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Abstract

Objects retain their color in spite of changes in the wavelength and energy composition
of the light they reflect. This phenomenon is called color constancy and plays an important
role in computer vision research. We have devised a parallelalgorithm for color constancy.
The algorithm runs on a two dimensional grid of processors each of which can exchange
information with its four neighboring processors. Each processor estimates the average light
illuminating the scene. This information is then used to estimate the reflectances of the
object. The algorithm was tested on several images of everyday objects.
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1 Introduction

The human visual system is able to correctly perceive the color of objects irrespective of the light
which illuminates the scene. That is, the leaves of a tree still look green to a human observer
even if the tree is illuminated with red light and the leaves actually reflect more red than green
light. The task of computing color constant descriptors foran image is known as the problem
of color constancy. One is able to somehow discount the illuminant and extract a measure of
the object’s reflectance properties [28]. The same ability would also be useful for a robot which
has to work under different lighting conditions. To date, the lighting still has to be carefully
controlled such that the algorithms continue to work. The problem of color constancy is also of
particular importance for the task of object recognition [12, 15].

Numerous solutions to the problem of color constancy have been proposed, i.e. Land’s
retinex theory [23], variants of the retinex theory [4, 5, 17, 22], gamut-constraint methods [2, 13,
14], the gray world assumption [6, 19], recovery of basis function coefficients [18, 21, 25], mech-
anisms of light adaptation coupled with eye movements [10],neural networks [8, 9, 16, 20, 26],
minimization of an energy function [27], comprehensive color normalization [12], committee-
based methods which combine the output of several differentcolor constancy algorithms [7] or
use of genetic programming [11]. We now summarize some background on color image forma-
tion and discuss the two most widely known algorithms for color constancy: white-patch and the
gray world assumption.

2 Color image formation

The response of a sensor at positionxs measuring the light reflected from a Lambertian surface
at positionxo is given by I(xs) = nl � no Z�R(�;xo)L(�)S(�)d�
whereI(xs) is a vector of sensor responses,nl is the unit vector pointing in the direction of
the light source,no is the unit vector corresponding to the surface normal,R(�;xo) specifies
the percentage of light with wavelength� reflected by the surface at positionxo, L(�) is the
intensity of light hitting the surface andS(�) specifies the sensor’s response functions [12]. The
integration is over all wavelengths to which the sensors respond. Assuming ideal sensors for red,
green and blue light(Si = Æ(�� �i)) with i 2 fr; g; bg and a light source which illuminates the
surface at a right angle the equation simplifies toIi(xs) = R(�i;xo)L(�i)
whereIi(xs) denotes thei-th component of the vectorI(xs).

In this case the light illuminating the scene simply scales the reflectances. If there exists at
least one pixel for each band which reflects all light for thisparticular band, one could simply
rescale all color bands to the range[0; 1℄.R(�i;xo) = Ii(xs)Lmax(�i)
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with Lmax(�i) = maxxfIi(x)g. This algorithm is called the white-patch retinex algorithm [15].
Another possibility would be to calculate space average color of the image and use this in-

formation to estimate the intensities of the light illuminating the scene. If one assumes that the
reflectances of the surface are uniformly distributed over the interval[0; 1℄, one gets1N NXx Ii(x) = 1N NXx R(�i;x)L(�i)= L(�i) 1N NXx R(�i;x)= L(�i)12
This is the so called gray world assumption. Thus, for a sufficiently complex image one can
estimate the intensities of the light illuminating the scene as twice the space average color.L(�i) = 2N NXx Ii(x)
With this information the reflectances can be calculated as follows.R(�i;xo) = Ii(xs)L(�i)
Both cues, space-average scene color as well as the color of the highest luminance patch are used
by the human visual system to estimate the color of the light illuminating the scene [24].

3 A parallel algorithm for color constancy

We have devised a parallel algorithm for the problem of colorconstancy. The algorithm assumes
a two-dimensional mesh of processing elements [1]. It is constrained to obtain and exchange
information only locally but not globally. This property isvery important in order for the algo-
rithm to be scalable to arbitrary sizes. Each processing element is able to exchange information
with its 4 neighboring elements as shown in Figure 1. The elements receive an image as input
and their task is to compute the reflectances of the objects shown in the image.

Each element consists of three sub-elements, one for each color band. We assume that we
have three different color bands red, green and blue (Figure2). Colors are adjusted for each band
independently. Each sub-element has access to 4 data paths (left, right, up and down) to and
from neighboring elements, one temporary storage (tmp), and to the intensity value of the current
pixel for its color band (pixel). The algorithm basically calculates the average scene color. The
element’s estimate of the average scene color is distributed to the neighboring elements. The data
received from the neighboring elements is used to update thecurrent estimate. Each sub-element
runs the following algorithm:1:) avg= (left + right+ up+ down)=4:0
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Figure 1: A single processing element is shown on the left. The current average of pixel values
is stored inside the element (tmp) and is also distributed tothe left, right, up and down. This
knowledge is continually updated. Each element has access to the red, green and blue intensities
of the viewed image (pixel). Using its knowledge about average pixel values, each element
calculates the reflectances of its pixel (out). Each elementonly exchanges information locally,
thus the individual elements may be combined easily to form alargen� n array (shown on the
right). 2:) tmp= pixel � p+ avg� (1� p)3:) tmp! left; right; up; down4:) out= pixel=(2 � tmp)
where out is the output of the sub-element. The output of eachsub-element as well as the estimate
of the intensities of the ambient light are restricted to therange[0; 1℄. The percentagep was set to
0.0005 for the experiments which are described below. Step 1of the algorithm averages the data
received from the neighboring elements. Step 2 adds a small percentagep from the current pixel
intensity. Step 3 distributes the new average pixel value toneighboring elements. And finally
step 4 calculates the output intensity. Steps 1 through 4 areiterated indefinitely. The algorithm
has a very simple structure and as such can be realized easilyin hardware. All that is needed is
to give one element access to the temporary storage of neighboring elements.
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Figure 2: Our algorithm assumes that we have three independent color bands red, green and blue.

Figure 3: A bouquet of flowers shown under five different illuminants: Sylvania 75W halogen
bulb, Sylvania Cool White fluorescent tube. Philips Ultralume fluorescent, Macbeth 5000K fluo-
rescent, Macbeth 5000K fluorescent with a Roscolux 3202 fullblue filter. The input images were
taken from a library which was created by Funt et al. [15, 3] totest color constancy algorithms.
The bottom row shows the output of the algorithm.

4 Results

We tested our algorithm on a set of images1 created by Barnard et al. [3] to test color constancy
algorithms. From the available data sets we have used the onewhich was also used in the paper

1http://www.cs.sfu.ca/�colour/data/index.html
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Figure 4: The images show the output image after 1000, 2000, 3000, 4000, and 5000 iterations
of the update rule. One can clearly see how the algorithm continually refines its estimate of the
average pixel values and improves its output image.

by Funt et al. [15]2. This data set has the advantage that all objects are uprightand not rotated.
The newer data sets are especially suited for object recognition. Figure 3 shows an image of a
flower bouquet taken from the data set viewed under differentilluminants. The top row shows
the images which were used as input for our algorithm. The images are very dark because they
were purposely under-exposed such that the number of clipped pixels was small (usually zero).
The bottom row of images shows the output images of our algorithm.

Figure 4 shows how the algorithm iteratively refines its estimate of the average pixel values.
Results for additional objects from the same data set are shown in Figure 5. Note that the al-
gorithm is based on the gray world assumption and works only if this assumption is valid. The
assumption is valid as long as the scene is sufficiently complex which is the case for most of the
images tested. All images shown in this article can be viewedin color on the authors web page3.

5 Conclusion

We have developed a parallel algorithm to solve the problem of color constancy. The algorithm
was designed such that information is only exchanged locally, not globally. The algorithm is thus
scalable to arbitrary sizes. The algorithm was tested on several images taken from a publicly
available database to test color constancy algorithms.
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