hand. This adaptation of computer vision
algorithms would happen on-line for every image which is
presented to the system. Such a system would continuously
adapt to new environmental conditions.

1. Introduction and Motivation

Today, vision systems are in use in many places. They
are used on autonomous mobile robots or as stationary
surveillance systems. We propose to make such systems
adaptive to their environment using evolutionary algorithms.

In current work on evolutionary computer vision [1],
one usually tries to solve a given computer vision problem
using an evolutionary algorithm. Evolutionary algorithms
use simulated evolution to search the space of possible
solutions for a method which solves the given problem
[2]. An evolutionary algorithm works with a population of
individuals. Each individual represents a possible solution
for the given problem. The possible solutions are found
by essentially using the same operators which are used by
natural evolution: reproduction, variation and selection.

Suppose that we are looking for an algorithm which
extracts some kind of information from an image, e.g. where
an object with a known shape is located within the image. In
evolutionary computer vision, one often works with two sets
of images. One set of images is used to train the algorithm,
i.e. this set is used during evolution in order to evaluate the
performance of the individuals. A second set of images is
used to see how well the evolved algorithm generalizes to
previously unseen images.

Experiments in evolutionary computer vision are usu-
ally computationally very expensive. One is working with
a population of individuals, i.e. possible solutions to the
given problem. This population of individuals is evolved for

several generations. In order to evaluate a single individual,
it may be necessary to apply a sequence of image processing
operators such as edge detection, computation of a histogram
or transforming the image to frequency space [3], [4].
Evaluating several sequences of image processing operators
over many generations will take a considerable amount of
time. This is very expensive and hardly suited for on-line
image processing.

With the advent of powerful computer graphics hardware,
however, it may soon be possible to develop a true on-line
evolutionary computer vision system which continuously
processes the visual information and which would adapt
itself to different environmental conditions. Such a system
would be very different from traditional computer vision
systems. Traditional computer vision systems are usually
developed to complete a certain task within a standard-
ized environment. Such systems are hardly adaptive and
often break when run in a different environment. This
happens quite frequently in the field of robotics especially
when working with autonomous mobile service robots.
Autonomous mobile service robots have to perform well
in many different environments. The environments cannot
be standardized. The robot may have to perform its task
under many different lighting conditions. It has to recognize
different objects irrespective whether there is little light
available (and there is quite a lot of noise in the image data)
or whether there is a sufficient amount of light available (and
there is little noise in the data). Such vision systems would
be context-aware pervasive systems.

Which algorithm is optimal for a given task almost
always depends on the current environmental conditions. It
is therefore proposed to create an on-line adaptive vision
system. This adaptive system would continuously process
the visual information received from the camera. The system
would search for alternative algorithms in the background on
the visual input received by the system. Multiple algorithms
would be explored in parallel and the best one would replace
the current algorithm in use. The system would therefore
continuously adapt to the incoming data in a way that
the performance is always the best possible performance
independent of any environmental conditions, i.e. the system
would perform optimally when the environment is brightly
lit and would also perform optimally when little light is



available.

2. Evolutionary Computer Vision

In evolutionary computer vision, one tries to evolve or
optimize an algorithm which solves a given computer vision
problem [1]. Work in evolutionary computer vision started
in the 1990s. One of the first papers advocating the idea
is probably a paper by Lohman [5]. He used an Evolution
Strategy to compute the Euler number of an image [6]. In
the 1990s, evolutionary algorithms were used to evolve low-
level operators such as edge detectors [7], feature detectors
[8], or interest point detectors [9]. It was already clear that
in principle, evolutionary computer vision may be used to
evolve fully adaptive operators (see Ebner and Zell [10])
which adapt themselves to the task at hand and that genetic
programming would be useful to image analysis [11]. For
instance, Johnson et al. [12] used genetic programming
very successfully to evolve visual routines. Evolutionary
computer vision is a very active research area ranging from
evolution of low-level detectors [13], to object recognition
[14] or camera calibration [15]. Latest research on evolution-
ary computer vision is published in the European Workshop
on Evolutionary Computation in Image Analysis and Signal
Processing organized annually by Stefano Cagnoni.

Unfortunately, currently, due to the enormous computa-
tional requirements, experiments in evolutionary computer
vision have to be performed off-line. The systems are used
to evolve an operator or method to achieve some dedicated
task. Only then the result can be used in real time. An
outline of an evolutionary computer vision system is shown
in Fig. 1. In some cases, an algorithm exists but it may
not be optimal yet. If this is the case, one would use
Genetic Algorithms [16] or Evolution Strategies [17] for
parameter optimization. One works with a population of
individuals. Each individual represents a possible solution
to the given problem, i.e. the parameters of the problem
are coded inside the individual. When Genetic Algorithms
are used, parameters are coded using bit-strings. When
Evolution Strategies are used, parameters are coded using
floating-point vectors.

Darwin’s principle “survival of the fittest” is used to select
only those individuals from the population which are better
than their peers at solving the given problem. Excellent
individuals have a much higher probability of being selected
than bad individuals. The best individuals are allowed to
reproduce into the next generation. The offspring are usually
not identical to their parents. They are modified slighly
using genetic operators such as mutation and crossover. The
genetic material, i.e. the parameters of the given problem,
are exchanged (one could also say shuffled) between two or
possibly more parents when crossover is used. This shuffled
material then represents the offspring. The genetic material
is modified by applying the mutation operator. The mutation
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Figure 1. An evolutionary computer vision system.

operator usually changes a single parameter slightly. Some
individuals may be produced using only crossover, some
individuals may be produced using only mutation, some may
be produced using both. When a new population is com-
pletely filled, the process is repeated for another generation
for a generational based evolutionary algorithm. This process
continues until a good enough solution is found.

Each individual is evaluated using a fitness function
or error measure. The fitness function or error measure
basically describes how good the individual is at solving
the given problem. Suppose that we want to optimize an
object detection algorithm. The algorithm should return 1
for each pixel where the object is located and 0 everywhere
else. Given such a problem, one could use a simple distance
function to evaluate the individuals. The distance function
would compute the difference or error between the desired
output of the object detection algorithm and the actual output
of the object detection algorithm. A perfect individual would
have an error measure of zero.

Apart from parameter optimization of existing algorithms,
it is of course also highly desirable to be able to evolve an
entire computer vision algorithm from scratch. One basically
wants to answer the following question: In what order and
with what parameters should the different operators which
are known from the computer vision literature be applied
to an input image in order to achieve a desired output. For
such problems, Genetic Programming is highly applicable.
Genetic Programming is used to automatically search the
space of computer programs to evolve a solution to a given
task [18], [19]. The instructions of the computer program
correspond to the computer vision operators known from
the literature.

Three different representations are widely in use for Ge-
netic Programming. The first is a tree-based representation
for the individuals where the nodes of the tree are the
instructions of the program [20]. Genetic operators such as



mutation and crossover manipulate the structure of the tree.
The mutation operator randomly selects a node from the
tree and then replaces this node with a newly generated sub-
tree. The crossover operator randomly exchanges the genetic
material contained in two randomly chosen sub-trees from
the two individuals.

The second representation is a linear sequence of in-
structions [21]. This variant is called linear Genetic Pro-
gramming. The instructions of the program are operating
on registers. Input data is supplied to the program via an
input register and the output of the program is read out from
an output register. Genetic operators such as mutation and
crossover manipulate the linear sequence of instructions.If
this type of representation is used for evolutionary computer
vision, then the registers are thought to represent the entire
image. The individual instructions or computer vision oper-
ators transform one image to another image.

A third representation, known as Cartesian Genetic Pro-
gramming works with a two-dimensional grid of operators
[22]. Operators of any given column may process the input
from the operators positioned inside any previous column.
Fig. 2 shows how interest points can be extracted from
an image using a representation of the Cartesian Genetic
Programming paradigm. First, horizontal and vertical edges
are extracted from the input image. The derivative in x and y
directions is squared and subtracted from the product of the
second derivative in x and y directions. Finally, non-local
maxima are suppressed.

Evolutionary computer vision systems are mostly used
off-line to process the available visual data and to evolve an
optimal algorithm or to optimize a given algorithm. These
systems are not truly adaptive in a sense where they would
immediately adjust their behavior to a new environment (i.e.
to new visual data). In the next section, such an adaptive
evolutionary vision system is described.

3. An Adaptive On-Line Evolutionary Visual
System

In developing vision systems, especially in the field of
robotics, it is very important to note that these systems must
always be ready to process the available information. They
continuously need to process every input image coming into
the system. For some systems, data is gathered and after a
certain amount of time has passed, the system is stopped
and the available data is output, e.g. an environment model
of the surrounding of the robot. That’s not what is desired
here. It is assumed here that the robot is always on and
continuously processing the data.

Let us assume for a moment that we have some kind of
computer vision algorithm which performs a desired task on
the robot. That task could be anything from object detection
(where the robot only visually recognizes a known object in
its visual field) to complex tasks including object following
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(where the robot also has to follow the object and maintain
the object within his field of view).

If our computer vision system is sufficiently powerful,
then the system will be able to test alternative algorithms
in the background. In other words, for every input image,
the system would run multiple algorithms on the same input
data. The algorithm performing best would win this round
(Darwinian selection). The output of the winning algorithm
would then be used to steer the robot or to present its
findings to the user via a user interface. The system would
then create slight variations of the winning algorithm which
are evaluated using the next input data. Such a computer
vision system is shown in Fig. 3. For this example, the
winning algorithm would be algorithm no. 2 (marked in
bold) because it extracts more of the wings of the butterfly.

The difficult part in developing such systems (apart from
handling the enormous computational requirements) is to
find objective criteria with which we can evaluate the
different algorithms. Suppose that we would like to extract
an object from an image, e.g. a ball. How would we evaluate
algorithms for extracting that object? Given two algorithms
which both extract some object from an image (we do not
really know what it is) the following criteria would surely
apply.

• An algorithm classifying more object pixels as object
pixels compared to another algorithm should be pre-
ferred.
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Figure 3. An adaptive on-line evolutionary visual sys-
tem.

• An algorithm classifying more background pixels as
background pixels compared to another algorithm
should be preferred.

However, we cannot be sure what is an object pixel and
what is a background pixel without using some high level
ground truth knowledge for this evaluation. Another criteria
for evaluating the algorithms would be taking the shape of
the object into account. For a ball, we would know that the
outline of the ball has to be round if the ball is completely
contained inside the image and it is not occluded. In other

words, an algorithm to extract a ball from the input sequence
is a good algorithm if it always extracts some round object.
The edges found at the outline of the extracted object must
have the correct orientation. This could further be confirmed
by looking at the shading information of the object. Texture
would be another cue which could be used to discern one
object from another.

Suppose that we would evaluate 5 alternatives for every
input image. If we are able to work at a frame rate of
25Hz, that would mean that 125 alternative computer vision
algorithms are evaluated per second or a total of 7500
algorithms per minute. The question is, how can we achieve
such high frame rates as the application of computer vision
operators is quite costly? We will see in the next section how
such a system may be implemented. It is suggested to use
the GPU to carry out the image processing operations. Given
that modern computer graphics cards are equipped with high
speed graphic processors, it makes sense to evaluate the
algorithms directly on the graphics card.

4. Performing Image Processing Operations on
the GPU

In recent years, graphics processing hardware has become
increasingly powerful. It is even used to perform computa-
tions which are completely unrelated to computer graphics
or computer vision for that matter. So far, algorithms such as
sorting, searching, solving of differential equations, matrix
multiplication and the fast Fourier transform have been
ported to the graphics processing unit (GPU). A detailed
survey of general-purpose computation on graphics hardware
is given by Owens et al. [23]. Applications include the
simulation of reaction-diffusion equations, fluid dynamics,
image segmentation, ray tracing or computing echoes of
sound sources.

A number of software packages have appeared which
facilitate the development of GPU accelerated algorithms.
Buck et al. [24] have developed a system for general-purpose
computation on programmable graphics hardware. They
basically use the GPU as a streaming coprocessor. Nvidia
have developed the Compute Unified Device Architecture
(CUDA) [25] which makes it possible to use the GPU as a
massively parallel computing device using a C like language.

Several researchers have used the GPU for implementing
various computer vision algorithms. Fung et al. [26] noticed
very early on the capabilities of modern graphics processing
units and implemented a projective image registration algo-
rithm on the GPU. Yang and Pollefeys [27] implemented a
hierarchical correlation based stereo algorithm in a clever
way very efficiently on the GPU. Fung and Mann [28]
showed how to implement simple image operations such
as blurring, down-sampling and computing derivatives and
even a real-time projective camera motion tracking routine.
An computer vision software, called OpenVIDIA, initiated



by Fung et al. [29], is available to utilize the power of the
GPU.

Modern graphics hardware is highly optimized for ren-
dering triangles [30], [31]. Information within a triangleis
obtained by interpolating data from the vertices. Originally,
the rendering pipeline was fixed. Apart from specifying
some parameters which is used by the rendering pipeline,
it could not be modified by the user. In 1999, this changed
with the introduction of programmable stages [23]. Modern
graphics hardware allows the user to specify small programs
which are either executed per vertex or per pixel.

These programs are called vertex and pixel shaders re-
spectively. Originally, the programs for the pixel and vertex
shaders had to be written in a special kind of assem-
bly language. The available commands were all crafted
to performing all kinds of computations which may have
to be performed within the graphics pipeline. Instructions
for vector and matrix arithmetic were included as well as
specific instructions which may be needed when computing
the brightness or color of a pixel. In recent years, C-like
languages appeared which made it significantly easier to
write shaders for different graphics hardware. Examples
include Cg [32], developed by Nvidia, and the OpenGL
Shading Language (GLSL) [33], created by the OpenGL
ARB. The C-like code is compiled by the graphics driver
into the appropriate shader code for the GPU wherever it is
executed.

When using the vertex and pixel shaders for tasks other
than 3D graphics rendering, one still needs to think in the
vertex/pixel shader computer graphics paradigm. Computer
vision operators can be implemented by sending four ver-
tices through the graphics pipeline. The four vertices specify
the end points of the rectangular image. The input image
itself is made available to the pixel shader as a texture.

A blur shader is especially simple to implement because
it can make use of a so called mip mapping mechanism. It
simply accesses a down-sampled version of the texture and
maps that to the entire image. A gradient shader computes
the differences between adjacent pixels of the texture and
then sums up the squared differences over all three color
channels using the function for computing the dot product.
A Laplacian shader adds up the differences between the
central and the surrounding pixels. The clipping is performed
automatically.

When writing computer vision algorithms, usually several
operators have to be applied in sequence. The output of one
operator is used as input of another operator. Currently, one
can apply only one operator at a time via the GPU. The
output of this operator is obtained by rendering to a texture.
When the next operator should be applied, all of the textures
which were generated in that way, have to be presented to the
shaders implementing the next operator. In other words, the
GPU is invoked once for every operator and the results are
copied in between. This is an unnecessary overhead slowing

down the entire process. The bottleneck is the image transfer
between the CPU and the GPU which currently still has to be
performed. The GPU could be used much more efficiently,
if it were possible to directly read from and write to multiple
output textures. Unfortunately, currently, this is not possible.
As soon that this feature becomes available (and I have no
doubt that it will become available) we will be able to build
a continuously adapting visual system on the GPU.

5. Conclusions

In developing computer vision applications, several op-
erators have to be applied in sequence to perform a given
task. When developing computer vision algorithms the pro-
grammer decides in what sequence these operators have to
be applied. Given the power of current graphic cards, it
may soon become possible to develop an adaptive vision
system on a GPU which continuously processes the visual
information and automatically adapts itself to changing
environmental condition.
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[30] T. Akenine-Möller and E. Haines,Real-Time Rendering,
2nd ed. Natick, Massachusetts: A K Peters, 2002.

[31] OpenGL Architecture Review Board, D. Shreiner, M. Woo,
J. Neider, and T. Davis,OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 2, 5th ed.
Reading, Massachusetts: Addison-Wesley, 2006.

[32] R. Fernando and M. J. Kilgard,The Cg Tutorial. The Defini-
tive Guide to Programmable Real-Time Graphics. Boston,
Massachusetts: Addison-Wesley, 2003.

[33] R. J. Rost,OpenGL Shading Language. With contributions by
John M. Kessenich, Barthold Lichtenbelt, Hugh Malan, and
Mike Weiblen, 2nd ed. Upper Saddle River, NJ: Addison-
Wesley, 2006.


