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Abstract

Objects retain their color in spite of changes in the wavelength and energy composition of
the light they reflect. This phenomenon is called color constancy and plays an important
role in computer vision research. We have devised a parallel algorithm for color constancy.
The algorithm runs on a two dimensional grid of processors each of which can exchange
information with its four neighboring processors. Each processor calculates local average
color. This information is then used to estimate the reflectances of the object. The algorithm
was tested on several images of everyday objects. The algorithm also works for scenes
where the illuminant changes smoothly over the image.

Key words: Color Constancy, Artificial Retina, Gray-World Assumption

Email address: ebner@informatik.uni-wuerzburg.de (Marc Ebner).
URL: http://www2.informatik.uni-wuerzburg.de/staff/ebner/

welcome.html (Marc Ebner).

2



1 Introduction

The human visual system is able to correctly perceive the color of objects irrespec-
tive of the light which illuminates the scene. That is, the leaves of a tree still look
green to a human observer even if the tree is illuminated with red light and the
leaves actually reflect more red than green light. One is somehow able to discount
the illuminant and extract a measure of the object’s reflectance properties [38]. The
same ability would also be useful for a robot which has to work under different
lighting conditions. Suppose a robot’s task is to distinguish a red from a green ap-
ple. Then is should be possible for the robot to determine the color of the apple
irrespective of the light which illuminates the apple. The task of computing color
constant descriptors for an image is known as the problem of color constancy. If
we are able to correctly determine the reflectances of an object viewed with a dig-
ital camera it makes the task of object recognition much easier. Thus, the problem
of color constancy is of particular importance for the task of object recognition
[18,21]. Determining the reflectances of an object may also be used in the field of
consumer photography. The colors appearing in a photograph should be the same
as the colors which were experienced by the person who took the photograph. An
introduction to image processing techniques may be found in [29,26,30].

Numerous solutions to the problem of color constancy have been proposed, i.e.
Land’s retinex theory [31,32], variants of the retinex theory [6,7,23,29], gamut-
constraint methods [3,19,20], perspective color constancy [15], color by correlation
[4,17], the gray world assumption [8,25], recovery of basis function coefficients
[24,28,34], mechanisms of light adaptation coupled with eye movements [12], neu-
ral networks [10,11,22,27,35,36], minimization of an energy function [37], com-
prehensive color normalization [18], committee-based methods which combine the
output of several different color constancy algorithms [9] or use of genetic pro-
gramming [13]. We now summarize some background on color image formation
and discuss the two most widely known algorithms for color constancy: white-
patch and the gray world assumption.

2 Color Image Formation

The response of a sensor at position xs measuring the light reflected from a Lam-
bertian surface at position xo is given by

I(xs) = nl · no

∫

λ
R(λ,xo)L(λ)S(λ)dλ

where I(xs) is a vector of sensor responses, nl is the unit vector pointing in the
direction of the light source, no is the unit vector corresponding to the surface
normal, R(λ,xo) specifies the percentage of light with wavelength λ reflected by
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the surface at position xo, L(λ) is the intensity of light hitting the surface and
S(λ) specifies the sensor’s response functions [18]. The integration is done over all
wavelengths to which the sensors respond. Assuming ideal sensors for red, green
and blue light (Si(λ) = δ(λ − λi)) with i ∈ {r, g, b} and a light source which
illuminates the surface at a right angle the equation simplifies to

Ii(xs) = R(λi,xo)L(λi)

where Ii(xs) denotes the i-th component of the vector I(xs). Thus, if we assume
that the camera’s sensors are sufficiently close to ideal sensors, color constancymay
be achieved by independently scaling the three color bands. Little may be gained
by using a more general transform [2,16].

In this case the light illuminating the scene simply scales the reflectances. If there
exists at least one pixel for each band which reflects all light for this particular
band, one could simply rescale all color bands to the range [0, 1].

R(λi,xo) =
Ii(xs)

Lmax(λi)

with Lmax(λi) = maxx{Ii(x)}. This algorithm is called the white-patch retinex
algorithm [21].

Another possibility would be to calculate space average color of the image and use
this information to estimate the intensities of the light illuminating the scene. If
one assumes that the reflectances of the surface are uniformly distributed over the
interval [0, 1], one gets [13]:

1

N

N
∑

x

Ii(x) =
1

N

N
∑

x

R(λi,x)L(λi)

=L(λi)
1

N

N
∑

x

R(λi,x)

=L(λi)
1

2

This is the so called gray world assumption. Thus, for a sufficiently complex image
one can estimate the intensities of the light illuminating the scene as twice the space
average color.

L(λi) =
2

N

N
∑

x

Ii(x)

With this information the reflectances can be calculated as follows.

R(λi,xo) =
Ii(xs)

L(λi)
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Figure 1. A single processing element is shown on the left. The current average of pixel
values is stored inside the element (tmp) and is also distributed to the left, right, up and
down. This knowledge is continually updated. Each element has access to the red, green and
blue channels of the viewed image (pixel). Using its knowledge about average pixel values,
each element calculates the reflectances of its pixel (out). Each element only exchanges
information locally, thus the individual elements may be combined easily to form a large
n × n array (shown on the right).

Both cues, space-average scene color as well as the color of the highest luminance
patch might be used by the human visual system to estimate the color of the light
illuminating the scene [33].

3 A Parallel Algorithm for Color Constancy

We have devised a parallel algorithm for the problem of color constancy [14]. The
algorithm assumes a two-dimensional mesh of processing elements [1]. It is con-
strained to obtain and exchange information only locally but not globally. This
property is very important in order for the algorithm to be scalable to arbitrary
sizes. Each processing element is able to exchange information with its 4 neigh-
boring elements as shown in Figure 1. The elements receive an image as input and
their task is to compute the reflectances of the objects shown in the image. We have
one element per pixel.

Each element consists of three sub-elements, one for each color band. We assume
that we have three different color bands red, green and blue (Figure 2). Colors are
adjusted for each band independently. Each sub-element has access to 4 data paths
(left, right, up and down) to and from neighboring elements, one temporary storage
(tmp), and to the intensity value of the current pixel for its color band (pixel). The
algorithm basically calculates the local average scene color. The element’s estimate
of the average scene color is distributed to the neighboring elements. The data re-
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Figure 2. Our algorithm assumes that we have three independent color bands red, green and
blue.

ceived from the neighboring elements is used to update the current estimate. Each
sub-element runs the following algorithm:

1.) avg = (left+ right+ up+ down)/4.0
2.) tmp = pixel · p + avg · (1 − p)
3.) tmp→ left, right, up, down
4.) out = pixel/(2 · tmp)

where out is the output of the sub-element. The output of each sub-element as well
as the estimate of the intensities of the ambient light are restricted to the range [0, 1].
The percentage p was set to 0.0005 for the experiments which are described below.
Step 1 of the algorithm averages the data received from the neighboring elements.
Step 2 adds a small percentage p from the current pixel intensity. Step 3 distributes
the new average pixel value to neighboring elements. And finally step 4 calculates
the output intensity. Steps 1 through 4 are iterated indefinitely.

For a static image the estimate will converge to local space average color. The
current intensity is faded into the average with a small percentage p. The existing
average is reduced by the percentage (1 − p). The initialization can be arbitrary.
If the estimate of an element is lower than the estimate of its neighbors, it will be
pulled up by the data received from the neighboring elements. If the estimate of an
element is higher than the estimate of its neighbors it will be pulled down the by
data received from the neighboring elements. As the estimate is passed from one
element to the next it will decrease by a factor p. Thus this factor determines the
extent of the area for which local color constancy is calculated. Nearby elements
have a larger impact on the estimate than elements which are further away.

The radius of influence can be calculated as follows. As the estimate is passed from
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one element to the next it will be reduced by a factor of (1 − p). After n steps it
will have been reduced by (1−p)n. We define the radius of influence as the number
of steps after which the estimate will have been reduced to 1

2 . Then the radius of
influce is defined by r = −1

log2(1−p) . Thus, the color stored at a distance r from
the current element will only influence the current element by p

2 . In practice one
chooses p small enough such that space average at any point of the image receives
information from all other points of the image. The actual value is arbitrary as long
as p is small enough. For simulation purposes, one wants to use large values of p
which reduces the time needed for the simulation. For our experiments we have
used p = 0.0005. If we assume a maximum image size of 256 pixels, this tells us
that the influence of a pixel at the border will be limited to (1− p)256 = 88% at the
other side of the image.

The algorithm has a very simple structure and as such can be realized easily in
hardware. All that is needed is to give one element access to the temporary stor-
age of neighboring elements. Each sub-element only needs to store a single value,
its estimate of the illuminant. Thus, the main advantage of this algorithm is that
it uses only very little memory, and requires only a simple interconnection net-
work. Each element has to be connected to its four immediate neighbors. Given the
simple structure, the algorithm can be hardwired easily. Other algorithms are com-
putationally much more expensive and often require global information. Of course
it takes some time until the information has propagated through the network. But
the time is only linear in the width (or height) of the image and not the size (the
number of pixels) of the image. If we enlarge the image, the only parameter that
needs adjustment is the parameter p, which determines the area for which local
color constancy will be computed. We assume that propagation along the network
is performed sufficiently fast in comparison to the time needed to grab an image.

Horn also proposed a parallel algorithm based on Land’s Retinex theory [29]. He
took the logarithm of the reflected intensity thereby splitting the product of re-
flectance and illuminant into a sum. Using an edge detection and thresholding op-
eration he discarded slow changes of the illuminant. The original signal is restored
using a resistive grid algorithm. A similar algorithm was proposed by Moore et al.
[35] who computed a blurred image from the input image using a resistive grid.
The blurred version was subtracted from the input image and then the output was
rescaled. Moore et al. were able to implement this version of the retinex algorithm
in VLSI.
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Figure 3. A bouquet of flowers shown under five different illuminants: Sylvania 75W halo-
gen bulb, Sylvania Cool White fluorescent tube, Philips Ultralume fluorescent, Macbeth
5000K fluorescent, Macbeth 5000K fluorescent with a Roscolux 3202 full blue filter. The
input images were taken from a library which was created by Funt et al. [21,5] to test color
constancy algorithms. The bottom row shows the output of the algorithm.

4 Results

We tested our algorithm on a set of images 1 created by Barnard et al. [5] to test
color constancy algorithms. From the available data sets we have used the one
which was also used in the paper by Funt et al. [21] 2 . This data set has the advan-
tage that all objects are upright and not rotated. The newer data sets are especially
suited for object recognition. Figure 3 shows an image of a flower bouquet taken
from the data set viewed under different illuminants. The top row shows the images
which were used as input for our algorithm. The images are very dark, because they
are linear and they were purposely under-exposed such that the number of clipped
pixels was small. The bottom row of images shows the output images of our algo-
rithm. The algorithm automatically performs a brightness correction for dark input
images. For dark input images the average intensity is below 0.5 for the three bands
red, green and blue. After gray world color constancy has been applied this average
is restored back to 0.5. Since we only calculate local space average color, brightness
is also increased for very dark regions of the image.

Funt et al. [21] provide detailed response curves of the camera’s sensors which
were used to take the image. They also measured the spectral power distribution
of the illuminants used. This data can be used to calculate the chromaticity of the
illuminant. We compare the results of our algorithm to this data for the flower bou-
quet which was illuminated with a Macbeth 5000K fluorescent with a Roscolux
3202 full blue filter. Our algorithm estimates the illuminant using local space aver-
age color for every pixel. Even if a single illuminant is used, the estimate deviates
slightly from pixel to pixel. Thus, we compare the estimated chromaticity of our
algorithm to the correct chromaticity along a horizontal line of the image. This
comparison is shown in Figure 4.

1 http://www.cs.sfu.ca/∼colour/data/index.html
2 http://www.cs.sfu.ca/∼colour/image db/index.html

8



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300

C
hr

om
at

ic
ity

x

r (actual)
g (actual)

r (estimated)
g (estimated)

Figure 4. The image on the left shows the illuminant estimated by our algorithm. From this
data we extracted the chromaticities along a vertical line (marked in white). On the right
the chromaticities are compared to the data provided by Funt et al. [21]. It is clear that the
black background pixels lower the estimate.

Figure 5. The images show the output image after 1000, 2000, 3000, 4000, and 5000 it-
erations of the update rule. One can clearly see how the algorithm continually refines its
estimate of the average pixel values and improves its output image. After approximately
5000 iterations, the output changes very little.
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Figure 6. Number of time steps until convergence for different values of p. Time to conver-
gence was measured for the 318 × 234 image of the flower bouquet.

Figure 5 shows how the algorithm iteratively refines its estimate of the average
pixel values. During the first iteration, each element uses the color of its pixel as
an estimate of the illuminant. This estimate is then passed to neighboring elements
where it will be updated. During the second iteration each element will have four
estimates which are received from the neighboring elements. The local color is
slowly faded into this value. As the estimate is again passed to its neighbors it
will have decreased by a factor of (1 − p). From the snapshots we can see how
the estimate is propagated through our network. With each iteration each element
receives estimates from further away. This process continues until convergence.
The number of steps until convergence for different values of p is shown in Figure
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Figure 7. Results for 10 additional objects taken from a library created by Funt et al. [21,5]
which is used to test color constancy algorithms. The illuminant is a Macbeth 5000K flu-
orescent with a Roscolux 3202 full blue filter. The top row shows the input images. The
resulting images are shown in the bottom row.

6. Of course, if p is set to a large value, the radius of influence will be small and the
algorithm will converge earlier. However, if the radius of influence is small then the
assumption that the world on average is gray does not hold. In practice we have to
set p such that this assumption is correct.

Results for additional objects from the same data set are shown in Figure 7. Note
that the algorithm is based on the gray world assumption and works only if this
assumption is valid. The assumption is valid as long as the scene is sufficiently
complex which is the case for most of the images tested. If an object contains only a
limited number of colors then this algorithm will not work. In this case, the average
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color in the image will not be gray. In this respect, our algorithm is similar to the
performance of a human observer. A human observer is also unable to determine
the correct color of a patch if the patch is viewed in isolation [38].

Our goal is to correctly restore the original colors of an image. The algorithm per-
forms very well for most of the images from this data set. All images shown in this
article can be viewed in color on the author’s web page 3 .

5 Color Constancy in the Presence of Multiple Illuminants

We also tested our algorithm on images with two or more illuminants. Most re-
search on color constancy assumes only a single illuminant. Algorithms which
can also handle varying illumination include the retinex algorithm and variants
[31,32,6,23,29,35]. Color constancy for scenes with varying illumination was also
addressed by Barnard et al. [3]. Compared to existing algorithms our algorithm is
much simpler to implement.

We have used the set of images created by Funt et al. [21,5] to artificially create
images with varying illumination. Two images were taken for each object. One
image was taken when the object was illuminated with a Sylvania 75W halogen
bulb the other image was taken when the object was illuminated with a Macbeth
5000K fluorescent with a Roscolux 3202 full blue filter. Both images were merged
to create a single image where the object is illuminated by both illuminants. A
sigmoidal function was used to merge both images.

α(x) =
1

1 + e−x/σ

The shape of this function is shown for σ = 0.1 and σ = 0.3 in Figure 8. The
parameter σ controlls the steepness of the curve at the origin. The resulting image
is calculated as

IC(x, y) = I1(x, y)α(x− x0) + I2(x, y)(1 − α(x − x0))

where IC is the combined image, I1 is the first image (illuminant 1), I2 is the sec-
ond image (illuminant 2). This creates an image where pixels left of x0 are mainly
illuminated by illuminant 2 and pixels right of x0 are mainly illuminated by illumi-
nant 1. By artificially merging two images we have complete control over how the
illuminant varies over the image. We can create sharp changes of the illuminant as
well as smooth changes.

3 http://www2.informatik.uni-wuerzburg.de/staff/ebner/research/colorConstancy/
colorConstancy.html
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Figure 8. Sigmoidal function for σ = 0.1 and σ = 0.3.

Of course it is possible to also vary the shape of the change. We used an additional
function f which models the shape of the transition from one illuminant to the
next. This allows us to experiment with horizontal, vertical or diagonal transitions
or even spotlight effects. The merged image is calculated as

IC(x, y) = I1(x, y)α(f(x, y)) + I2(x, y)(1 − α(f(x, y))).

If we choose f(x, y) = x − x0 we get a vertical transition of the illuminant where
x0 defines the position of the transition. If we chose

f(x, y) =
√

(x − x1)2 + (y − y1)2 − r

we get a spotlight effect. The object seems to be illuminated by a spotlight. The
parameters (x1, y1) determine the position of the spotlight. The parameter r defines
the size of the spot.

For our experiments we have set x0 = 0.4·width, x1 = 0.4·width, y1 = 0.4·height,
and r = 0.3 · min{width, height} where width and height are the width and height
of the input image. The results are shown in Figure 9 for σ = 10. A circular bound-
ary function was used for objects 1 through 5, and a vertical boundary function was
used for objects 6 through 11. For each object the input image, the estimated illu-
minant and the output of our algorithm are shown. The algorithm is able to restore
the original colors of the image even though a non-uniform illuminant is used. A
comparison between the chromaticities of the actual illuminant and estimated illu-
minant for the flower bouquet is shown in Figure 10.

Suppose, for the moment, that we have a vertical transition of the illuminant and an
infinite image. Let the transition be linear. In our experiments the transition is ap-
proximately linear for large values of σ. Consider a single processing element. This
processing element calculates local average color from four input values. One value
from above, one from below, one from the left and one from the right. If we have
a linear vertical transition of the illuminant, then the average color calculated by
processing elements above and below will be equivalent to the average color which
was calculated by the current processing element. The average color calculated by
the processing element on the left will be a little smaller (or larger, depending on
the order of the illuminants) than the average color calculated by the processing el-
ement on the right (Figure 11). If we have a linear change of the illuminant then the
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Figure 9. Results for 11 objects taken from a library created by Funt et al. [21,5] which
is used to test color constancy algorithms. The input image was created by merging two
images. One was taken with a Sylvania 75W halogen bulb, the other was taken with a
Macbeth 5000K fluorescent with a Roscolux 3202 full blue filter. The upper three rows
show the results for the simulated spotlight. The lower three rows show the results for the
vertical transition function. The first and fourth rows show the input images. The second
and fifth rows show space average color and the third and sixth rows show the output of our
algorithm.
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Figure 10. The image on the left shows the illuminant estimated by our algorithm. From
this data we extracted the chromaticities along a vertical line (marked in white). On the
right, the chromaticities are compared to the actual chromaticities. The data provided by
Funt et al. [21] was merged using the same sigmoidal function which was used to produce
the input image.
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Figure 11. Consider an element which is located at a position where the illuminant varies
horizontally. If we have a linear change of the illuminant, then the values received from
above and below will be correct. The value received from the left will be a little higher than
its own estimate, while the value received from the right will be a little lower. However,
both differences cancel each other out. This will produce vertical bands in the estimate of
the illuminant.

differences will cancel each other out. Thus, after convergence local space average
color will consist of vertical bands.

So far, we have only considered artificially merged images. Let us now look at
the results for a real image with multiple illuminants. Figure 12 shows an office
with a large table. Some utensils were placed on the table. For the first image, the
room was darkened and the left half was illuminated with a red light bulb. The right
half was illuminated with a green light bulb. For the second image, the darkened
room was illuminated with a blue light bulb on the left side and a red light bulb
on the right side of the room. For the third image, blue office curtains were closed
and the desk lamp was turned on. The image was taken on a sunny day. The sun
falling through the curtains produced the blue background illumination. The desk
lamp produced a spotlight on the table. All images were taken using a conventional
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Figure 12. An office scene illuminated by several illuminants. The first image shows an
office where the left part is illuminated with a red light bulb and the right part is illuminated
with a green light bulb. The second image shows the same office but this time the left is
illuminated with a blue and the right half is illuminated with a red light bulb. The third
image shows the office again, but this time the sun was shining through blue curtains (blue
background illumination) and the desk lamp was turned on (spotlight on table). Below each
image the estimate of local space average color is shown. The output image of our algorithm
is shown in the last row.

camera. After development the images were digitized using a scanner. Images were
gamma corrected with a factor of 2.2 before our algorithm was applied. A gamma
correction of 1/2.2 was applied to the output images. The algorithm works best
on the first two images. Results are not so good for the third image. This image
highlights the limitations of the algorithm. The algorithm works well for smooth
transitions of the illuminant but fails for sharp transitions.

Why is this the case? For the gray world assumption to hold, we must use small
values for p. This means that local average color will be calculated over a large
area. However, if we calculate local average color over a large area, then the as-
sumption, that the transition of the illuminant is linear, no longer holds. We assume
that the transition is relatively sharp then processing elements located at positions,
where the transition is either linear or a single illuminant illuminates the scene, will
calculate correct local average color. However, as we move closer to the transition,
there will come a point where a processing element will also receive information
from locations where the illuminant changes sharply.

At present we are working on the problem of color constancy for sharp transitions
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of the illuminant. Here the main problem is how to distinguish a sharp transition of
the illuminant from a change of the object’s color.

6 Conclusion

We have developed a parallel algorithm to solve the problem of color constancy.
The algorithm was designed such that information is only exchanged locally, not
globally. The algorithm is thus scalable to arbitrary sizes. The algorithm was tested
on several images taken from a publicly available database to test color constancy
algorithms.

The algorithm calculates local space average color and therefore works similar to
the gray world assumption. Due to its parallel mode of operation it is not equivalent
to the gray world assumption. The gray world assumption works only for a single
illuminant whereas our algorithmworks also in the presence of multiple illuminants
provided that the transition from one illuminant to the next is approximately linear.

Results are shown for a set of images where the amount of illumination comming
from the illuminants was carefully controlled. Input images were created by merg-
ing two images which where identical except for the illuminant. The algorithm was
also tested on a real world example which also contains sharp transitions of the
illuminant. This example shows the limitations of the current algorithm. At present
we are working on an algorithm for color constancy which also works for sharp
transitions of the illuminant.
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