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Abstract. The human visual system is able to accurately determine the
color of objects irrespective of the spectral power distribution used to il-
luminate the scene. This ability to compute color constant descriptors is
called color constancy. Many different algorithms have been proposed to
solve the problem of color constancy. Usually, some assumptions have to
be made in order to solve this problem. Algorithms based on the dichro-
matic reflection model assume that the light reflected from an object
results from a combined matte and specular reflection. This assumption
is used to estimate the color of the illuminant. Once the color of the il-
luminant is known, one can compute a color corrected image as it would
appear under a canonical, i.e. white illuminant. A number of different
methods can be used to estimate the illuminant from the dichromatic re-
flection model. We evaluate several different methods on a standard set
of images. Our results indicate that the median operator is particularly
useful in estimating the color of the illuminant. We also found that it is
not advantageous to assume that the illuminant can be approximated by
the curve of the black-body radiator.

1 Motivation

A white wall illuminated by yellowish light reflects more light in the red and
green part than in the blue part of the spectrum. If we use a camera to take
an image of the wall, the sensor of the camera will measure the light reflected
from the wall. Thus, a photograph of the wall will have a yellow cast. A human
observer, however, is able to somehow discount the illuminant. He will perceive
the wall as being white irrespective of the type of illuminant used. This ability to
compute color constant descriptors is known as color constancy [1]. Developing
algorithms for color constancy is obviously very important for consumer photo-
graphy. Another area where color constancy algorithms may be used is machine
based object recognition. In this paper, we will be looking at several different
methods on how to estimate the color of the illuminant from a color image. Once
the illuminant is known, it can be used to compute a color corrected image under
a canonical, i.e. white illuminant. The different methods will be evaluated on a
standard set of test images.
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2 The Dichromatic Reflection Model

The dichromatic reflection model assumes that object color is a result of a matte
reflection in combination with a specular reflective component [2,3,4]. The overall
color of the object is determined by the matte reflection whereas specular high-
lights are caused by the specular reflection. These highlights occur whenever the
light is reflected such that it directly enters the camera. Since the light from the
light source is reflected directly into the camera it can be used to estimate the
color of the illuminant.

Let S(λ) be the vector with the response functions of the sensor. For an
RGB-sensor, we have S = [Sr(λ), Sg(λ), Sb(λ)] where the functions Si(λ) with
i ∈ {r, g, b} specify the sensor’s response characteristics to light in the red, green,
and blue part of the spectrum. Let E(λ) be the light falling into the sensor, then
the response of the sensor is given by

I =

∫ +∞

−∞

E(λ)S(λ)dλ.

Under the dichromatic reflection model, the response of the sensor is given by

I =

∫ +∞

−∞

(sMRM (λ)E(λ) + sSRS(λ)E(λ)) S(λ)dλ

where RM (λ) is the object reflectance with regard to the matte reflection, RS(λ)
is the object reflectance with regard to the specular reflection, sM and sS are two
scaling factors which depend on the object geometry and E(λ) is the irradiance
falling onto the object [4].

Let us now assume that the response functions are very narrow, i.e. they can
be modeled by delta functions Si(λ) = δ(λ−λi). Such ideal sensors only respond
to a single wavelength λi with i ∈ {r, g, b}. This gives us

Ii = sMRM,iEi + sSRS,iEi.

Assuming that the specular reflection behaves like a perfect mirror, i.e. RS,i = 1,
we obtain

Ii = sMRM,iEi + sSEi.

Let CM = [RM,rEr, RM,gEg, RM,bEb] be the measured matte color of the object
and let CS = [Er, Eg, Eb] be the color of the illuminant. We now see that the
color measured by the sensor is restricted to the linear combination of the matte
color of the object point CM as seen under illuminant E and the color of the
illuminant CS . The two vectors CM and CS define a plane inside the RGB color
space [3].

By computing chromaticities, the three-dimensional data points are projected
onto the plane r + g + b = 1. This gives us a line in chromaticity space. The two
points which define the line are the chromaticities of the measured object color
[rO, gO]T and the chromaticities of the color of the illuminant [rE , gE]T

(

r

g

)

= s

(

rO

gO

)

+ (1 − s)
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rE
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)
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for some scaling factor s. The data points which belong to a uniformly colored
surface will all be distributed along this, so called, dichromatic line. We now
assume that the illuminant is uniform over the entire scene. In this case, all
dichromatic lines will have one point in common, the color of the illuminant.

3 Natural Illuminants

If we know the correspondence between data points and surfaces, we can compute
the dichromatic line for each surface. The dichromatic line can be found by
doing a linear regression on the data. Alternatively we can also compute the
covariance matrix and then locate the eigenvector which corresponds to the
largest eigenvalue to determine the orientation of the dichromatic line. According
to Finlayson and Schaefer [4] the algorithms based on the dichromatic reflection
model perform well only under idealized conditions. The estimated illuminant
turns out not to be very accurate. If small amounts of noise are present in
the data then the computed intersection may be very different from the actual
intersection. Finlayson and Schaefer note that the method works well for highly
saturated surfaces under laboratory conditions but does not work well for real
images. In their work, they assumed the images to be pre-segmented.

They suggest to compute the intersection of the dichromatic lines with the
curve of the black-body radiator in order to make the method more robust. Many
natural light sources can be approximated by a black-body radiator. The power
spectrum E(λ, T ) of a black-body radiator depends on the temperature T . It
can be described by the following equation [5,6]

E(λ, T ) =
2hc2

λ5

1

(e
hc

kBT λ − 1)

where T is the temperature of the black-body measured in Kelvin, h = 6.626176·
10−34Js is Planck’s constant, kB = 1.3806 · 10−23 J

K
is Boltzmann’s constant,

and c = 2.9979 · 108 m
s

is the speed of light. Many natural light sources such as
the flame of a candle, light from a light bulb or sunlight can be approximated
by the power spectrum of the black-body radiator. The chromaticities of day-
light also follows the curve of the black-body radiator closely [7]. Plotting the
chromaticities of the black-body radiator in CIE XYZ color space, one obtains
a curve which can be approximated by a quadratic equation.

Using this approximation, we can compute the intersection between the
dichromatic line and the curve of the black-body radiator. As a result, one either
obtains none, one or two points of intersection. If the dichromatic line does not
intersect the curve of the black-body radiator, then one can locate the closest
point between the line and the curve of the black-body radiator. If two intersec-
tions are found, one can use some heuristics to select one of the two as the correct
intersection. Using the constraint that the illuminant can be approximated by
the curve of the black-body radiator, in theory it is possible, to determine the
color of the illuminant from a single surface. Algorithms based on the gray world
assumption [8,9,10] in contrast, require that the scene be sufficiently diverse.
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4 Estimating the Color of the Illuminant by Segmentation

and Filtering

Risson [11] extended the algorithm of Finlayson and Schaefer by also addressing
the segmentation problem. Risson proposed to determine the illuminant by first
segmenting the image and then filtering out regions which are not in line with the
dichromatic reflection model. As a first step, noise is removed by pre-filtering the
image using a Gaussian or median filter. Then the image is segmented. Regions
which do not agree with the dichromatic reflection model, such as achromatic
regions or regions which belong to the sky, are removed. In order to compute the
direction of the dichromatic line reliably, the region has to have a certain size.
Risson [11] suggested to remove all regions with a saturation less than 12%. For
each remaining region, the dichromatic line is computed.

The dichromatic line can be computed by performing a linear regression on
the x- and y-coordinates in CIE XYZ chromaticity space. We can also compute
the covariance matrix for the pixel colors which belong to a single region. Using
singular value decomposition, the largest eigenvalue tells us the direction of the
dichromatic line. Let ei be the normalized eigenvector which corresponds to the
largest eigenvalue obtained for region j. The dichromatic line Lj of region j is
then given by

Lj = {aj + sej|with s ∈ R}

where aj is the average chromaticity of the region. In theory, the illuminant is
located at the point where all dichromatic lines Lj intersect. In practice, however,
the dichromatic lines do not intersect in a single point because of noise in the
data. It may also be that some of the computed lines are not caused by pure
matte reflections in combination with specular reflections.

It may be possible to develop a classifier to rule out lines which are not in
agreement with the dichromatic reflection model. A simpler method is to use
the large number of dichromatic lines obtained from the image and to gather
statistical evidence for the actual point of intersection. The exact method on how
to determine the location of the point of intersection is not specified by Risson
[11]. In finding the point of intersection, the curve of the black-body radiator
may or may not be used to constrain the set of possible illuminants.

A simple method with no constraints on the color of the illuminant would
be to compute the intersection for all possible combinations between two dichro-
matic lines. This gives us a set of intersections [12]. Let n be the number of
dichromatic lines of the image. This gives us 1

2
n(n − 1) points of intersection

pi = [xi, yi] where xi and yi are the chromaticities in CIE XYZ color space.

{pi|with i ∈ [1, ...,
1

2
n(n − 1)}

From this set we can estimate the actual point of intersection by computing the
average of the points of intersection. In this case, the position of the illuminant
p is given by

p =
2

n(n − 1)

∑

i

pi.
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We could also compute the median independently for the x- and y-coordinates.
Use of the median operator has the advantage that outliers are removed.

p = [Median{xi}, Median{yi}]

where Median denotes the computation of the median.
Assuming that the illuminant can be approximated by the curve of the black-

body radiator, we can use this curve to constrain the set of possible illuminants.
Thus, for each dichromatic line we would first compute the intersection between
each dichromatic line and the curve of the black-body radiator and then fur-
ther process this data. Since the curve of the black-body radiator is a quadratic
function of the single coordinate x we obtain either none, one or two points
of intersection on the dichromatic line. We could take the average or the me-
dian value of all computed x coordinates and then compute the corresponding
y coordinate. We could also compute a histogram for all intersection points and
then select the bucket with the maximum count. Another possibility would be
to determine the corresponding temperature of the black-body radiator for each
intersection. Again we could then compute either the average or the median
temperature of all intersections. Given the temperature we could compute the
corresponding chromaticities in CIE XYZ color space.

Once the illuminant is known, it can be factored out of the image. As a
result, we obtain a color image as it would appear under a canonical, e.g. white
illuminant. Figure 1 shows the steps of the algorithm for a sample image.

5 Experimental Results

In order to evaluate which method of determining the most likely position of
the illuminant works best, we have used a standard dataset for color constancy
research, the datasets of Barnard et al. [13]1. Five different sets were selected
from the database. Set 1 contains only objects with minimal specularities, i.e.
Lambertian reflectors. Set 2 contains objects with metallic specularities. Set 3
contains objects with non-negligible dielectric specularities. Set 4 contains ob-
jects with at least one fluorescent surface. Each object is imaged under up to 11
different illuminants. The objects remained stationary whenever the illuminant
was changed. Set 5 can be used to evaluate the performance on object recogni-
tion tasks. Objects from set 5 were placed in a random position whenever the
illuminant was changed. Sets 1, 2, 3, 4, and 5 contain 22, 14, 9, 6, and 20 different
scenes, respectively.

The evaluation of the different methods described in the previous section
was done as follows. The color constancy algorithm based on the dichromatic
reflection model was applied to each image from the dataset. Then we randomly
selected two images from the dataset for each object. This gave us two image
sets. The first set of images contains the test images. The second set of images
contains the model images. The histogram based object recognition, originally

1 http://www.cs.sfu.ca/∼colour/data/index.html
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Fig. 1. Steps of Risson’s [11] algorithm. The input image is segmented into regions of
uniform color. Regions which are not in line with the dichromatic reflection model are
removed. Here, small regions and regions with low saturation are removed (marked in
red). For each remaining region, the dichromatic line is computed. Only a subset of
all lines are shown for clarity. The estimated illuminant is marked by a vertical and
horizontal line. The last image shows the output image.

introduced by Swain and Ballard [14], was used to find a match for each test
image. Since our goal is to evaluate the different estimation methods we have used
only color histograms and did not include any other information, i.e. gradients.
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The χ2 divergence measure [15,16] was used to find the best match. Let HT be
the color histogram of the test image and and let HM be the color histogram
of the model image. Let H(c) be the probability that the color c occurs in the
image then the χ2 divergence measure is computed as

χ2(HT , HM ) =
∑

c

(HT (c) − HM (c))2

HT (c) + HM (c)
.

This process was repeated 100 times for each data set.

Table 1. Results for image sets 1 through 5. Histograms were computed in RGB
chromaticity space. For each image set random performance is also shown.

Histogram-based Object Recognition, chromaticity space
Estimation Method 1 2 3 4 5

Random Recognition Rate 0.045 0.071 0.111 0.167 0.050
Avg. Intersection 0.170 0.282 0.333 0.337 0.154
Median Intersection 0.5350.5350.535 0.5890.5890.589 0.8390.8390.839 0.7250.7250.725 0.3280.3280.328
Black-Body Average X 0.373 0.504 0.576 0.565 0.235
Black-Body Median X 0.359 0.461 0.580 0.580 0.243
Black-Body Histogram 0.339 0.429 0.608 0.533 0.251
Black-Body Avg. Temperature 0.325 0.434 0.584 0.540 0.228
Black-Body Med. Temperature 0.337 0.428 0.567 0.533 0.212

Table 1 shows the results for each data set and method of estimating the
illuminant. The performance based on a random selection of matches is shown at
the top of the table. Selecting the median intersection method clearly produced
the best results. Since the dichromatic reflection model was developed for objects
with specular surfaces it is of no surprise that best results were achieved for set
3. Recognition results for set 5 which presents a more realistic scenario for object
recognition are much lower than the results for sets 1 through 4. Restricting the
illuminant to be on the curve of the black-body radiator did not result in better
performance compared to the median intersection. If we assume the illuminant
to be caused by natural illumination such as sunlight or tungsten light then we
automatically rule out a greenish or purple illuminant. The above results show
that it makes sense not to make any assumptions on the color of the illuminant.

6 Conclusion

Algorithms based on the dichromatic reflection model are especially suited to
achieve color constancy provided that specular objects are in the image. In the-
ory, the color of the illuminant is located at the intersection of the dichromatic
lines. In practice, however, the dichromatic lines do not intersect in a single
point. Thus, one has to decide upon a method to estimate the color of the illu-
minant from the available data. We evaluated several different methods on how
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to estimate the color of the illuminant using histogram based object recognition.
We found that selecting the median of the intersection of the dichromatic lines in
CIE chromaticity space gave best results. Also, it is not advantageous to make
the assumption that the color of the illuminant can be approximated by the
curve of the black-body radiator.
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