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Abstract. The human visual system is able to correctly determine the
color of objects irrespective of the actual light they reflect. This ability
to compute color constant descriptors is an important problem for com-
puter vision research. We have developed a parallel algorithm for color
constancy. The algorithm is based on two fundamental theories of color
constancy, the gray world assumption and the white-patch retinex algo-
rithm. The algorithm’s performance is demonstrated on several images
where objects are illuminated by multiple illuminants.

1 DMotivation

The human visual system is able to correctly determine the color of objects irre-
spective of the actual light reflected by the objects. For instance, if a white wall
is illuminated with red light, it will reflect more red light in comparison to the
amount, of light reflected in the green and blue spectrum. If the same wall is illu-
minated with green light, then the wall will reflect more light towards the green
spectrum. If the scene viewed by a human observer is sufficiently complex, the
wall will nevertheless appear white to a human observer. The human visual sys-
tem is somehow able to discount the illuminant and to estimate the reflectances
of the objects in view [24]. This ability is called color constancy, as the perceived
color remains constant irrespective of the illuminant. Two different mechanisms
may be used by the human visual system to achieve color constancy [20]. We
have devised a parallel algorithm which is based on both of these mechanism.
Previously, we have only used the gray world assumption [8].

Numerous solutions to the problem of color constancy have been proposed.
Land, a pioneer in color constancy research has proposed the retinex theory [19].
Others have added to this research and proposed variants of the retinex theory [2,
3,16, 18]. Other algorithms for color constancy include gamut-constraint meth-
ods [1,13], perspective color constancy [10], color by correlation [11], the gray
world assumption [4, 17], recovery of basis function coefficients [21], mechanisms
of light adaptation coupled with eye movements [7], neural networks [6, 15, 22],
minimization of an energy function [23], comprehensive color normalization [12],



committee-based methods which combine the output of several different color
constancy algorithms [5] or use of genetic programming [9]. Most solutions to
color constancy only assume a single illuminant. Our algorithm can also cope
with multiple illuminants. It runs on a parallel grid of simple processing elements
which only perform local computations. No global computations are made. Thus,
it is scalable and lends itself to a VLSI implementation.

2 Color Image Formation

Fig. 1. For a Lambertian surface the amount of reflected light does not depend on
viewing angle (left). It only depends on the angle between the surface normal and the
direction of the light source. Part of the incoming light is absorbed by the surface, the
remainder is reflected equally in all directions. We assume that the sensor’s response
function is described by a delta function. Thus only three different wavelength (red,
green and blue) need to be considered (right).

Assume that we have an object with a Lambertian surface. Let a ray of light
with intensity L(A) and wavelength A be reflected by this object. Let x, be the
position where the ray hits the object. Part of the light is absorbed by the object,
the remainder is reflected equally in all direction. For a Lambertian surface the
light reaching the eye does not depend on viewing angle. It only depends on the
angle between the surface normal and the direction of the light source (Figure
1). The response of a sensor at position x, which measures the reflected ray is
given by

I(x,) = o -1, / RO\ x0) L(V)S(A)dA (1)
A
where I(x) is a vector of sensor responses, n; is the unit vector pointing in

the direction of the light source, n, is the unit vector corresponding to the
surface normal, R(\, x,) specifies the percentage of light reflected by the surface,



and S(A) specifies the sensor’s response functions [12]. The sensor’s response is
calculated by integrating over all wavelengths to which the sensor responds.

If we assume ideal sensors for red, green and blue light, the sensor’s re-
sponse function is given by a delta function (S;(A) = 6(A — ;) with i €
{red, green, blue}. If we also assume that the light source illuminates the sur-
face at a right angle, the above equation simplifies to

Ii(x5) = R(Xi, xo) L(Ai) (2)

where I;(xs) denotes the i-th component of the vector I(xs). Thus, the light
which illuminates the scene is scaled by the reflectances.

The light illuminating the scene can be recovered easily if the image contains
at least one pixel for each band which reflects all light for this particular band.
We only need to loop over all pixel values, and record the maximum intensity
values for all three bands. Using these three values we rescale all color bands to
the range [0, 1].

i) 3)
Lmax(Xi)

with Lmax(A;) = maxx{I;(x)}. This algorithm is called the white-patch retinex
algorithm [14].

A second algorithm for color constancy is based on the assumption that
the average color is gray. If we assume that the reflectances of the surface are

uniformly distributed over the interval [0, 1], the average value will be 0.5 for all
bands [9].
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Thus, space average color can be used to estimate the intensities of the light
illuminating the scene. The light illuminating the scene is simply twice the space
average color.

5 N
L(\;) = N > Iix) (5)

The reflectances can then be calculated as follows.

[i(Xs)

R()‘iaxo) = L(Az) (6)

Both cues, space-average scene color as well as the color of the highest luminance
patch may be used by the human visual system to estimate the color of the light
illuminating the scene [20].



3 Calculating Local Space Average Color
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Fig. 2. Each processing element is connected to four neighbors (left). We have one
processing element for each pixel of the input image (right).

Our algorithm runs on a parallel grid of processing elements. Each processing
element is connected to four other processing elements (Figure 2). We have one
element per pixel. A single element is connected to the elements on the left, on
the right as well as to the elements above and below the current element. For each
color band red, green, and blue, we calculate local space average color by averag-
ing data from the four neighboring elements and slowly fading the intensity of the
current band into the result. Let c¢(z,y) = [crea(Z,¥), Careen(Z,Y), Chiue(,y)] be
the color of the pixel at position (z,y) and avg(z,y) = [aVgeq(Z,Y), aVEgreen (T, ¥),
avgy e (%, y)] be local space average color estimated by element (z,y). Let p; be
a small percentage. Local space average color is computed by iterating the fol-
lowing equation indefinitely for all three bands i € {red, green, blue}.

i(avgz( - Ly) +avg(z,y — 1) + avg;(z + 1,y) + avg;(z,y + 1))
( ) i(xay)+p1'ci(m7y) (7)

In case of a static image, we can stop the calculations after the difference between
the old and the new estimate has been reduced to a small value. A sample
calculation for a scene illuminated with two different illuminants is shown in
Figure 3.

The calculations are done independently for all three color bands red, green,
and blue. The first term averages the data from neighboring elements and mul-
tiplies the result with (1 —p;). The second term is the local color multiplied by a
small percentage p;. This operation slowly fades the local color into the current
estimate of the local space average color. The factor p; determines the extent
over which local space average color will be computed. As local average color is

ai(z,y) =
avg;(z,y) =



Fig. 3. Space average color after 50, 200, 1000 and 5000 iterations of the algorithm.

handed from one element to the next, it will be multiplied by (1 — p;). Thus, if
p1 is large, the influence of local space average color will decay very fast from
one element to the next. On the other hand, if p; is small, then it will decay
very slowly.

4 Parallel Dynamic Range Estimation

We now have local average color and the input color available at every processing
element. In order to restore the original colors of the image we look at the
deviation from local average color. Let d;(x,y) be the deviation between local
average color and the current color at position (z,y). We take the maximum
across neighboring elements:

d;(xa y) = ma‘x{|a‘Vgi - ci|a dl(x - ]-a y)a dl(xa Y- l)a dl(x + ]-a y)a dl(xa y+ 1)} (8)
Finally, we reduce the maximum deviation by a small percentage p-.
d; = (1 = p2)d; (9)

The factor p, determines how fast the deviation decays to zero as it is passed
from element to element. This deviation is used to scale the difference between
the current color and local space average color.

(ci —avg;)
d;
Finally a sigmoidal activation function is used to transform the computed value

to the range [0,1].

(10)
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If o; is close to zero, i.e. local average color and the color of the current pixel is

very similar, then the output color r; will be gray. We also experimented with a
linear transformation. In this case, output color is computed as follows:

(11)
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Values smaller than 0 are set to zero and values larger than 1 are set to 1. The
difference between the sigmoidal and linear transformation are shown in Figure
4. Use of the sigmoidal transfer function produced better results.

Fig. 4. A linear output function was used for the left image. A sigmoidal output func-
tion was used for the right image. The colors of the left image look less saturated than
the colors of the right image.

5 Results

The above algorithm was tested on several real world images. In each case mul-
tiple illuminants were used to illuminate the objects in the scene. The images
were taken with an analog SLR camera, developed on film and then digitized.
The digitized images were linearized with a gamma correction of 2.2. The algo-
rithm was run on the linearized input images. A gamma correction of ﬁ was
applied to the output images. The following parameters were used: p; = 0.0005,
p2 = 0.005, 0 = 0.2. The size of the input images was 256 x 175 pixels. Results
for four different input images are shown in Figure 5. The first row shows the
input images. The second row shows local average color, the third row shows the
absolute deviation from local average color and the last row shows the output
images of our algorithm. The first three images show objects illuminated with
two colored light bulbs. For the fourth image, the camera’s built in flash was
used to illuminate the scene. As can be seen from the output images, the algo-
rithm is able to adjust the colors of the input images. For a scene illuminated
with white light the output is almost equivalent to the input image.

6 Conclusion

We have developed a parallel algorithm for color constancy. The algorithm cal-
culates local space average color and maximum deviation of the current color
from local average color. Both cues are used to estimate the reflectances of the



Fig. 5. Results for 4 different input images. Two colored illuminants were used for the
first three images. A flash was used to illuminate the objects shown in the last image.

objects in view. In this respect, the algorithm is a combination of both the gray
world assumption and the white patch retinex algorithm. The algorithm’s ability
to estimate the reflectances of the objects in view was demonstrated on several
real world images taken with multiple illuminants.
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