
Combining White-Path Retinex and the GrayWorld Assumption to Ahieve Color Constanyfor Multiple IlluminantsMar EbnerUniversit�at W�urzburg, Lehrstuhl f�ur Informatik IIAm Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.dehttp://www2.informatik.uni-wuerzburg.de/staff/ebner/welome.htmlAbstrat. The human visual system is able to orretly determine theolor of objets irrespetive of the atual light they reet. This abilityto ompute olor onstant desriptors is an important problem for om-puter vision researh. We have developed a parallel algorithm for oloronstany. The algorithm is based on two fundamental theories of oloronstany, the gray world assumption and the white-path retinex algo-rithm. The algorithm's performane is demonstrated on several imageswhere objets are illuminated by multiple illuminants.1 MotivationThe human visual system is able to orretly determine the olor of objets irre-spetive of the atual light reeted by the objets. For instane, if a white wallis illuminated with red light, it will reet more red light in omparison to theamount of light reeted in the green and blue spetrum. If the same wall is illu-minated with green light, then the wall will reet more light towards the greenspetrum. If the sene viewed by a human observer is suÆiently omplex, thewall will nevertheless appear white to a human observer. The human visual sys-tem is somehow able to disount the illuminant and to estimate the reetanesof the objets in view [24℄. This ability is alled olor onstany, as the pereivedolor remains onstant irrespetive of the illuminant. Two di�erent mehanismsmay be used by the human visual system to ahieve olor onstany [20℄. Wehave devised a parallel algorithm whih is based on both of these mehanism.Previously, we have only used the gray world assumption [8℄.Numerous solutions to the problem of olor onstany have been proposed.Land, a pioneer in olor onstany researh has proposed the retinex theory [19℄.Others have added to this researh and proposed variants of the retinex theory [2,3, 16, 18℄. Other algorithms for olor onstany inlude gamut-onstraint meth-ods [1, 13℄, perspetive olor onstany [10℄, olor by orrelation [11℄, the grayworld assumption [4, 17℄, reovery of basis funtion oeÆients [21℄, mehanismsof light adaptation oupled with eye movements [7℄, neural networks [6, 15, 22℄,minimization of an energy funtion [23℄, omprehensive olor normalization [12℄,



ommittee-based methods whih ombine the output of several di�erent oloronstany algorithms [5℄ or use of geneti programming [9℄. Most solutions toolor onstany only assume a single illuminant. Our algorithm an also opewith multiple illuminants. It runs on a parallel grid of simple proessing elementswhih only perform loal omputations. No global omputations are made. Thus,it is salable and lends itself to a VLSI implementation.2 Color Image Formation
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Fig. 1. For a Lambertian surfae the amount of reeted light does not depend onviewing angle (left). It only depends on the angle between the surfae normal and thediretion of the light soure. Part of the inoming light is absorbed by the surfae, theremainder is reeted equally in all diretions. We assume that the sensor's responsefuntion is desribed by a delta funtion. Thus only three di�erent wavelength (red,green and blue) need to be onsidered (right).Assume that we have an objet with a Lambertian surfae. Let a ray of lightwith intensity L(�) and wavelength � be reeted by this objet. Let xo be theposition where the ray hits the objet. Part of the light is absorbed by the objet,the remainder is reeted equally in all diretion. For a Lambertian surfae thelight reahing the eye does not depend on viewing angle. It only depends on theangle between the surfae normal and the diretion of the light soure (Figure1). The response of a sensor at position xs whih measures the reeted ray isgiven by I(xs) = nl � no Z� R(�;xo)L(�)S(�)d� (1)where I(xs) is a vetor of sensor responses, nl is the unit vetor pointing inthe diretion of the light soure, no is the unit vetor orresponding to thesurfae normal, R(�;xo) spei�es the perentage of light reeted by the surfae,



and S(�) spei�es the sensor's response funtions [12℄. The sensor's response isalulated by integrating over all wavelengths to whih the sensor responds.If we assume ideal sensors for red, green and blue light, the sensor's re-sponse funtion is given by a delta funtion (Si(�) = Æ(� � �i)) with i 2fred; green; blueg. If we also assume that the light soure illuminates the sur-fae at a right angle, the above equation simpli�es toIi(xs) = R(�i;xo)L(�i) (2)where Ii(xs) denotes the i-th omponent of the vetor I(xs). Thus, the lightwhih illuminates the sene is saled by the reetanes.The light illuminating the sene an be reovered easily if the image ontainsat least one pixel for eah band whih reets all light for this partiular band.We only need to loop over all pixel values, and reord the maximum intensityvalues for all three bands. Using these three values we resale all olor bands tothe range [0; 1℄. R(�i;xo) = Ii(xs)Lmax(�i) (3)with Lmax(�i) = maxxfIi(x)g. This algorithm is alled the white-path retinexalgorithm [14℄.A seond algorithm for olor onstany is based on the assumption thatthe average olor is gray. If we assume that the reetanes of the surfae areuniformly distributed over the interval [0; 1℄, the average value will be 0.5 for allbands [9℄. 1N NXx Ii(x) = 1N NXx R(�i;x)L(�i)= L(�i) 1N NXx R(�i;x)= L(�i)12 (4)Thus, spae average olor an be used to estimate the intensities of the lightilluminating the sene. The light illuminating the sene is simply twie the spaeaverage olor. L(�i) = 2N NXx Ii(x) (5)The reetanes an then be alulated as follows.R(�i;xo) = Ii(xs)L(�i) (6)Both ues, spae-average sene olor as well as the olor of the highest luminanepath may be used by the human visual system to estimate the olor of the lightilluminating the sene [20℄.



3 Calulating Loal Spae Average Color
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PEPE PE PE PE PE PE PEFig. 2. Eah proessing element is onneted to four neighbors (left). We have oneproessing element for eah pixel of the input image (right).Our algorithm runs on a parallel grid of proessing elements. Eah proessingelement is onneted to four other proessing elements (Figure 2). We have oneelement per pixel. A single element is onneted to the elements on the left, onthe right as well as to the elements above and below the urrent element. For eaholor band red, green, and blue, we alulate loal spae average olor by averag-ing data from the four neighboring elements and slowly fading the intensity of theurrent band into the result. Let (x; y) = [red(x; y); green(x; y); blue(x; y)℄ bethe olor of the pixel at position (x; y) and avg(x; y) = [avgred(x; y); avggreen(x; y);avgblue(x; y)℄ be loal spae average olor estimated by element (x; y). Let p1 bea small perentage. Loal spae average olor is omputed by iterating the fol-lowing equation inde�nitely for all three bands i 2 fred; green; blueg.ai(x; y) = 14(avgi(x� 1; y) + avgi(x; y � 1) + avgi(x+ 1; y) + avgi(x; y + 1))avgi(x; y) = (1� p1)ai(x; y) + p1 � i(x; y) (7)In ase of a stati image, we an stop the alulations after the di�erene betweenthe old and the new estimate has been redued to a small value. A samplealulation for a sene illuminated with two di�erent illuminants is shown inFigure 3.The alulations are done independently for all three olor bands red, green,and blue. The �rst term averages the data from neighboring elements and mul-tiplies the result with (1�p1). The seond term is the loal olor multiplied by asmall perentage p1. This operation slowly fades the loal olor into the urrentestimate of the loal spae average olor. The fator p1 determines the extentover whih loal spae average olor will be omputed. As loal average olor is



Fig. 3. Spae average olor after 50, 200, 1000 and 5000 iterations of the algorithm.handed from one element to the next, it will be multiplied by (1� p1). Thus, ifp1 is large, the inuene of loal spae average olor will deay very fast fromone element to the next. On the other hand, if p1 is small, then it will deayvery slowly.4 Parallel Dynami Range EstimationWe now have loal average olor and the input olor available at every proessingelement. In order to restore the original olors of the image we look at thedeviation from loal average olor. Let di(x; y) be the deviation between loalaverage olor and the urrent olor at position (x; y). We take the maximumaross neighboring elements:d0i(x; y) = maxfjavgi� ij; di(x� 1; y); di(x; y� 1); di(x+1; y); di(x; y+1)g (8)Finally, we redue the maximum deviation by a small perentage p2.di = (1� p2)d0i (9)The fator p2 determines how fast the deviation deays to zero as it is passedfrom element to element. This deviation is used to sale the di�erene betweenthe urrent olor and loal spae average olor.oi = (i � avgi)di (10)Finally a sigmoidal ativation funtion is used to transform the omputed valueto the range [0,1℄. ri = 11 + e� oi� (11)If oi is lose to zero, i.e. loal average olor and the olor of the urrent pixel isvery similar, then the output olor ri will be gray. We also experimented with alinear transformation. In this ase, output olor is omputed as follows:ri = 12(1 + oi) (12)



Values smaller than 0 are set to zero and values larger than 1 are set to 1. Thedi�erene between the sigmoidal and linear transformation are shown in Figure4. Use of the sigmoidal transfer funtion produed better results.

Fig. 4. A linear output funtion was used for the left image. A sigmoidal output fun-tion was used for the right image. The olors of the left image look less saturated thanthe olors of the right image.5 ResultsThe above algorithm was tested on several real world images. In eah ase mul-tiple illuminants were used to illuminate the objets in the sene. The imageswere taken with an analog SLR amera, developed on �lm and then digitized.The digitized images were linearized with a gamma orretion of 2.2. The algo-rithm was run on the linearized input images. A gamma orretion of 12:2 wasapplied to the output images. The following parameters were used: p1 = 0:0005,p2 = 0:005, � = 0:2. The size of the input images was 256� 175 pixels. Resultsfor four di�erent input images are shown in Figure 5. The �rst row shows theinput images. The seond row shows loal average olor, the third row shows theabsolute deviation from loal average olor and the last row shows the outputimages of our algorithm. The �rst three images show objets illuminated withtwo olored light bulbs. For the fourth image, the amera's built in ash wasused to illuminate the sene. As an be seen from the output images, the algo-rithm is able to adjust the olors of the input images. For a sene illuminatedwith white light the output is almost equivalent to the input image.6 ConlusionWe have developed a parallel algorithm for olor onstany. The algorithm al-ulates loal spae average olor and maximum deviation of the urrent olorfrom loal average olor. Both ues are used to estimate the reetanes of the
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