
Evolving Color Constanyfor an Arti�ial RetinaMar EbnerUniversit�at W�urzburg, Lehrstuhl f�ur Informatik II,Am Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.dehttp://www2.informatik.uni-wuerzburg.de/staff/ebner/welome.htmlAbstrat Objets retain their olor in spite of hanges in the wave-length and energy omposition of the light they reet. This phenomenonis alled olor onstany and plays an important role in omputer visionresearh. We have used geneti programming to automatially searh thespae of programs to solve the problem of olor onstany for an arti�ialretina. This retina onsists of a two dimensional array of elements eahapable of exhanging information with its adjaent neighbors. The taskof the program is to ompute the intensities of the light illuminating thesene. These intensities are then used to alulate the reetanes of theobjet. Randomly generated olor Mondrians were used as �tness ases.The evolved program was tested on arti�ial Mondrians and natural im-ages.1 IntrodutionThe human visual system is able to orretly pereive the olor of objets irre-spetive of the light whih illuminates the sene. That is, the leaves of a tree stilllook green to a human observer even if the tree is illuminated with red light andthe leaves atually reet more red than green light. The task of omputing oloronstant desriptors for an image is known as the problem of olor onstany.One is able to somehow disount the illuminant and extrat a measure of theobjet's reetane properties [26℄. The same ability would also be useful for arobot whih has to work under di�erent lighting onditions. To date, the lightingstill has to be arefully ontrolled suh that the algorithms ontinue to work.The problem of olor onstany is also of partiular importane for the task ofobjet reognition [7,10℄.Numerous solutions to the problem of olor onstany have been proposed,i.e. Land's retinex theory [21℄, variants of the retinex theory [2,12,18℄, gamut-onstraint methods [1,8,9℄ reovery of basis funtion oeÆients [13,14,17,23℄,mehanisms of light adaptation oupled with eye movements [6℄, neural networks[4,5,11,16,24℄, minimization of an energy funtion [25℄, omprehensive olor nor-malization [7℄ or ommittee-based methods whih ombine the output of severaldi�erent olor onstany algorithms [3℄. We now summarize some bakground



on olor image formation and disuss the two most widely known algorithms forolor onstany: white-path and the gray world assumption.The response of a sensor at position xs measuring the light reeted from aLambertian surfae at position xo is given byI(xs) = nl � no Z! R(�;xo)L(�)S(�)d�where I(xs) is a vetor of sensor responses, nl is the unit vetor pointing in thediretion of the light soure, no is the unit vetor orresponding to the surfaenormal, R(�;xo) spei�es the perentage of light with wavelength � reetedby the surfae at position xo, L(�) is the intensity of light hitting the surfaeand S(�) spei�es the sensor's response funtions [7℄. The integration is overall wavelengths to whih the sensors respond. Assuming ideal sensors for red,green and blue light (Si = Æ(�� �i)) with i 2 fr; g; bg and a light soure whihilluminates the surfae at a right angle the equation simpli�es toIi(xs) = R(�i;xo)L(�i)where Ii(xs) denotes the i-th omponent of the vetor I(xs).In this ase the light illuminating the sene simply sales the reetanes.If there exists at least one pixel for eah band whih reets all light for thispartiular band, one ould simply resale all olor bands to the range [0; 1℄.R(�i;xo) = Ii(xs)Lmax(�i)with Lmax(�i) = maxxfIi(x)g. This algorithm is alled the white-path retinexalgorithm [10℄.Another possibility would be to alulate spae average olor of the image anduse this information to estimate the intensities of the light illuminating the sene.If one assumes that the reetanes of the surfae are uniformly distributed overthe interval [0; 1℄, one gets1N NXx Ii(x) = 1N NXx R(�i;x)L(�i) = L(�i) 1N NXx R(�i;x) = L(�i)12This is the so alled gray world assumption. Thus, for a suÆiently ompleximage one an estimate the intensities of the light illuminating the sene astwie the spae average olor.L(�i) = 2N NXx Ii(x)Both ues, spae-average sene olor as well as the olor of the highest luminanepath are used by the human visual system to estimate the olor of the lightilluminating the sene [22℄.



Most work on the problem of olor onstany has foused on �nding an ana-lytial solution. Some researh has tried to learn the problem of olor onstanyusing a neural network, e.g. [11,24℄. We try to evolve the ability of olor onstanyfor an arti�ial retina. In partiular, we want to address the following questions.Is it possible to evolve a funtion for an arti�ial retina whih estimates theintensities of the light illuminating the sene using a training set whih onlyonsists of randomly generated olor Mondrians? The funtion is onstrained toobtain and exhange information only loally but not globally. This property isvery important in order for the retina to be salable to arbitrary sizes. Will theresults generalize to natural images? We now desribe the arhiteture of thearti�ial retina.2 An arti�ial retinaOur arti�ial retina onsists of a two-dimensional array of elements. Eah elementis able to exhange information with its neighbors to the left and right as wellas its neighbors above and below. The elements reeive an image as input andtheir task is to ompute the reetanes of the objets shown in the image.Eah element may exhange information only loally in order to alulate theintensities of the light illuminating the sene. Thus, the arti�ial retina is salableto any size.For our experiment we assume that the viewed image is generated by multi-plying the red, green and blue omponents of the pixel values with the intensitiesof the light illuminating the sene, that is,pv(x; y) = (pr;r(x; y) � lr; pr;g(x; y) � lg; pr;b(x; y) � lb)where pv(x; y) is the vetor with olor omponents of the pixel as it is pereivedby the arti�ial retina, pr(x; y) = (pr;r(x; y); pr;g(x; y); pr;b(x; y)) is the vetorwith reetanes, l = (lr; lg; lb) is the vetor whih desribes the intensities ofred, green and blue light illuminating the sene.The output po(x; y) of the element at position (x; y) is de�ned aspo;i(x; y) = (pv;i(x;y)le;i(x;y) if le;i(x; y) > 0:0011 otherwisewhere i 2 fr; g; bg. Thus eah element onsists of three sub-elements, one foreah olor band. The output of eah sub-element as well as the estimate ofthe intensities of the ambient light are restrited to the range [0; 1℄. The vetorpv(x; y) is available to the element at position (x; y). The intensities of red,green and blue light le(x; y) are alulated by a program whih is evolved usinggeneti programming [19,20℄. All elements are running the same program. Thealulated intensities are stored loally as well as distributed to the neighboringelements.Eah element has the struture shown in Figure 1. It has aess to the in-tensities estimated by the neighboring elements (left, right, up, and down) as
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upleft outFigure 1. A single element of the arti�ial retina is shown on the left. Current know-ledge of light illuminating the sene is stored inside the element (enter) and is alsodistributed to the left, right, up and down. This knowledge is ontinually updated.Eah element has aess to the red, green and blue intensities of the viewed image.Using its knowledge about the light illuminating the sene, eah element alulates thereetanes of its pixel (out).Eah element only exhanges information loally, thus theindividual elements may be ombined easily to form a large n�n array (shown on theright).well as to its own estimate of the light illuminating the sene. In addition to thisinformation, it has aess to the red, green and blue intensities of the viewedimage. The intensities of red, green and blue light are alulated by iterating thefollowing update equations:enteri(x; y; t) = le;i(x; y; t� 1)lefti(x; y; t) = le;i(x� 1; y; t� 1)righti(x; y; t) = le;i(x+ 1; y; t� 1)upi(x; y; t) = le;i(x; y + 1; t� 1)downi(x; y; t) = le;i(x; y � 1; t� 1)le;i(x; y; t) = program(enteri(x; y; t); lefti(x; y; t); righti(x; y; t);upi(x; y; t); downi(x; y; t);pv(x; y); pv;i(x; y))The intensities of the viewed image were used as an initial estimate of the lightilluminating the sene.le;i(x; y; 0) = pv;i(x; y)Our task is to �nd a program whih alulates the red, green and blue inten-sities of the light illuminating the sene. To searh the spae of possible programswe have used geneti programming [19,20℄. The funtion set onsists of the bi-nary arithmeti funtions addition (+), subtration (-), multipliation (*) andproteted division (/), the unary funtions multiply by 2 (mul2) and divide by 2



(div2). The set of terminal symbols onsists of the onstant one (1), red (red),green (green), and blue (blue) olor hannel, the sub-element's olor hannel(band), the element's urrent estimate of the illuminant (enter) as well as theestimates of the illuminant alulated by the elements to the left (left), right(right), above (up) and below (down).3 ExperimentsA population of 1000 individuals was evolved for 50 generations. We did tenruns with di�erent initial seeds for the random number generator. 1% of thenext generation was �lled with the best individual, 9% of the next generationwas �lled by applying the reprodution operator, 70% of the next generationwas �lled by applying the rossover operator and the remainder was �lled byapplying the mutation operator. We used tournament seletion with size 7 toselet individuals.For eah generation we randomly generated three Mondrians and evaluatedthe performane of the individuals on the di�erent Mondrians. Eah Mondrianwas illuminated with random intensities for the red, green and blue omponents.The size of the Mondrians was 64x64 pixels with irular boundary onditions.The Mondrians were reated by �lling the bakground with a random olor andthen plaing 64 �lled retangles with random olors on top of eah other. Thesize of the retangles was seleted randomly in the range [8,24℄. The position ofthe retangles was also seleted randomly.Eah evaluation onsisted of iterating the update equations 100 times. Foreah Mondrian m we alulated the di�erene dm between the output of thearti�ial retina and the known reetanes.dm = 13 �width � height widthXx=1 heightXy=1 p(po(x; y)� pr(x; y))2The largest di�erene over all Mondrians is used to alulate the �tness of theindividual. Fitness is de�ned as�tness = 11 +maxmfdmg :The worst performane of an individual was used to alulate its �tness in orderto reward generalists. Note that �tness is to be maximized and the error is tobe minimized. Harvey et al. [15℄ have hosen a similar approah to evolve robustontrol algorithms for a simulated robot.We also tried averaging the errors of several �tness ases instead of using themaximum error to determine �tness. However, if the number of �tness ases islarge, then on average the red, green and blue intensities are 0.5 and a programwhih simply outputs 2pv might seem like a good solution. Obviously, this isnot a solution we are looking for. Therefore we hose to use the maximum errorover several �tness ases to alulate the �tness of an individual. In this ase,



an individual has to produe very good results for all �tness ases in order tosurvive more than one generation. If an individual performs badly on even asingle �tness ase it is likely that this individual will be eliminated from thepopulation. The individual with the highest �tness value at the last generationis our result.
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the sene. The third image shows the image viewed by the amera. The fourthimage shows the estimated intensities and the �fth image shows the estimatedreetanes. The evolved individual uses mostly addition and division by 2 tosolve the task of olor onstany.The evolved individual uses the following ode(div2 (+ (+ (div2 (+ (div2 (+ (div2 down) (div2 (+ (div2 (+ (div2 (+ band(div2 down))) (div2 (+ band (div2 (+ band (div2 enter))))))) (div2 down)))))(* (div2 down) (/ right (div2 (+ down (+ (div2 down) (div2 (+ (div2 (+ band(div2 down))) (div2 (+ band (div2 (+ band (div2 enter)))))))))))))) (div2 (+(div2 (+ (div2 right) (div2 (+ band (div2 down))))) (* (div2 down) (/ right(div2 (+ down (+ (div2 down) (div2 (+ (div2 (+ band (div2 enter))) (div2 (+band band)))))))))))) down))to estimate the intensities of the light illuminating the sene and thereby estimatethe reetanes of the viewed objet (d1 = 0:0242, d2 = 0:0343, d3 = 0:0334,after 100 updates).

Figure 3. Results of one individual for three di�erent �tness ases. The �rst image ofeah row shows the original Mondrian. The seond image shows the light illuminatingthe sene. The third image shows the viewed image. The fourth image shows the es-timated light intensities. The �fth image shows the reetanes whih were extratedfrom the viewed image by the arti�ial retina.The same individual was also tested on natural images. The results of thesetests are shown in Figure 4. The images on the left show the results for an outdoorphotograph transformed in the same way as the arti�ially reated Mondrians.That is, we simply multiplied the pixel values with a randomly hosen olor.



The �rst image shows the original photograph. The seond image shows theolor illuminating the sene. The third image shows the olored photograph.The fourth image shows olor estimated by the arti�ial retina. The �fth imageshows the reetanes estimated by the arti�ial retina. Again the individualis able to restore the original olors (d=0.0246, after 300 updates, 190 � 128image). Thus, we have shown that although the individual was only trainedon olor Mondrians it was able to estimate the reetanes of a olor adjustedphotograph.The images on the right show the results for a test image reated by Funtet al. [10℄. The original image as well as the transformed image are part of alarger set for the problem of olor onstany. The original image was taken witha amera under a uniform light model, the third image shows the same objetviewed with olored light. We alulated the seond image by dividing the pixelvalues of the third image by the pixel values of the �rst image to extrat the olorilluminating the sene. Note that in this ase the assumption of a at image doesnot hold. The fourth image shows the olor estimated by the arti�ial retina andthe �fth image is the output of our arti�ial retina (d=0.098, after 300 updates,168� 160 image). In this ase the assumptions used during evolution, e.g. thatthe viewed objet is at, do not hold and the results are not as good as forthe photograph. However the results show, that even in this ase, the evolvedindividual is able to improve the appearane of the input image.In order to ompare the results we also applied the white-path retinex algo-rithm and the algorithm using the gray world assumption to both images. Theresults for the white-path retinex algorithm are shown in Figure 5 (d=0.032 forthe photograph and d=0.063 for the ball) and the results for the algorithm usingthe gray world assumption are shown in Figure 6 (d=0.038 for the photographand d=0.162 for the ball). The results for the photograph are omparable for allthree algorithms. The images produed by white-path retinex and gray worldare a bit brighter than the output image of the evolved algorithm. In terms ofthe alulated error, the white-path algorithm produed the best results for theball image. The results for the ball seem to suggest that the evolved algorithmapplies a mixed strategy.5 ConlusionWe have evolved an algorithm to solve the problem of olor onstany for anarti�ial retina using geneti programming. The retina was designed suh thatinformation is only exhanged loally, not globally. The arti�ial retina is thussalable to arbitrary sizes. The individuals were trained on arti�ially reatedMondrian images. The best program was tested on additional olor Mondriansas well as natural images. Although the individual was only trained on Mondrianimages it was also able to estimate the intensities of the light illuminating thesene for natural images and thereby estimate the reetanes of the viewedobjet.



Figure 4. Results of the evolved program for the arti�ial retina on two natural images.The images on the left show the results for an outdoor photograph. The images on theright show the results for an image whih was reated by Funt et al. [10℄ to test oloronstany algorithms.



Figure 5. Results for the white-path retinex algorithm. The �rst row of images showsthe estimated olor for the photograph and the image of the ball . The seond rowshows the output of the white-path retinex algorithm for both images.

Figure 6. Results for the gray-world assumption. The �rst row of images shows theestimated olor for the photograph and the image of the ball. The seond row showsthe output of the gray-world algorithm for both images.
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