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Abstract. The human visual system is able to determine the color of
objects irrespective of the power distribution illuminating the scene. This
ability is called color constancy. It would be highly interesting to mimic
this ability of the human visual system. Accurate color reproduction is
very important from consumer photography to automatic color based
object recognition. In theory, if we knew the color of the illuminant for
each image pixel, we would be able to compute a color corrected image
which is independent of the illuminant. We suggest the use of anisotropic
diffusion to estimate the illuminant locally for each image pixel.

1 Motivation

The human visual system is able to determine the color of objects irrespective
of the type of illuminant used. The ability to compute color constant descriptors
from the light entering the eye is called color constancy [1,2]. In contrast, colors
measured by a digital sensor are not constant. The response of the sensor de-
pends on the color of the illuminant. Obtaining accurate colors of objects is very
important from consumer photography to automatic object recognition based
on color. In general, accurate color rendition is required for many algorithms in
color image processing.

In most cases, we have multiple illuminants. For instance, we may have artifi-
cial lighting inside a room and additionally daylight falling through a window. If
we have several different light sources, then the illuminant is no longer uniform
over the entire image. In this case, we have to estimate the illuminant locally
for each image pixel [3,4]. So far, only a few algorithms have been developed
which address the problem of a locally varying illuminant. Most of the color
constancy literature deals with a uniform illuminant. The algorithms which also
take a spatially varying illuminant into account are the algorithms of Land and
McCann [5], Horn [6], Blake [7], Moore et al. [8], Rahman et al. [9], Barnard et
al. [10], and Ebner [4].

2 Locally Estimating the Color of the Illuminant

Ebner [4] has developed a parallel algorithm for color constancy which estimates
the illuminant locally for each image pixel. The algorithm runs on a grid of



processing elements and uses isotropic diffusion to compute local space average
color. Let a be the current estimate of local space average color and let c be the
color of the pixel stored at the current processing element. The data which is
available from neighboring elements is averaged and then a little amount from
the color of the current element is added to the average. Let N(x, y) be the
neighboring processing elements of element (x, y). The following two update
equations are iterated until convergence

a
′(x, y) =

1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′) (1)

a(x, y) = a
′(x, y) · (1 − p) + c(x, y) · p (2)

where p is a small percentage larger than zero. During each iteration a new
estimate of local space average color is computed. The parameter p determines
the extent over which local space average color is computed. For small values of p,
local space average color is computed over a large area. For large values of p, local
space average color is computed for a small area. For the gray world assumption
to hold, we need to compute local space average color for a comparatively large
area.
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Fig. 1. Let us assume a linearly changing illuminant and consider the processing ele-
ment located at the center of the grid. The differences between the averages computed
by this processing element will cancel which results in a series of vertical bands.

Let us now assume that the illuminant changes smoothly over the entire
image from left to right. Figure 1 illustrates such a smooth horizontal change of
the illuminant from left to right. Consider the data computed by the processing
element in the center of the image. The average computed by the element on
the left will be slightly lower whereas the average computed by the element on
the right will be slightly higher than the current average. The data computed by
processing elements above and below will be equivalent to the data computed
by the current element. If we average the data from the neighboring elements,
the differences between the element on the left and the element on the right will
cancel. After convergence, one obtains a series of vertical bands. In other words,
the estimate of local space average color will be correct, provided that we have
a linearly changing illuminant.
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Fig. 2. Assuming that we have a non-linear change of the illuminant from left to right,
then the average computed by the processing element to the left and the average
computed by the processing element on the right will not be equivalent. The estimate
computed by the processing element located in the center will be too low.

Let us now assume that we have a non-linear change of the illuminant as
shown in Figure 2. In this case, the average computed by the element on the
left and on the right will no longer cancel. The estimate of the illuminant will
be slightly too low. We can solve this problem by computing space average color
only along the vertical. Thus, we would be estimating the color of the illuminant
independently for each column of the image. We could also try to reduce the
area of support. For our parallel algorithm, the area of support is determined
by the parameter p. If we make the area of support sufficiently small, then the
assumption that the illuminant varies linearly may be correct. In practice, it
may not be possible to make the area of support very small because then the
gray world assumption may no longer hold. However, if the area of support is
very large, then the area of support will likely straddle a non-linear transition
of the illuminant.

3 Use of Anisotropic Diffusion

A more accurate estimate of the illuminant can be obtained if the averaging is
done non-uniformly. This leads us to anisotropic diffusion which is frequently
used to segment noisy images [11,12,13]. For our example, we have assumed a
horizontally varying illuminant. The illuminant is constant along the vertical. Let
us call these vertical lines the lines of constant illumination or iso-illumination
lines. If the illuminant were changing from top to bottom, the iso-illumination
lines would be oriented horizontally. In this case, we could average the data along
the lines of the image. In general, of course, the change of the illuminant may be
arbitrary across the image. A spotlight may cause a circular or elliptic change
of the illuminant.

Suppose that we knew how the iso-illumination lines run across the image.
Then we could establish an estimate of the illuminant by averaging the data only
along the iso-illumination lines. In other words, we suggest the use of anisotropic
diffusion in order to estimate the illuminant locally for each image pixel. If we
only average the data in a direction which is perpendicular to the illumination
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Fig. 3. Rotated coordinate system where the directions left/right point along the line
of constant illumination. The directions front/back point along the gradient. A curved
line of constant illumination is shown on the right.

gradient then the result will be independent of the area of support provided
that it is sufficiently large. This is a very important point. If we average the
data along the iso-illumination lines, the scaling parameter p could be made
arbitrarily small. It would only depend on the size of the image. In contrast, if
we compute isotropic local space average color, the area of support should be
small for areas where the illuminant is changing very much and it would have
to be large for areas where the illuminant is constant. If we compute isotropic
local space average color along the iso-illumination lines then the estimate of the
illuminant will be correct also for a non-linearly changing illuminant.

Let us define a local coordinate system for each image pixel as shown in Figure
3 on the left. For each pixel we have four directions. Two are perpendicular
to the iso-illumination line and two point along the iso-illumination line. The
gradient of the illuminant defines this coordinate system for each image pixel.
The problem is that we need to have some estimate of the illuminant in order to
compute the gradient. We can use isotropic diffusion to get a rough estimate of
the illuminant. This estimate can then be used to compute the gradient. Let a

be the estimate computed using isotropic diffusion or some other method such
as applying a Gaussian filter to the input image. Let [dxi, dyi] be the gradient
of color channel i.

∇ai =

[

dxi

dyi

]

=

[∂ai

∂x
∂ai

∂y

]

. (3)

Since we have a three-band color image, we would obtain slightly different
gradients for each color band. We assume that a single gradient [dx, dy] describes
the actual distribution of the illuminant. Thus, we need to combine the three
gradients into one. One way to do this is to simply average the gradients.

[

dx

dy

]

=
1

3

∑

i∈{r,g,b}

∇ai (4)

It would also be possible to use different weights for the three channels. We could
also apply weights based on the magnitude of the gradient.



Let a(front), a(back), a(left), and a(right) be the estimate of space average
color in the corresponding directions front, back, left and right as shown in
Figure 3. Let c(x, y) be the color at the current element. It is assumed that the
locations front, back, left and right are a unit distance away from the current
element. The data at these locations is computed using bilinear interpolation.
We can calculate local space average color a by averaging the existing estimates
obtained from the left and the right along the line of constant illumination

a
′(x, y) =

1

3
(a(x, y) + a(left) + a(right)) (5)

a(x, y) = a
′(x, y) · (1 − p) + ci(x, y) · p (6)

where p is a small percentage.
Data from the front/back direction can also be included by introducing an

additional parameter q with q ∈ [0, 1
6 ] which describes the exchange along the

front/back direction.

a
′(x, y) =

(

1

3
− q

)

a(left) +

(

1

3
− q

)

a(right) +
1

3
a(x, y) + qa(front) + qa(back)

(7)
If q is equal to zero, then we average data only along the line of constant illu-
mination. If q is larger than zero, some data will also flow along the front/back
direction. The reader should be aware that the update equations are given for
the center elements only. Processing elements which are located on the boundary
of the image can only average the data which is available.

Note that the line of constant illumination may not be a straight line. In
case of a spotlight it may be circular or elliptic. For actual images which contain
local light sources this is likely to be the case. Thus, we have to determine the
curvature for each image pixel. The curvature K of a point (x, y) on a surface
F (x, y) is defined as [14]

K =
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(8)

with Fx = ∂F
∂x , Fy = ∂F

∂y , Fx = ∂F
∂x , Fxy = ∂F

∂x∂y , Fyx = ∂F
∂y∂x , Fxx = ∂2F

∂x2 , Fyy =
∂2F
∂y2 . Let dx and dy be the gradient computed from the estimated illuminant
using isotropic diffusion. The curvature of the illuminant is then computed by
setting Fx = dx, Fy = dy, Fxy = ∂

∂xdy, Fyx = ∂
∂y dx, Fxx = ∂

∂xdx and Fyy =
∂
∂y dy. From the curvature K, we can calculate the radius r of the curve [14]

r =

∣

∣

∣

∣

1

K

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(F 2
x + F 2

y )3/2

FxFxyFy + FxFyxFy − F 2
xFyy − F 2

y Fxx

∣

∣

∣

∣

∣

. (9)

The center of the curvature lies on the positive side of the curve normal if
K > 0 and on the negative side otherwise. If K = 0 then the line of constant
illumination is indeed a straight line.



The two points along the line of constant illumination from which we need
to extract our current estimate of local space average color can be found as
shown in Figure 3 on the right. We need to determine the intersection points
between the unit circle and the circle determined from the current estimate of the
illuminant. This will give us the two values a(P1) and a(P2) which can be used
in the anisotropic averaging operation as described above. In order to compute
the intersection points we assume that the center of the curvature is located
at point (0, r). Then it is straight forward to compute the location of the two
intersection points P1 and P2 from the two circles which are given by

x2 + y2 = 1 and (x − r)2 + y2 = r2. (10)

We solve for x and obtain x = 1
2r . The y coordinates are obtained from the

equation of the unit circle. We obtain y1/2 = ±
√

1 − 1
4r2 . Of course, in the

general case, the center of the curvature does not lie on the X axis. In this case,
we simply perform an appropriate rotation of the coordinate system. Local space
average color at points P1 and P2 are again obtained using bilinear interpolation.
Let ǎi be the previous estimate of local space average color at points P1 and P2.
We compute

ǎ
′(x, y) =

1

3
(ǎ(P1) + ǎ(x, y) + ǎ(P2)). (11)

Once the data from neighboring elements is averaged, the color from the current
element is slowly faded into the result

ǎ(x, y) = ǎ
′(x, y) · (1 − p) + c(x, y) · p. (12)

Again, p is a small value larger than zero. These update equations are iterated for
each processing element until convergence. We can now handle curved non-linear
transitions of the illuminant by averaging the data along the line of constant
illumination.

4 Experimental Results

Barnard et al. [15] created a set of images to be used for color constancy research.
We took two images from the data set which show the same scene under two
different illuminants and combined them artificially. The illuminant of the first
image is bluish. The illuminant of the second image is basically white. Figure
4 shows the combined images. A horizontal gradient was used to create the
first image whereas a spotlight effect was simulated for the second image. The
intensity of the of the first image was increased by a factor of three. Apart from
having a color gradient, we thus also have an intensity gradient.

Figure 4 shows the results for the algorithm described above. The parameter
p was set to 0.0001. The parameter q was set to 0. The illuminant is roughly
approximated by computing a blurred input image using exponential blur. The
intensity was used to estimate the illuminant. For the first image, we obtain hor-
izontal lines of constant illumination, whereas for the second image, we obtain
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Est. Iso-Illumination Lines Isotropic Local Avg. Color Anisotropic Local Avg. Color

Fig. 4. Two images from the database of Barnard et al. [15] were merged to simulate a
horizontal illumination gradient and a spotlight effect. Results are shown using isotropic
diffusion and anisotropic diffusion.

circular lines of constant illumination. Next, we use anisotropic diffusion to esti-
mate the illuminant locally for each image pixel. When we compare the estimate
of the illuminant which was obtained using isotopic diffusion with the estimate
of the illuminant which was obtained using anisotropic computation, we see that
computation of local space average color using anisotropic diffusion more accu-
rately estimates the color of the illuminant. Once the illuminant is known, we
can compute a color corrected image. The resulting output images are shown
in Figure 4. When comparing the two output images we see that some detail
is missing from the resulting image when local space average color is computed
using isotropic local space average color. In contrast, when local space average
color is computed using anisotopic diffusion more detail is retained.



5 Conclusion

Many color constancy algorithms have been proposed. Few of the algorithms
address the problem of estimating the illuminant locally for each image pixel.
Most algorithms assume that the color of the illuminant is constant over the
entire image. We have shown how anisotropic diffusion may be used to estimate
the illuminant locally. First the illuminant is roughly approximated using Gaus-
sian or exponential blur, then a refined estimate of the illuminant is computed.
The algorithm runs on a grid of processing elements where data is exchanged
only between neighboring elements. Each element estimates the line of constant
illumination and then averages data along this line. As a result, we obtain an
estimate which may also be used if the illuminant varies non-linearly across the
image.
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