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“IMustrating Evolutionary Computation with Mathematica” by Christian Jacob, Morgan Kauf-
mann Publishers, San Francisco, CA, 578 pages, 265 figures, 8 color plates and 96 programs, ISBN
1-55860-637-8, hard cover, list price $69.95.

“IMustrating Evolutionary Computation with Mathematica” is a nice introduction into the
field of evolutionary algorithms. Its main focus is on illustrating evolutionary algorithms. Jacob
unleashes the power of Mathematica to illustrate evolution in action. The book starts with a
short introduction which describes the main ingredients of evolutionary algorithms. How evolution
works is shown on the problem of evolving the sentence “Evolution of Structure, Step by Step”.
Mutation and selection are used to evolve the sentence from a random string. Mutation randomly
changes some of the characters and selection only retains those strings which match the target
string best. It is a simple problem yet it explains the main ingredients of evolution. Mathematica
is used to illustrate how the population adapts to the target string over time. Visualization of an
evolutionary algorithm is usually done by calculating minimum, average, and maximum fitness of
the population. The values are plotted on a graph which shows fitness over time. Other statistics
which might be reported are the standard deviation, diversity measures of the population or
convergence measures. In his book, Jacob shows how Mathematica can be used to visualize what
is happening during an evolutionary run. Using Mathematica this can be done easily no matter if
one wants to visualize a single genotype, a population of genotypes, plot one- or two-dimensional
functions or even use three-dimensional graphics.

For the introductory problem of evolving a sentence, the population of individuals is shown
with gray blocks marking those letters which are still incorrect or using intensity values to visualize
Hamming distance. Apart from the evolution of a sentence, evolution of the color of butterflies
and Dawkins’ [2] biomorphs are also used as introductory problems. For the butterfly problem
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each individual represents a butterfly of a certain color. A single floating point value is used to
specify the color of the butterfly. The population of butterflies needs to adapt to the environment
because those who have a color different from the background are more likely to be eaten by a
predator. Here Mathematica is used to draw a stylized icon of the butterfly using the floating
point value as the color of the butterfly. Dawkins’ biomorphs are visualized using line drawings.

After the introduction, Jacob gives a formal model of evolution. Following that, genetic al-
gorithms [7, 6] are discussed in detail. Representation issues including binary and real-valued
chromosomes, diploid and m-ploid chromosomes, dominance and the biological alphabet are dis-
cussed first. The genetic operators mutation, recombination, inversion, deletion and duplication
are described next. Deletions are handled by selecting a random subsequence and removing it.
Duplications are handled by selecting a random subsequence and inserting it again right after the
selected sequence. Obviously the genotype shrinks, respectively grows, if these operators are ap-
plied. Decoding is done by partitioning the genotype into as many segments as there are variables.
The following selection methods are covered: fitness-proportionate section, rank-based selection
and elitist selection. Using Mathematica Jacob shows the effects of the use of a particular set of
operators has on the population. The genetic material of the population as well as the movement,
on the fitness landscape is visualized. The schema theorem and its problems are discussed at the
end of the chapter. A highlight of this chapter is the introduction of Chernov figures to visualize
genotypes (Fig. 3.21). A Chernov figure is a stylized face with eyes, eye-brows, nose and mouth.
The allele values are used to vary the shape of the head, the shape of the eyes, orientation of
the eye-brows, the shape of the mouth and so on. The human ability to recognize faces helps to
compare different genotypes visualized using Chernov figures.

An introduction to evolution strategies is given next. Representation of individuals, mutation
and recombination, different selection and reproduction schemes as well as step size adaptation
are described in detail, correlated mutations, however, are not covered. For correlated mutations
the reader is referred to additional literature. Mathematica is again used to visualize the evolving
population on its fitness landscape.

The second part of Jacob’s book focuses on the evolution of computer programs. Again, a
short introduction into the field is given, followed by a detailed introduction into evolutionary
programming [4, 3] and genetic programming [12, 13, 1, 14]. Classifier systems are described
briefly. Fogel et al. [5] originally coined the term evolutionary programming. It was used to
describe the evolution of finite state machines. Today, the term evolutionary programming is used
for a wide variety of evolutionary methods with many different representations [4, 3]. The chapter
on evolutionary programming focuses only on the evolution of finite state machines. Jacob gives
a short introduction into finite state machines and discusses the genetic operators used to modify
them. Again, Mathematica is used to visualize the finite state machines and their output.

The chapters on genetic programming are a little difficult to read. Jacob makes a distinction
between symbolic expressions and term structures. A term structure is anything which can be
constructed using a set of elementary functions and terminal symbols. In a symbolic expression
the function symbols may be terms themselves. Let’s have a look at an example given in his
book. The Mathematica expression Derivative[2] [Sin] [pi] computes the second derivative
of the sine function evaluated at position 7 (p. 349). In LISP the same expression could be
written as (((Deriv 2) Sin) « ) (p. 293). That is, the parameter 2 specifies that we want
a function computing the second derivative. This function is then applied to the term Sin.
The second derivative of Sin is -Sin. Finally, this function is evaluated at position 7 which
gives zero. In standard tree based GP the symbolic expression Derivative[2] [Sin] [y+z] might
be represented as (expr (expr (expr Derivative 2) Sin) (expr (+ y z))) (p. 366) where
expr is a function which evaluates to a function according to the arguments specified. The set of
elementary functions is F' = {expr} and the set of terminal symbols includes Deriv, Sin, 2 and
m. With this representation use of typed genetic programming is necessary. Otherwise it might
happen that a function which requires an argument replaces a terminal symbol. Jacob’s system
uses selective GP recombination and mutation operators to ensure that only valid structures are
created.

Another possible representation would be to use F= { Eval, Deriv, +, -, *, /, ... } and T= {



1,2,9, 2, ... }. This would be a much more intuitive representation. In this case Eval would be a
function with arity two. The first argument would be a floating point value, the second argument
would be a function. Thus, the function Eval would evaluate the given function at a given location.
The function Deriv could be a binary function which computes the first derivative. The first argu-
ment specifies the variable for which the derivative will be computed, the second argument specifies
the function to compute the derivative of. Alternatively Deriv could be a ternary function where
the third argument can be used to calculate the n-th derivative. Thus, the symbolic expression
Derivative[2] [Sin] [y+z] could be written as (Eval (Derivative 2 x (Sin x)) (+ y 2)).
Rather than making a distinction between term structures and symbolic expressions to me it
seems more important to make a distinction between typed genetic programming and untyped ge-
netic programming. Typed genetic programming is not treated in detail and the reader is referred
to additional literature.

Genetic programming is illustrated on the problem of evolving balanced mobiles (Fig. 7.26).
Mobiles are drawn in two or three dimensions using Mathematica’s visualization capabilities.
Here, symbolic expressions have the form s [armLength1,armLength2] [subMobilel,subMobile2]
where armLength1 and armLength2 specify the length of the two arms, submobilel and submobile2
are again symbolic expressions. The recursion stops if a geometric shape is chosen as a sub-
expression. To actually evolve the mobiles, the expressions are converted into a term structure of
the form sik (subMobilel subMobile2) where i is the length of the first arm and k is the length
of the second arm. Only four possible lengths are allowed.

A more standard notation would be to use F' = {Arm, Sphere, Cone, ...} and T' = {R}. The
elementary function Arm would be a four-argument function. The first argument specifies the
length of the first arm, the second specifies the length of the second arm, and arguments three and
four specify the substructures hanging on the first and second arm respectively. The elementary
functions Sphere and Cone specify geometric elements. They take one argument each which speci-
fies the weight of the geometric element. To evolve correct expressions typed genetic programming
must be used.

The second problem used to illustrate how genetic programming works, is the evolution of a
program which steers an artificial ant. The ant has to collect food pieces similar to the Santa Fe
ant except that the ant also has to avoid walls. For this problem, Mathematica is used to visualize
the path taken by the ant. Automatically defined functions, automatically defined iterations and
loops are discussed briefly.

In part three of the book, Jacob describes the evolution of developmental programs. Of course,
Jacob is best known for his work on the evolution of artificial plants using Lindenmayer systems
(L-systems) [8, 9, 10, 11]. Part three consists of three chapters. The first chapter starts with a
short introduction into cellular automata and Langton’s self-reproducing loops. After that, L-
systems [15] are described in detail. Context-free, parameterized L-Systems and context-sensitive
L-Systems are covered. Examples include a a three-dimensional version of the Hilbert curve
and a model of tree structures using bracketed L-Systems. The second chapter explains how L-
Systems are encoded. Evolution of an L-System describing a quadratic Koch island is chosen as
a sample problem. The final chapter of the book deals with the evolution of artificial flowers.
The three-dimensional plants consisting of sprouts, stalks, leaves and blooms are visualized using
Mathematica (Fig. 11.21). An entire plant ecosystem where different plant species compete with
each other is also modeled. Here, a plant is modeled as a rosette on a stalk. The rosette models
the size of the plant, its height is given by the length of the stalk.

A final note on the use Rechenberg’s graphical notation to describe the structure of evolutionary
algorithms. The graphical notation is used throughout the book as a unifying illustration of the
different, evolutionary algorithms. It appears first in the chapter on genetic algorithms. However,
the notation is not introduced until the middle of the next chapter in the context of evolution
strategies.

“INlustrating evolutionary computation with Mathematica” is largely easy and fun to read.
I have had some difficulties with the chapters on genetic programming as described above. In
conclusion, Christian Jacob has selected a set of interesting problems to explain how evolutionary
algorithms work. It is thus suitable for university students as an introductory textbook into



the field. All main stream methods like genetic algorithms, evolution strategies, evolutionary
programming (evolution of finite state machines) and genetic programming are covered. The
end of each chapter contains biographical notes which give pointers to additional literature. The
Mathematica notebooks for the book can be downloaded from the author’s web page. The book
shows step by step how Mathematica can be used for evolutionary computation. Mathematica
notation is not explained. If one is not familiar with Mathematica one may be able to guess
what the code is doing. However, readers who are not familiar with Mathematica are probably
overwhelmed by some of the notation. A short introduction into Mathematica would be a great
benefit for the book. This could be either integrated into the main text, i.e. whenever a new
operator or symbol is used, its function is explained, or the introduction is given in an appendix of
the book. Researchers in the field can learn from the book that it is important to visualize what
your evolutionary algorithm is doing and that one can do a lot more than draw curves of the best,
average and worst fitness of the population.
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