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Abstract—The human visual system is able to perceive colors as also modify the encoding pipeline. If the decoding pipeline
approximately constant. This ability is known as color contancy. modified, then the original image does not have to be color

In contrast, the colors measured by a sensor vary with the ¢rected permanently. The color correction can be applied
type of illuminant used. Color constancy is very important or . . .

digital photography and automatic color based object recogition. optionally Whenever_ the image is decoded. o

In digital photography this ability is known under the name In order to describe how the method works, we will first
automatic white balance. A number of algorithms have been need to review relevant color constancy algorithms known
developed for color constancy. We review two well known colo  from the literature.

constancy algorithms, the gray world assumption and the Rénex

algorithm and show how a color constancy algorithm may be

integrated into the JPEG2000 framework. Since computer imges Il. THE GRAY WORLD ASSUMPTION
are usually stored in compressed form anyway, little overhad is ]
required to add color constancy into the processing pipelia. The problem of color constancy can only be solved if some

assumptions are made. A frequently made assumption is that
the illuminant is uniform across the image. An additional
assumption which may be made is that the response curves of
the camera’s sensor are very narrow band. Another freguentl
[. MOTIVATION made assumption which was introduced by Buchsbaum [19]

The human visual system is able to determine the color §fthat, on average, the world is gray. We briefly review this
objects from the spectral power distribution entering tie. e 2/90rithm because it is important to understand how color

This ability to compute color constant or approximatelyocol Onstancy may be added to the JPEG2000 format.
constant descriptors is called color constancy [1], [2]elEv SUPPOse that we have a single light source illuminating the
though a number of theories exist, it is not known exact%?ne- Light falls onto an object patch and is reflected imto t
how the human brain computes color constant descriptof@?S Of the camera. Lek (), xon) be the radiance given off
Color constancy is very important for many different ared® the light source for wavelengthwhich is falling onto the
such as consumer photography or automatic color basedtobffy€ct at positionxey;. Some light is absorbed, the remainder
recognition. Many different algorithms have been propdsed 'S reflected. Lep(}, xo;) be the reflectance function at object
order to solve the problem of color constancy. One of theyeaR©Sition Xoyj for wavelengthA. We assume that the sensor
algorithms is Land and McCann’s original Retinex algorithriPcated at position; measures the light being reflected from a
[3]. Other algorithms include gamut constraint methods-[4[F0TTeésponding object positiots;. The energyl(x;) measured
[7], color by correlation [8], [9], color cluster rotatiori], PY the sensoris then given as
or use of neural networks [11]. Whereas most color constancy
algorithms assume that the objects shown in the image can  1(X1) = G(Xobj)/P()\axobj)L()\axobj)S(/\)d)\ 1)
be modeled as diffuse reflectors, some algorithms also take
specular reflections into account [12]-[16]. Color conean WhereG(xqp;) is a geometry factor which describes the local
for images of unknown origin is discussed and evaluated B§OMetry at positiomop andS()) is a vector which describes
Cardei et al. [17], [18]. the sensor’s response characteristics. The integratidiong
Today, most computer images are stored in a compres$¥§" all _vvavelengthS\. Usually, three sensors which respond
form. The JPEG file format is ubiquitous. JPEG compressidp light in the red, green and blue part of the spectrum are
is achieved by segmenting the image ifox 8 blocks. Used. In this case&§(}) is a three element vector whesi())
These blocks are then subjected to a discrete cosine traffdscribes the response function of thth sensor. Assuming
form and only the most significant components are actuafyat the object surface can be modeled as a Lambertian
saved. In contrast, the JPEG2000 format, which is in maffflector, we haver(xon) = Ny, - Nobj whereNy, is the unit
ways superior to the baseline JPEG format, is based orY&tor pointing from the surface of the object into the diat
transform of the entire image. We will show how a simpl@f the light source an@ay; is the unit vector describing the
color constancy algorithm may be integrated directly inteurface normal_. This model of color image formation is used
the JPEG2000 transform. All that needs to be done is & many algorithms for color constancy, e.g. [5]-[7], [14],

modify the decoding pipeline slightly. Alternatively onarc [19]-[22]. ) )
The sensor’s response functions are modeled as being
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sensor responds to a single wavelength in the red, green and
blue part of the spectrum. We now obtain

Ii(x1) = G(Xobj) p(Ai, Xobj) L( i, Xobj).- 2

Let us now move to image coordinates. Assuming a linear
relationship between the measurements made by the sensor
and image data, we obtain

Ci(xvy) = Ii(xa 1/) = G(Ia y)pi(Ia y)Ll('rvy) 3

for the colore; (x, y) stored in color channélat position(z, y)

of the image. Note that we no longer use object positigs
and the wavelength,. Instead, we refer to the corresponding
reflectancep and the illuminant. using the index of the color
bands. If the illuminant is constant over the entire image, i.e.
L;(z,y) = L;, we have

ci(x,y) = G(z,y)pi(x,y)Li. (4)

Thus, we now see that a simple diagonal transform suffices in
order to obtain a color descriptor which is independent ef th
illuminant. If the illuminantL = [L,., L,, L] were known, we
could simply divide each color channel iy. The result will
be independent of the illuminant. Figure 1. The RGB color cube is spanned by the three colookeced ),

The illuminant can be estimated from the image data. en g) and blue ). The gray vector) runs from black to white through

. . e middle of the cube. A color correction may be achieved loying local

only have three measurementér, y) available for each pixel. space average colar onto the gray vectow.
We do not know the reflectanggz, y) nor do we know the
color of the illuminantL.. We also don’t know anything about
the geometryG(z,y). In order to estimate the color of thewith f = % The expected value of the geometry factor,
illuminant some assumptions have to be made. Buchsbaofmcourse, depends on the image content. We now see that
[19] suggested the gray world assumption. According to thike color of the illuminant can be estimated from the average
gray world assumption, on average, the world is gray. Tevlor of the image pixels. Since we now have an estimate of
see how the gray world assumption works, we compute thtee illuminant, a color constant descriptgrmay be computed
average color over all pixels. LeY be the number of image as
pixels and leta; be the computed average.

Ci(xvy) ~ G(xvy)pi(xay)‘[’i

Oi(xay) = = G(x,y)pi(:v,y).

1 o )
=5 Z ci(z,y) ) fai Li (10)
i After we divide each channel by twice the space average,color
Using the results from above, we obtain the global average will be &0.5,0.5,0.5]. Ebner [27] has
1 shown that the same principle may also be applied locally. By
i =N Z G(z,y)pi(z,y)Li. (6) computing local space average color, we obtain an estinfate o

oy the illuminant locally for each image pixel. Another way to

We now assume that there are many differently colored abjeglerform a color correction is the use of color shifts [28]chb
located in the image. We don’t know which colors will bespace average color can be used to perform a horizontal shift
present. Therefore, we will assume that the reflectances gf@he direction of the gray vector. This process is illuttca
uniformly distributed over the rang@, 1] and that geometry in Figure 1. First, local space average caids computed. We
information is independent of reflectance. We then obtain then subtract the componeat which is perpendicular to the

1 gray vectorw from the color of each pixat. This effectively

a; = Liw Z Gz, y)pi(z,y) = LiE(G)E(P)  (7)  moves the new average onto the gray vector.
x,Yy

where E(G) is the expected value of the geometry factor and
E(p) is the expected value of the reflectance. Since we have )
assumed a uniform distribution of the reflectances over theAnother color constancy algorithm was suggested by Horn

IIl. THE RETINEX ALGORITHM

range[0, 1], we haveE(p) = 1. Therefore, we obtain [2_9] an_d refinec_i by Blake [30]. Horn formulateq a two-
dimensional variant of Land and McCann’s Retinex algo-

a; ~ LiE(G)l (8) rithm [3]. He suggested to first separate the product between
2 reflectance and the illuminant into a sum by applying the

which can be solved for the illuminardt; logarithm. We have already seen that the energy measured
I~ 2 0 = fa ©) by the camera’s sensor is proportional to the reflectancestim

E(Q) the illuminant. If we assume a planar surface which is viewed



at a right angle, we have the logarithm first, and then compute space average ed|or

we obtain
ci(z,y) = pi(z,y)Li(z,y). (11) 1
0 = 5 logei(ny) (16)
Applying the logarithm, we obtain Ty
1
log ¢; (I, y) = log pi(x7 y) + log Li(x7 y) (12) = N ; (10g Pi (xa y) + log Lz) (17)
If we now assume that the_|llummar?t. varies sm_oothly across — logL; + — ZIOg pi(,y) (18)
the image, we have sharp discontinuities at positions winere N ”
reflectance changes. Horn suggested to first apply the Lapla- 1
cian to the logarithm of the input image. &x 3 Laplacian — logL; +1lo H (2,9) (19)
computes the difference between adjacent pixels in all four G & " yp’ Y '

directions and adds the results. Since we have assumed that ) )
the illuminant varies smoothly across the image, the secolidve now subtract this value from the logarithm of the color
component will be almost identical for neighboring pixels2f €ach pixel, we obtain

Thus, in computing the Laplacian, the second component oi(z,y) = logei(z,y) — d (20)
will nearly cancel. Strong spikes will be located wherever . . ’
the reflectance changes. Horn suggests to apply a threshold ci(x,y)
operation to the output of the Laplacian removing any small = log T (21)
values. This sequence of operations can be summarized as (Hm,y Ci(xay))
= logpi(z,y) +log L;
Alog pi(z,y) = O(Alogc;(z,y)) (13) (@,y) 1
whereA denotes the Laplacian aldenotes the thresholding —log L; —log (H pi(z, y)) (22)
z,y

operation. Next, the Laplacian is inverted and the result is
transformed back to the rand@ 1]. The result will be inde-

pendent of the illuminant. Blake [30] extended the alganith = logpi(z,y) — log (H pi(x, y)) (23)
by splitting the computation of the Laplacian into two steps Ty

First the derivative is computed, then the threshold oETat \hich is again a color constant descriptor. The second tarm ¢
is applied and finally another derivative is computed. be simplified if we assume that the reflectances are uniformly

Suppose that the illuminant is constant across the imag@gstributed over the rangi@, 1]. In this case, we can write the
In this case, we do not need the thresholding operation ngfcond term as

do we need the application of the Laplacian and subsequent

2~

n . n . ES
integration. A color constant descriptor may be computed by — Z]Qg (i) _1 IOgH 1 log 71_7'1 ~ log nlw .
simply applying the logarithm and then transforming theites " i=1 n neEanoonoon "
to the rangd0, 1]. If we apply the logarithm, we obtain i _ o ) (2_4)
Assuming thatn is sufficiently large, i.en — oo and using
logci(x,y) = log pi(,y) +log Li. (14) Stirling’s formula
1
Since the second term is a constant, it will automatically be lim ni)n - 17 (25)
removed by this transformation. _ nmee n €
Land [31] suggested an algorithm where the logarithm ¥f€ obtain
the average color of points surrounding the given point is 0i(z,y) = log pi(z,y) + 1. (26)
subtracted from the logarithm of the color of the given point
In other words, one computes IV. HOMOMORPHICFILTERING
s Stockham [35] suggested to perform image processing
log ¢; —loga; = log j- (15) within a framework of the human visual system. Stockham

originally worked with gray scale images. He noted that once
We have seen above that a linear scaling of color channgig logarithm is applied to the image data, all operatorsiwhi
is required in order to compute a color constant descriptate subsequently applied, operate linearly on the illumtina
However, due to the application of the logarithm, we nownd reflectance components of the original data. Faugeras
need to subtradiog a; from logc;. A variant of this method [36] extended the approach to color image processing. He
was implemented by Moore et al. [32] in VLSI. suggested homomorphic filtering for color image enhanceémen
A color constant descriptor can also be obtained if or{eee also Parker [37]). In homomorphic filtering, the imagje i
computes global space average color after the logarithm hesnsformed into a color space where the desired operation i
been applied and subtracts this value from the logarithrhef teasier to perform. If one assumes that the illuminant varies
color at the given point. In this case, each pixel is dividgd tsmoothly over the image and that sudden changes in the data
the geometric mean of the color channel [33], [34]. If we gpplare due to a change of reflectance, the change of the illuminan



is located in the low frequency components of the imagewas encoded or it can be decoded with a color corrective
and the reflectance changes are located in the high frequest®p applied.

components. Thus, it makes sense to transform the image

into frequency space where low frequency changes can b@l. |NTEGRATING COLOR CONSTANCY INTO JPEG2000
attenuated and high frequency changes can be emphasized.An ideal encoding/decoding pipeline is shown in Figure

We will now see how a color constancy algorithm may bg(a) Encoding is done best in a uniform perceptual spade [36

integrated into the JPEG2000 pipeline. We start off with linear RGB values. First, a color transform
P, is applied and we obtain values inside the CIE XYZ color
V. IMAGE COMPRESSION USINGJIPEG2000 space. Then the color space is made linear by applying a cube

ot function [40] and a second transform is applied. Thaltes

a transformation to Lab color space. This is the idealrcolo
pace for encoding. The decoding reverses these steps. For

display purposes a gamma correction has to be applied to
btain non-linear?’G’ B’ values. The gamma correction has

1e following form

A color image when encoded by JPEG2000 is basicallyf.r§
through a color transform, a discrete wavelet transforman
quantizer [38], [39]. The resulting bit stream is encodeidais
an arithmetic coder. The two dimensional discrete wavel
transform is tree-structured in that a two dimensional su
band transform is applied recursively to a low-pass filtere
version of the image. This is illustrated for a sample image gamméaz) = z” (27)

in Figure 2(a) which shows the transformed original |mage.ith y — 1/2.2. The SRGB standard [41] uses a slightly

The LL band (low pass filtered sub-band) is located in th p t 1 ¢ hich al tai i tion f
upper left corner of the transformed image. The HL band (hi mZIrIeirr:te:]asri]tise:rm which also contains a finear section 1o

pass filtered in the horizontal direction and low pass fitlere Figure 6(b) shows the JPEG2000 encoding/decoding

in the vertical direction) is located in the upper right cern .~ = L X ;
of the transformed image. The LH band (low pass filtered i%'pe"”.e- The ‘].PEG.ZOO.O p|pel|ne d_ewates from th_e ideal
encoding/decoding pipeline slightly. First a gamma cdioec

the horizontal direction and high pass filtered in the vaftic.S applied. next a color transfor®. is applied. Encodin
direction) is located in the lower left corner of the transfied IS applied, nex 2 1S appied. Ny

image. The HH band (high pass filtered in both directions) 2 done inside the color spad€C’sCr. The data is encoded
: . . : .. .~ Using a wavelet transform. After decoding, the inverse \eve

located in the lower right corner. This recursive sub-ddrns . X g
transform is used, the inverse color space transform isexgppl

is continued forD levels. The image shown in Figure 2(b)_|_he resulting non-linear R'G'B’ values can then be shown
shows the result foD = 5 levels. . . :

: . . ' irectly on a display device. We see that the cube-root fanct
_ After thl_s tra_nsformatlon, a recursively low pass filtere as been moved outward compared to Figure 6(a). By moving
image res@es in the upper left corner of the 'mage. i "He cube-root function outward, the function cancels wicel
cqntm_ue this process until we have only one pixel left, thevr\]/ith the gamma correction. The result is a simplified pipelin
Fh|s pixel would be the -global space average color of trl';lend a small deviation from an end-to-end gamma factor of one
image. If we stop at an intermediate level, we would obta
local space average for the pixels which have been avera e%#
so far. Figure 3 shows what happens if we take the conter\'ﬂ§
of the LL band forD = 7 and rescale it to the size of the

he color transformation which is usually used with the
EG2000 pipeline is given by

original image. We now have local space average color for Y' = 0.299R' +0.587G’ 4+ 0.114B’
each image pixel. Thus, the JPEG2000 compression algorithm Cr = 0.713(R' -Y) (28)
essentially computes local space average color when thgeima Cp = 0.564(B'-Y").

is fcransformed. In order to produce a golor constant or COI?his transformation can also be written as
adjusted output, we only need to modify the data of the LI , ,
sub-band of the highest level. 4 R, 0.299 ~ 0.587  0.114 R,

Figure 4 shows how a color constancy algorithm can b Cr| = P2 G, =1 —0.169 —0.331 0.5 G,
embedded into the JPEG2000 transform. The algorithm c 4B B 0.5 —0.419 —-0.081/ | B
either be included into the encoding or into the decodinbhis transformation cannot be perfectly inverted. That ig/w
pipeline. Inside the encoder, one can compute an arithmetie following transformation is used by the JPEG2000 Isssle
average from the data which is obtained from the LL-Bantbmpression.

of the highest level. This arithmetic average can then be

- Yy = Lw |
subtracted from the computed coefficients of the LL-Band of o ~ R é’ (29)
the highest level. The resulting effect is that the globalcsp CR - e N o
B = -

average color is pushed onto the gray vector. Alternatjvely
is also possible to move the global space average colorhieto Application of this color transform is optional. It is not
direction of the gray vector by a certain percentage. It $® alnecessary for the encoder to make this transformation [39].
possible to integrate this method into the decoder. In thiec However, in practice, it is always applied. The color space
the global space average color would be adjusted before timv consists of the luma channgl and two color channels
inverse wavelet transform is applied. This has the advantagp and Cr. LumaY”’ is computed from non-lineaR’G’ B’

that the image data can either be decoded exactly the samsigsals [41]. It is not equivalent to luminance. Similarilge
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Figure 2. (a) A sample image which is transformed using adimeensional wavelet transform. The image is decomposedfaur sub-bands LL, HL, LH,
HH which are low pass filtered, high pass filtered in the hariabdirection and low pass filtered in the vertical direstitow pass filtered in the horizontal
direction and high pass filtered in the vertical directior d&igh pass filtered, respectively. (b) The same image wamsfd recursively for 5 levels.

two signalsCp and Cr are also computed from non-linear ;
data gamma(x)
. a*log(x)+b -
In the derivation of the gray world assumption, we have 250 ¢
assumed that we were working with linear RGB data, i.e.

200

To use the gray world hypothesis, we would first have to re> 150

store this linearity by applying a gamma transform shouisl th
be necessary. Then we would compute global space average 190
color and then divide each color channel by the computed

global space average color. Finally, a gamma correctioridvou 50 1
again have to be applied in order to display the data. This is

. . 0 i 1 1 L Il Il
shown in Figure 6(c). 0 . 100 0 200 20

But what about the Retinex algorithm? If we want to use
the Retinex algorithm, we would have to take the logarithm
first, then compute space average color and then subtract tla@re 5. Gamma function which is used by the sRGB standartit &
result from each channel. This is illustrated in Figure 6(fl) @logz +b to the curve is also shown.
one applies the logarithm first, one needs to subtract space
average color. As a result, the log-reflectantesp; with
i € {r,g,b} are obtained. Since the result has to be displaygthw see that the exponentiation required for display and the
the application of the logarithm has to be undone and thersabsequent gamma correction cancel approximately and we
gamma correction has to be applied. A gamma factor whi¢n omit these two operations from the pipeline.
may have been applied originally is not relevant. This is, Figure 6(e) shows the JPEG2000 pipeline with integrated
because after the logarithm has been applied, the gamnea facblor constancy algorithm. In compressing an image using
simply becomes a scaling factor. JPEG2000, a color transformation is applied to the noraline

Let us now have a look at Figure 5. The graph shows tH€G’B’ values. This color transformation performs a change
gamma correction used by the sRGB standard. A fit of tlf coordinate axes wherg’ (luma) describes the brightness
functiona log x 4 b to this data is also shown. The best fit wasf the pixel and the two componentss and Cr describe
obtained using: = 59.28 andb = —94.79. Although the fit the color of the pixel. After this color transform is applied
between the two curves is not exact, we can see that the genthra image pixels of an image taken under a white illuminant
behavior of the two curves is similar. The similarity betweewill be distributed around the luma axis. For a non-white
a logarithmic function and a power-law function is also mbteilluminant, the main axis of the distribution will not be gified
by Wyszecki and Stiles [42]. Thus, we can regard the gammiéth the luma axis. A color shift can be used to push the
correction as an approximation to the logarithmic functde average onto the luma axis. We only have to subtract space

X



Original Image

Transformed Image

Rescaled LL Band

Figure 3. The original image is shown on the top right. Thedfarmed image is shown on the left. Below the original imagesee the contents of the
LL band rescaled to the size of the original image.
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JPEG2000 encoding/decoding pipeline. The calastancy algorithm can either be included into the encodininto the decoding pipeline.

average color from the color of each pixel. We have seen abaspmace, then we obtain
that the gamma correction can be approximated by the fumctio
alogx +b. Let ¢; be the data point inside the’CgCg color

after we subtract the average of the log image pixels. This is

1
i =al ~¢——E log(¢;
o; = alog(é;) - alog(é;)

z,y

(31)



a color constant descriptor, as we have already derivedeabawnly objects with minimal specularities, i.e. Lambertiaat r

A JPEG2000 compressed image has space average ctmtors. Set 2 contains objects with metallic speculavitiet
computed in the rotated coordinate system at its disposal. \B/contains objects with non-negligible dielectric speditikzs.
now need to subtract space average color from the color €t 4 contains objects with at least one fluorescent sur&ste.
each pixel. If we do not want to adjust the brightness d& is to be used for object recognition. It contains objectergh
the image, the luma channel is left untouched. We just nettge object was moved whenever the illuminant was changed.
to subtract the average from tligz and Cr channels. This The images from the database are stored in a linear color
essentially zeros th€'s andCr components of thé Ly sub- space. Therefore, we first transformed the images to the SRGB
band. This operation does not change the brightness of tiwor space.
pixels as only the two component’; andCr are modified. ~ We have applied the color constancy algorithm integrated
Other methods of color corrections such as applying the grayjo JPEG2000 to each of the images and then compared
world assumption locally [27] may also change the brighgnethe computed colors in Lab color space with two other
of an image pixel. Alternatively, we could subtract the aggr color constancy algorithms. Algorithm 1 is the gray world
scaled by a certain percentage. This would allow the userassumption. For this algorithm, the color space was lizedri
vary the amount of attenuation of a colored illuminant. by applying a gamma correction using the sRGB standard.

This subtraction could be carried out before the image T$hen global space average color is computed and each pixel is
encoded. If this is done then the image can no longer di&vided by global space average color. After this, all clelan
viewed in its original form including the color cast. Infoam are rescaled such that the luminance is identical to thénadig
tion about such a change could be included inside an ICC coiorage. Algorithm 2 works as follows. First we transform
profile [43] in which case the change would be reversibléhe pixels to theY’CrCp color space. We then compute
However, it makes more sense to apply the subtractive siglpbal space average color for channélg and Cs and
during decoding. This allows the viewer to decide whether tisubtract this average from the chann€lg andCz. We then
corrective step is applied or not. The user could also spectfansform the color space back to sRGB. Table | shows the
the extent of the color correction by setting a percentagetwh average difference of the computed colors in Lab color space

scales the computed average before subtraction. between algorithm 1 and the JPEG2000 algorithm and between
After the image is decoded, we end up with an (approx#gorithm 2 and the JPEG2000 algorithm. It is clear that
mately) color constant descriptof the algorithm basically realized by the JPEG2000 algorithm
, as described above is actually algorithm 2. We see that the
0; = alog(pi) + ¢ (32)  difference between the exact application of the gray world

for some constant In order to obtain the reflectance informa@ssumption and the JPEG2000 algorithm is not very great.
tion we have to undo this transformation. We could compute

linear reflectances; using VII. CONCLUSION
o We have shown how color constancy may be integrated
o =¢e= =cp; (33) into the JPEG2000 framework with little additional costs.
c . Local space average color is computed by the discrete wavele
where ¢ = e=. Now we have linear RGB values at our, P 9 P y

: . . ) transform used by JPEG2000. Since local space average color
disposal. Since the response function of the display dew&e : . .
is non-linear we have to again apolv a aamma. correctic ay be used as an estimate of the illuminant, we only need

g pply a g o) change the LL band of the highest level in order to obtain

The same holds if we want to store the linear reflectance . . . . . .
values using the sSRGB standard. We have already shown ab%vCOIor adjusted image. The nice thing about this method is

. . . 4t it may be integrated very easily into decoding devices.
that the application of the logarithm was approximated ey ﬂbecoding ydevices ?:ould mogify tth sub-bandsgat the
gamma correction using a gamma factorlg®.2. Similarly, 0

) ! . discretion of the user. This would not modify the contents of
we can approximate the gamma correction with a gam L .
b . N original image only the displayed output would be attere
factor of 2.2 by e™= . If we make this approximation, the

two operations cancel and can be dropped from the pipeline.
We have modified the JasPer Software [44] to automatically
subtract the average of thigéz and Cr components from the E{ S. Zebki'A(\:"SliO” é’f the Brain. O|Xf°g¢ BECKW?' ngigncev 12%%3-

. M. Ebner, Color Constancy. England: John Wiley ons, 7.
correspondlng channels of tlieLp sub-band at t.he request of [3] E. H. Land and J. J. McCann, “Lightness and retinex thaagurnal
the user. The interested reader is referred to Tischler g5l of the Optical Society of America, vol. 61, no. 1, pp. 1-11, Jan. 1971.
which describes the details of this implementation. Figiire [4] K. Bamard, G. Finlayson, and B. Funt, "Color constaney tcenes
shows the resultina outout for two sample images. The two with varying illumination,” Computer Vision and Image Understanding,
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