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Abstract. Color is not a physical quantity which can be measured. Yet
we attach it to the objects around us. Colors appear to be approximately
constant to a human observer. They are an important cue in everyday
life. Today, it is known that the corpus callosum plays an important role
in color perception. Area V4 contains cells which seem to respond to
the reflectance of an object irrespective of the wavelength composition
of the light reflected by the object. What is not known is how the brain
arrives at a color constant or approximately color constant descriptor. A
number of theories about color perception have been put forward. Most
theories are phenomenological descriptions of color vision. However, what
is needed in order to understand how the visual system works is a com-
putational theory. With this contribution we describe a computational
theory for color perception which is much simpler in comparison to pre-
viously published theories yet effective at computing a color constant
descriptor.

1 Motivation

The measured color varies with the type of illuminant used. The energy Q mea-
sured by a sensor is proportional to the reflectance R at the corresponding object
point and is also proportional to the irradiance E at the corresponding object
point, i.e. we have

Q(λ) ∝ R(λ)E(λ)

for wavelength λ. The fact that the measured color varies with the type of illu-
minant is observed by many amateur photographers all around the world. One
simply has to compare a photograph of the same scene once using incandes-
cent light and once using sunlight. Professional photographers are well aware of
this and can use filters to change the color balance [1,2]. Digital cameras apply
post-processing algorithms which can change the color balance such that the
resulting photograph looks more natural. In contrast, the color observed by a
human observer stays remarkably constant [3]. This phenomenon has been in-
vestigated in detail by Land [4,5]. Obviously, it is of great interest to learn what
algorithm is actually used by the human visual system in order to arrive at



a color constant descriptor which remains constant (or at least approximately
constant) irrespective of the illuminant used. Several psychophysical models of
color perception have been put forward. However, such models do not explain
how or why the color perceived by an observer could depend on either average
apparent reflectance or the average luminance. Such models are phenomenolog-
ical descriptions of color vision. What is needed is a computational theory of
color vision [6].

Quite a large number of color constancy algorithms have been developed,
from Land and McCann’s Retinex theory [7] and its many variants [8,9,10,11,12],
Buchsbaum’s gray world hypothesis [13], gamut constraint methods [14,15,16],
color cluster rotation [17] to comprehensive normalization [18] and computation
of intrinsic images [18]. Most color constancy algorithms assume that the illu-
minant is constant within the image. A notable exception is Land and McCanns
Retinex algorithm together with the variants of Horn [8], Blake [11] and Rahman
et al. [12].

2 Iterative Computation of Local Space Average Color

Land’s alternative formulation of the Retinex algorithm [9] as well as the algo-
rithm of Rahman et al. [12] require that some form of averaging of image pixel be
carried out. Land [9] assumes that input from several receptors is averaged. The
algorithm of Rahman et al. [12] computes the blurred image using a convolution.
Local space average color may also be computed iteratively as Ebner has shown
[19,20,21].

The algorithm of Ebner assumes that a grid of processing elements exists with
one processing element per image pixel. Each processing element is connected
only to its nearest neighbors. Let N(x, y) be the neighboring processing elements
of the element located at position (x, y) of the image, i.e.

N(x, y) = {(x′, y′)|(x′, y′) is neighbor of element (x, y)}.

Each processing element computes local space average color a(x, y)

a(x, y) = [ar(x, y), ag(x, y), ab(x, y)].

Let us assume that we already have some average stored at each processing
element. The following update equations are then iterated

a
′(x, y) =

1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′)

a(x, y) = c(x, y) · p + a
′(x, y) · (1 − p)

where p is a small percentage. The first operation simply takes the local space
average color which is available from neighboring elements and averages this
data. In other words, we get a new average based on the data stored at neigh-
boring elements. The color which is available at the current element is then



slowly faded into the average using the second operation. If these two operations
are iterated indefinitely, the data simply diffuses between neighboring elements.
This process converges to local space average color irrespective of the data stored
initially inside the processing elements.

The extent over which local space average color is computed, is determined
by the parameter p. For a small value of p, local space average color is computed
over an extensive area whereas for a large value of p, local space average color
is computed over a small area. The iterative computation of local space average
color is very similar though not identical to the convolution of the input image
with an exponential kernel.

a(x, y) =

∫ ∫

c(x′, y′)e−
|x−x

′|+|y−y
′ |

σ dx′dy′

The correspondence between the parameter σ and the parameter p is given by

σ =

√

1 − p

4p
.

Instead of using a grid of processing elements in order to compute local space
average color, a resistive grid may also be used. With a resistive grid, adjacent
points are simply connected through a resistor.

3 The Gray World Assumption

Local space average color may then be used to compute a color constant descrip-
tor using the gray world assumption. The gray world assumption was originally
proposed by Buchsbaum [13]. It is based on the assumption that on average,
the world is gray. Buchsbaum assumed overlapping response characteristics of
the sensors. We will derive the gray world assumption using non-overlapping
response characteristics. Let ci(x, y) be the measured intensity of color channel
i at position (x, y) of the image. The measured intensity is proportional to the
reflectance and the irradiance.

ci(x, y) = Ri(x, y)Li(x, y).

Buchsbaum assumed that the illuminant is constant over the entire image, i.e.
we have Li(x, y) = Li. This gives us

ci(x, y) = Ri(x, y)Li.

Thus, the illuminant scales the reflectances. A color constant descriptor can be
computed once an estimate of the illuminant is available.

Let us now compute space average color over all image pixels. Space average
color a = [ar(x, y), ag(x, y), ab(x, y)] of an image with n pixels is given by

ai =
1

n

∑

x,y

ci(x, y) =
1

n

∑

x,y

Ri(x, y)Li = Li

1

n

∑

x,y

Ri(x, y).



We now assume that several differently colored objects are located inside the
image. Since we don’t know anything about the colors of the objects we simply
assume that all colors are equally likely, i.e. we assume that the reflectances are
uniformly distributed over the range [0, 1]. If we have a sufficiently large number
of different colors inside the image, then we obtain for the expected value of the
sum

1

n

∑

x,y

Ri(x, y) =
1

2
.

We now see that the color of the illuminant can be estimated by computing
global space average color.

Li ≈ 2ai

We use the gray world assumption locally in order to estimate the color of the
illuminant at each image pixel (x, y)

Li(x, y) ≈ 2ai(x, y)

where local space average color a is computed iteratively as described above.
Note that because the illuminant is estimated for each image pixel, the algorithm
also works for a spatially varying illuminant, i.e. multiple light sources, provided
that the environment is sufficiently diverse.

We then compute a color constant descriptor oi by dividing each image pixel
by twice local space average color.

oi(x, y) =
ci(x, y)

2ai(x, y)
≈

ci(x, y)

Li(x, y)
≈

Ri(x, y)Li(x, y)

Li(x, y)
= Ri(x, y)

Figure 1 shows the results of this algorithm for a sample image. The image was
taken with a Canon 10D. The white balance was set to 6500K and a yellowish
illuminant was used. The image shown on the left is the input image and the
image on the right is the output image. The color cast is removed nicely as can
be seen in the output image.

Fig. 1. The input image is shown on the left. Local space average color is computed
using an exponential kernel. The output image is shown on the right.



4 Usage of Color Shifts

Experiments done by Helson [22] indicate that human subjects appear to use
color shifts in order to estimate the color of achromatic samples illuminated by
colored light. The perceived color of the sample depends on the color of the
illuminant as well as on the color of the background. He found that a bright
patch located on a gray background will have the color of the illuminant. A dark
patch will have the complementary color of the illuminant. Patches which have
an intermediate reflectance will appear achromatic. The algorithms of Land [9],
Horn [8,23], Moore et al. [24] and Rahman et al. [12] do not reproduce this
behavior. This is because the ratio between the color of the pixel and local space
average color is computed. If one computes this ratio, the color of the illuminant
falls out of the equation. The stimuli will always appear to be achromatic for all
settings that Helson investigated. A more extensive discussion is given in [25].

Ebner [19] has developed a computational algorithm for color constancy
based on the use of color shifts. As we have seen above, we need to divide each
image pixel by twice the space average color in order to obtain a color constant
descriptor. However, we may also obtain a color constant descriptor if we shift
local space average color onto the gray vector. The gray vector runs through
the color space from black through gray and onto white. According to the gray
world hypothesis, the average color of image pixels should be located on the
gray vector. If the average color is not located on the gray vector it has to be
corrected such that the gray world assumption is fulfilled. Let w = 1√

3
[1, 1, 1]T

be the normalized gray vector and let c = [cr, cg, cb]
T be the color of the current

pixel. Let a = [ar, ag, ab]
T be local space average color computed for the same

pixel. We first compute the component a⊥ of local space average color which is
perpendicular to the gray vector. The vector a is projected onto the white vector
w and the projection is then subtracted from a. This gives us a⊥.

a⊥ = a − (a ·w)w

This vector points from the gray vector to the local space average color. We then
subtract this vector from the color of the current pixel, i.e. we compute

o = c − a⊥.

Figure 2 illustrates how the shift is applied for two vectors c and a. If we look
at the individual components, i.e. color channels, we obtain

oi = ci − ai +
1

3
(ar + ag + ab).

Let ā = 1
3 (ar + ag + ab), then we have

oi = ci − ai + ā.

The result of this operation is that the local space average color is shifted onto the
gray vector and a color cast is removed. Since the shift is performed perpendicular
to the gray axis the average intensity of the image pixels is not changed. This
algorithm shows the same behavior as described by Helson.
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Fig. 2. The component a⊥ of local space average color a which is perpendicular to the
gray vector w is subtracted from c. The result is a color corrected image.

5 A Computational Theory of Color Perception

Theoretical models for color perception have been developed by Judd [26] and by
Richards and Parks [27] among others. These are psychophysical models of color
perception. They do not explain how or why the color could depend on either
average apparent reflectance or the average luminance. They are phenomeno-
logical descriptions of color vision. What is needed is a computational theory
of color vision [6]. The algorithms which would lend themselves to a biological
realization are the parallel algorithms of Land and McCann [7], Land [9], Horn
[8], Blake [11] and Ebner [19,20,21].

Of course, as of today, it is not yet known how the human visual system ac-
tually computes color constant descriptors. We do know that color constant cells
have been found inside visual area V4 [3,28]. Area V4 may be subdivided into
two subareas V4 and V4α [29]. V4 has a retinotopic organization whereas area
V4α does not have a retinotopic organization. Cells found inside visual area V4
have very large receptive fields. These may be the cells which respond to either
local or global space average color. They respond to the color of objects irrespec-
tive of the wavelength composition of the light reflected by the object. Area V4
also has callosal connections. The corpus callosum connects both hemispheres of
the brain. Land et al. [30] have shown that an intact corpus callosum is required
for accurate color perception.

Currently, we do not know how the processing of color information is actually
done in V4. The computation of local space average color could either be done in
space or in time [10]. Algorithms which perform an integration over time include
the algorithms of Horn [8], Blake [11] and Ebner [19,20,21]. If the human visual



system uses integration over time, then recurrent neurons are required which
only have to be connected to their nearest neighbors. Instead of computing local
space average color iteratively, local space average color could also be computed
by consecutively applying a Gaussian blur. In this case, the neurons would have
to form a hierarchy consisting of neurons with receptive fields of increasing sizes.
The first neuron of the hierarchy would have a very small receptive field. The
second neuron would have a sightly larger receptive field and so on. The neuron
located at the top of the hierarchy would receive a completely blurred image as
input, in other words, global space average color. This method would resemble
the algorithm of Rahman et al. [12].

Hurlbert [10] suggested that it is also possible that the rods in the periphery
of the retina are used to compute a spatial average over the image boundary.
D’Zmura and Lennie [31] suggested that color constancy might be due to an
adaptation mechanism. The retina is exposed to different parts of the scene as
the eye, head and body moves. Space average color could be computed in the
course of time, i.e. as the retina is exposed to different parts of the scene, by
averaging the data per receptor and the adapted state at any point of the retina
would be a function of this space average color. However, the experiments of
Land and McCann [7] who have also experimented using short exposure times
suggest that color constancy is an ability which exists even if the image is only
perceived for a fraction of a second. The ability to perceive colors as constant is
not dependent on long exposure times.

The first visual area where color constant cells have been found is V4. Assum-
ing only local connections, i.e. that a highly parallel algorithm is employed, either
the algorithm of Land [9], Horn [8] or Ebner [19,20] could be used by the visual
system. A hierarchy of neurons, which is just used to compute a blurred image,
would require an unnecessarily large neural architecture. Why should evolution
favor this type of architecture if the same can be achieved using much simpler
means? If the algorithm of Horn [8] is realized by the visual system, we would
first need to construct a Laplacian operator. Local differencing could be used to
implement a Laplacian operator. The output of the Laplacian operator would
already be a color constant descriptor because the response of the photoreceptors
is logarithmic (or nearly logarithmic) [32]. In order to implement the algorithm
of Horn, we would now need a thresholding operation and an integration step.
The integration would most likely be done in V4. Livingstone and Hubel [33]
assume that such an algorithm is used by the visual system. Instead of operating
on the cone channels red, green, and blue the Retinex algorithm is assumed to
operate either in a longitude-latitude spherical polar coordinate system or inside
a rotated coordinate system. In the spherical coordinate system of Livingstone
and Hubel, radius denotes the dark-light scale, longitude the red-green axis and
latitude the blue-yellow axis. That the Retinex algorithm can also be applied
inside a rotated coordinate system was also noted by Land [9].

It may also be that the actual color signals inside the rotated coordinate
system are averaged instead of averaging the thresholded output of the Lapla-
cian. This would be essentially be the algorithm described by Ebner [19,20]. The



advantage of this algorithm is that no threshold has to be set. In practice it is
usually very difficult to properly choose a threshold. For this algorithm, local
space average color would be subtracted from the color of the given pixel. Figure
3 shows the resulting architecture.

Livingstone and Hubel suggest that cells found inside the blobs of V1 act as
building blocks which contribute to long-range interactions occurring in V4. It
should be noted that in both models, the model of Horn [8] and the model of
Ebner [19,20] no long range interactions are necessary. Only local connections
between cells are required. The reason why distant areas may influence the color
of a given point is most likely due to iterative propagation of data from one cell
to the next.
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Fig. 3. Proposal of how the human visual system may arrive at a color constant de-
scriptor.

We now dicuss our model in full. First, the cones of the retina measure the
incident light for the three different color bands red, green, and blue. There is
some dispute about whether the relationship between lightness and reflectance
is logarithmic or follows a cube root or square root relationship. A logarithmic
relationship was proposed by Faugeras [34]. See Hunt [35] for a discussion on why
the relationship may either be a cube root or square root relationship. The reader
should take note of the fact that the perceptually uniform CIE L∗a∗b∗color space
(see [36,37]) also uses a cube root transformation. With a suitable scaling factor
and offset, all three functions are a possible approximation. Let us assume for
simplicity that the first step is the application of a logarithmic or other closely
related function. Then a coordinate transform follows. This coordinate transform
is most likely carried out by the color opponent cells. The color space is now
described by the three axes red-green, blue-yellow and black-white. Local space
average color is then computed using interconnected neurons. We only require
that the neurons be connected to their nearest neighbors. The smoothing step
could be carried out through resistive coupling of neurons. It is known that gap
junctions behave mainly as pure resistors [32]. Such gap junctions could be used
to diffuse color information to adjacent neurons. Once local space average color
has been computed, it is subtracted from the color of the current pixel. The
result is a color constant descriptor.



6 Conclusions

Most theories of color vision are phenomenological descriptions, i.e. they try
to explain why we perceive colors the way we do. However, what is needed
is a computational theory of color perception that can be mapped to what is
known about the visual system. The computational theory presented above is
very simple yet effective at computing color constant descriptors. It estimates
the illuminant locally for each point of the scene and hence also handles scenes
with multiple illuminant. The theory explains that only locally interconnected
neurons are required in order to compute local space average color and thereby
a color constant descriptor. Local space average color can be computed by a
set of interconnected neurons each receiving input from a particular point of
the retina. Only resistive coupling between such neurons is required. According
to this theory, the long range connections through the corpus callosum simply
connect adjacent neurons of the left and right hemispheres of the brain. Due to
the logarithmic response of the receptors one needs to subtract the computed
local space average color from the input signal, i.e. a negative coupling between
the output from local space average color and the input signal is all that is
required. The result is a color constant descriptor.
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