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Abstract

The ability to compute color constant descriptors of objects in view irrespective
of the light illuminating the scene is called color constancy. We have used genetic
programming to evolve an algorithm for color constancy. The algorithm runs on a
grid of processing elements. Each processing element is connected to neighboring
processing elements. Information exchange can therefore only occur locally. Ran-
domly generated color Mondrians were used as test cases. The evolved individual
was tested on synthetic as well as real input images. Encouraged by these results
we developed a parallel algorithm for color constancy. This algorithm is based on
the computation of local space average color. Local space average color is used to
estimate the illuminant locally for each image pixel. Given an estimate of the illu-
minant, we can compute the reflectances of the corresponding object points. The
algorithm can be easily mapped to a neural architecture and could be implemented
directly in CCD or CMOS chips used in todays cameras.

Color Constancy, Genetic Programming, Local Space Average Color

1 Motivation

The human visual system is able to determine the color of objects irrespective of the
color of the illuminant [39, 40, 57]. If a room with a white wall is illuminated with a
yellow light, i.e. caused by a yellow lamp shade, the wall nevertheless appears white to
a human observer. However, if the observer takes a photograph of the room then the
wall will appear yellow in the photograph. The human visual system is somehow able to
compute color constant descriptors which do not vary with the color of the illuminant.
This remarkable ability is called color constancy. Our goal is to develop algorithms with
similar capabilities. There is already a vast body of research in the area of color constancy.
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Land and McCann have developed the retinex theory [42, 40, 41]. Others have proposed
variants of the retinex theory [6, 27, 33, 34, 45, 49]. Algorithms for color constancy include
gamut-constraint methods [2, 23, 24], perspective color constancy [16], color by correlation
[3, 20], the gray world assumption [7, 29], recovery of basis function coefficients [28, 32, 43],
mechanisms of light adaptation coupled with eye movements [11], neural networks [9, 10,
26, 31, 47, 56], comprehensive color normalization [22], committee-based methods which
combine the output of several different color constancy algorithms [8], algorithms based on
the dichromatic color model [21, 50] or computation of intrinsic images [19, 55]. Learning
color constancy was addressed by Hurlbert and Poggio [35, 36].

Accurate color reproduction is highly important for many computer vision tasks. Often
algorithms are developed which work in one particular setting but no longer work when
the lighting conditions change. Many algorithms in the area of object recognition assume
that object colors obtained from a digital camera remain constant. If object recognition
is done on a service robot which has to work under different lighting conditions then this
assumption is not valid. What one really should be doing is to compute the reflectance
characteristics, i.e. the material properties of the object, and perform object recognition
based on these reflectance characteristics. Accurate color reproduction is of course also
very important for consumer photography. What we want is that the colors of a photo
are exactly the same as they appeared to the photographer who took the image. Color
constancy algorithms may of course also be applied to images taken with an analog camera.
Such images can be scanned using a film scanner and then processed with a computer.

Another goal would be to find out what algorithm is actually used by the human visual
system. We have turned to artificial evolution for an answer to this question. Knowing
the algorithm used by the human visual system would be a great advance for consumer
photography. Since the algorithm used by the visual system is a product of evolution it is
of considerably interest to see what type of algorithm artificial evolution would find.

2 Theory of Color Image Formation

We now briefly review some background material on color image formation. For this, we
consider a planar patch located at some distance in front of a camera or measuring device.
We assume that the measuring device has a number of different sensors which respond to
light in different parts of the spectrum. The human eye contains three types of cones which
respond mainly to the light in the red, green and blue part of the spectrum. Similarly,
a digital camera contains light sensors with red, green, and blue filters fitted in front of
the sensors. Let Si(λ) be the response characteristic of the sensor i with i ∈ {r, g, b} for
wavelength λ. Let R(λ,xobj) be the amount of light reflected for each point xobj on the
planar patch. Let L(λ,xobj) be light falling on the planar patch at position xobj. A single
sensor of the measuring device located at position xI sees a corresponding object patch
at position xobj. Light from the light source will fall on the patch. Some light will be
absorbed, the remainder will be reflected. In case of a matte surface, the light will be
reflected equally in all directions. Some light will enter the lens of the camera where it
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is measured by the sensor located at position xI . In order to calculate the output of the
sensor one has to integrate over the entire spectrum. Let I(xI) be the output of the sensor
at position xI . Then the output of the sensor is given by

I(xI) =

∫

R(λ,xobj)L(λ,xobj)S(λ)dλ.

This is the standard equation used by many algorithm for color constancy [7, 16, 18, 19,
21, 22, 23, 24, 47].

If we assume that the sensors response characteristics can be described by delta func-
tions, i.e. they are very narrow shaped,

Si(λ) = δ(λ − λi)

with i ∈ {r, g, b} then the above equation simplifies to

Ii(xI) =

∫

R(λ,xobj)L(λ,xobj)δ(λ − λi)dλ

= R(λi,xobj)L(λi,xobj).

If the response characteristics are not narrow shaped, they may be sharpened [17, 18]. In
other words, the intensity measured by the sensor is proportional to the reflectance times
the amount of light falling onto the patch for the given wavelength λi.

In the following we will only be working in image space. Therefore, we use the coordi-
nates (x, y) to reference an image pixel. Images are usually viewed on a CRT monitor or
flat panel display. The light given off by the phosphor of a cathode ray tube does not vary
linearly with the applied voltage. The relation can be described by

I ≈ A(k1U + k2)
γ

where I is the luminance of the pixel on the computer screen, U is the intensity of the color
channel, A is the maximum intensity and k1, k2 and γ are constants [44, 53]. For k1 = 1
and k2 = 0 the relationship is simply

I ≈ A · Uγ .

Gamma values γ for computer monitors are usually in the range 2.3 to 2.6. In order
to counter this effect, a gamma correction is applied such that a linear relationship is
maintained when images are viewed on a monitor. Images are often stored with a gamma
correction already applied and not in a linear format. The sRGB standard assumes a
gamma factor of 2.2 [53]. If we are processing such images we have to transform them to
a linear space first before any algorithms on color constancy can be applied. It will now
be assumed that the pixel values c(x, y) are related linearly to the intensities measured by
the sensor, i.e.

c(x, y) = I(x, y).
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Figure 1: Rectangular grid of processing elements. A single element is shown on the left.
A matrix of 16 × 16 elements is shown on the right. We use one processing element per
image pixel.

Given the pixel colors ci(x, y) our goal is to compute the corresponding reflectances
Ri(x, y) for every image pixel. If the illuminant Li(x, y) where known for every image
pixel, the reflectance could be computed as

Ri(x, y) =
ci(x, y)

Li(x, y)
.

where ci(x, y) is the intensity of channel i at position (x, y) in the image. The problem is
that we only have three measurements but six unknowns. Only the color of the image pixel
ci is known. The reflectance Ri as well as the Li with i ∈ {r, g, b} is not known. Obviously,
this problem cannot be solved without making some assumptions. One such assumption is
that, on average the world is gray [7, 29]. Algorithms based on the gray world assumption
assume that reflectances are uniformly distributed and that a large number of different
colors occur in the viewed scene. We will discuss the gray world assumption in detail in
Section 4. Another popular assumption is that somewhere in the image there is a white
patch which reflects all of the incident light. This algorithm is referred to as white patch
retinex [8, 25, 26, 42]. Note that we do not try to find the entire illuminant spectrum. We
will only estimate the illuminant at three wavelengths using image statistics. As such, it
is only an approximation to the actual illuminant.
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3 Evolving an Algorithm for Color Constancy

Our goal was to find a biologically plausible algorithm, i.e. an algorithm which could
be mapped to a neural architecture, for color constancy. Note that most existing color
constancy algorithms, apart from the approaches using neural nets [8, 9, 10, 26, 48, 56],
are quite complicated. Since we are turning to artificial evolution for an answer to the
problem color constancy, we started out with a very simple architecture, a rectangular grid
of processing elements [12]. The processing elements themselves are quite simple and can
carry out only simple local computations. Each processing element has only access to the
data stored at neighboring processing elements. Such an architecture is shown on the right
of Figure 1. A single processing element is shown on the left.

It is assumed that we have one processing element per image pixel and that we have
three layers of processing elements carrying out the same computations on the three image
bands red, green, and blue. Each processing element will compute an estimate of the
local illumination given the color of its input pixel and the data available from other
neighboring processing elements. That is, we only allow a local exchange of information.
Each processing element then uses the estimate of the illuminant and the color of the
input pixel to compute the reflectance as described above. Since only local connections are
allowed, the algorithm could be implemented directly on the imaging chip.

Let Li(x, y) be the current estimate of the illuminant computed by the processing
elements. Initially, we set this estimate to the color of the current pixel, i.e. Li(x, y) =
ci(x, y). The task is to find a function which updates this estimate of the illuminant for
each processing element. In other words, we are looking for a program or function which
computes

Li(x, y) = program(Li(x, y), Li(x − 1, y), Li(x + 1, y), Li(x, y − 1), Li(x − 1, y + 1), c).

Genetic programming [1, 37, 38] was used to search for such a program. Table 1 shows
the set of elementary functions and Table 2 shows the set of terminal symbols which were
used. At this point, we do not know what type of algorithm evolution will chose. It is
possible to solve the problem using either the gray world assumption or the assumption
that there is a white patch in the image.

Individuals were evaluated by presenting them randomly generated color Mondrians.
Each generation we created three Mondrians by drawing randomly colored boxes on top
of each other. A size of 64 × 64 was used for the Mondrians. The width and height of the
boxes were drawn randomly from the range [8, 24]. Positions of the boxes were chosen at
random. This is our reflectance image, our ground truth. We then illuminated each image
by randomly choosing a color for the illuminant and multiplying the reflectance component
stored in the Mondrian image with the illuminant color.

Each individual was tested on three fitness cases. To evaluate the fitness, we iterated
the update equation 100 times. We then calculated the difference between the output of
the evolved individual and the known reflectance image. Let co(x, y) be the output of
the evolved individual and let cr(x, y) be the corresponding pixel value of the reflectance
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Table 1: Elementary functions used for our experiments.

Elementary Function Arity Symbol

addition 2 +

subtraction 2 -

multiplication 2 *

protected division 2 /

multiply by 2 1 mul2

divide by 2 1 div2

Table 2: Set of terminal symbols.

Terminal Symbol Symbol

constant one 1

red input band cr(x, y) red

green input band cg(x, y) green

blue input band cb(x, y) blue

current band ci(x, y) band

estimate from current element Li(x, y) center

estimate from left element Li(x − 1, y) left

estimate from right element Li(x + 1, y) right

estimate from element above Li(x, y − 1) up

estimate from element below Li(x, y + 1) down

image, then the difference di for test case k is calculated as

dk =
1

3N

∑

x,y

√

(co(x, y) − cr(x, y))2

where N is the number of image pixels. Fitness of an individual is defined based on the
maximum difference over all test cases

fitness =
1

1 + maxk{dk}

with k ∈ {1, 2, 3}. An individual has to perform well on all three test cases to receive a
high fitness. A similar approach was used by Harvey et al. [30] to evolve robust control
algorithms for a simulated robot. The task of an individual is to accurately estimate the
reflectances of the input image. The actual reflectances are only used in order to evaluate
the individual. Since we randomly create the test cases, an individual cannot “learn” the
reflectances from the training set. A successful individual must find a general algorithm
which will estimate the reflectances using only the pixels of the input image.
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Figure 2: Fitness statistics for ten runs with different seeds for the number generator (from
[12]).

A population of 1000 individuals was used. Ten experiments with different initial seeds
for the random number generator were run for 50 generations each. A single run took
approximately 10 days to complete as the evaluation was done on sequential hardware.
The best individual of each generation was allowed to reproduce 10 times, filling one
percent of the next generation. The remaining 99% of the population was filled using
reproduction (9%), mutation (20%) and crossover (70%). Individuals were chosen using
tournament selection of size 7.

Figure 2 shows the maximum fitness over 50 generations for all 10 experiments. At the
end of 50 generations, 6 of the runs were stuck in a local optimum. The best individual
of all 10 runs achieved a fitness of 0.9751. The performance of this individual is shown in
Figure 3 for three color Mondrians. The images can be viewed in color on the author’s
web page1 and are also included in color in the electronic version of the journal. We also
tested the individual on real, i.e. not simulated input images. Figure 4 shows an image
taken from a database created by Barnard et al. [4]2. This database is used to test color
constancy algorithms. The image on the left shows the input image, a Macbeth color
checker illuminated with a Solux 4700K and a Roscolux 3202 full blue filter. The original

1http://www2.informatik.uni-wuerzburg.de/staff/ebner/research/evoColor/color.html
2http://www.cs.sfu.ca/∼colour/data/index.html
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Case 1 Case 2 Case 3

Reflectance Images:

Actual Illuminant:

Input Image:

Estimated Illuminant:

Estimated Reflectance:

Figure 3: Performance of best individual on three different fitness cases. The images in
the first row show three randomly created color Mondrians. The images in the second row
show the actual illuminant. The images in the third row show what the individual received
as input. This is the output a measuring device would give. The images in the fourth row
show the estimated illuminant. Finally, in the last row the estimated reflectance is shown
(from [12]).
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Figure 4: Results for a real image. The first image shows a Macbeth color checker taken
from a database used to test color constancy algorithms. The database was put together
by Barnard et al. [4]. The second image shows the estimated illuminant. The third image
shows the output of the evolved individual.

image was down-sampled to a size of 210 × 154. The estimated illuminant is shown in
the center. On the right the estimated reflectances are shown. Because the input image is
larger than the images which were used to evolve the individual we have used 300 iterations
to compute the output image. The evolved individual is able to remove the influence of
the blue illuminant from the image.

The program code of the best individual is as follows: (div2 (+ (+ (div2 (+ (div2
(+ (div2 down) (div2 (+ (div2 (+ (div2 (+ band (div2 down))) (div2 (+ band (div2
(+ band (div2 center))))))) (div2 down))))) (* (div2 down) (/ right (div2 (+ down (+
(div2 down) (div2 (+ (div2 (+ band (div2 down))) (div2 (+ band (div2 (+ band (div2
center)))))))))))))) (div2 (+ (div2 (+ (div2 right) (div2 (+ band (div2 down))))) (* (div2
down) (/ right (div2 (+ down (+ (div2 down) (div2 (+ (div2 (+ band (div2 center))) (div2
(+ band band)))))))))))) down)).

Only the current color channel (band) is used. The individual does not use information
from any of the other channels. In hindsight this is not surprising as the three color
channels contain independent information and therefore may be processed independently.
Such independent processing was assumed by Land [39] in his retinex theory. Also, the
individual mainly uses addition and division by 2 to solve the problem of color constancy.
The evolved algorithm essentially averages data from neighboring elements.

4 A Parallel Algorithm for Color Constancy

Encouraged by the above results, we developed a parallel algorithm for color constancy
[13, 15]. As above, we assume that we have a grid of processing elements, one processing
element per pixel. The algorithm is based on the computation of local space average color.
Let us assume that the reflectances of the objects are evenly distributed in the range [0, 1]
and that a single uniform illuminant is used. Let us also assume that the viewed scene is
sufficiently diverse, i.e. there are a large number of different surfaces in the scene. If we
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Figure 5: Computation of local space average color after 1, 50, 200 and 1000 iterations.

now average the observed pixel values, then we obtain

1

N

∑

x,y

ci(x, y) =
1

N

∑

x,y

Ri(x, y)Li = Li
1

N

∑

x,y

Ri(x, y) ≈
1

2
Li

where N is the number of image pixels. The last approximation holds because we have
assumed that the reflectances are uniformly distributed over the range [0, 1]. If we randomly
draw reflectances from this range, the average will be 1

2
for a sufficiently large sample size.

If we solve the above equation for Li, we see that the illuminant can be estimates as twice
the value of space average color.

Li ≈
2

N

∑

x,y

ci(x, y)

This is just the gray world assumption [7, 29]. Note that because we are averaging pixel
data, it is very important that we are working in a linear space.

We apply the gray world assumption locally to each image pixel. Averaging is done in
parallel by iteratively executing the following update equations. Let a(x, y) be an estimate
of local space average color for each image pixel. Let N(x, y) be a set of neighboring
elements

N(x, y) = {(x′, y′)|(x′, y′) is a neighbor of processing element (x, y)}.

We then average the estimate of local space average color from neighboring elements. Note
that the current element can also be included in N(x, y). This helps to eliminate oscillations
which may otherwise occur. Finally, using a small percentage p we add a tiny amount of
the color of the input pixel to the current average.

1.) a′
i(x, y) =

1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

ai(x
′, y′)

2.) ai(x, y) = ci(x, y) · p + a′
i(x, y) · (1 − p)

The first equation averages the data, the second slowly adds the color of the current pixel.
These two computations are carried out until convergence. Note that the initialization
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Figure 6: Results for the parallel algorithm on the image of the Macbeth color checker.
The first image shows the input image. The second image shows local space average color.
The third image shows the output image.

of local space average color can be arbitrary as the initial value slowly fades away. For
a technical implementation the two computations can be run indefinitely. Therefore one
does not have to determine when convergence will be reached. Figure 5 shows how local
space average color is computed iteratively for the Macbeth color checker.

The parameter p determines the extent of the averaging. When we compare the local
averaging operation with the evolved program we see that the evolved program uses a
number of constants to scale the input from neighboring elements. The evolved program
cannot be run on arbitrary image sizes. Even though we made sure that the input/output
relationship could not be learnt from example, we have used a single image size for training.
Thus, the evolved algorithm depends on the size of the image. Here, the parameter p has
to be set depending on the size of the image. In practice we have found a value of 0.0005
suitable for an image of size 256 × 256. For arbitrary sized images we use

p = 1 − (1 − 0.0005)256/s

where s is the longer of the width or height of the image. Figure 6 shows the output of this
algorithm on the image of the Macbeth color checker. The first image is the input image.
The second image shows the computed local space average color. The image on the right
is the computed output image.

Barnard et al. [4], in creating their dataset for color constancy research, carefully mea-
sured the illuminant spectra and the response of the camera to the color of the illuminant
using a reference white. Since the ground truth data is available, we can compare the
estimated chromaticities with the actual chromaticities of the illuminant. Figure 7 shows
the results of this comparison. The first image shows the estimated chromaticities. The
graph on the right shows the comparison between the actual chromaticities and the esti-
mated chromaticities for a single line of the image. While the match between the actual
illuminant and the estimated illuminant is not perfect, the algorithm correctly estimates
that the color of the illuminant to be blue. Note that human color constancy is not perfect
either [46].
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Figure 7: The image on the left shows the estimated chromaticity of the illuminant. Note
that this image is best viewed in the electronic version of the journal. The graph on the
right compares the actual with the estimated chromaticities for a single line of the image.
The line where the chromaticities were extracted is marked by the white line.

5 Comparison with Other Algorithms for Color Con-

stancy

Numerous algorithms for color constancy have been developed. However, most algorithms
would be hard to implement using a neural architecture. They are not biologically plausible.
A notable exception is the retinex algorithm developed by Land and McCann [42] which
was later extended to two dimensions by Horn [33] and refined by Blake [5]. Horn suggests
to first take the logarithm of the input intensity. This separates the product of reflectance
and illumination into a sum.

log ci = log Ri + log Li

Next, edges are detected using a Laplacian. Note, that the response of the Laplacian
will be large at points where the reflectance changes and almost zero everywhere else.
The term log Li cancels itself for adjacent points in the image. A threshold operation is
applied to locate positions where the reflectance changes, eliminating all changes of the
illuminant. Finally the output of the thresholding operation is re-integrated to compute
the reflectances. The whole algorithm can be described by the sequence of operations
shown in Figure 8. The first stage computes the Laplacian. Then a threshold operation
is applied. The last stage re-integrates the result in parallel to compute the reflectances.
In practice it is difficult to determine the best value for the threshold operation. If the
threshold is set too low, then edges due to a change of the illuminant will not be removed.
If the threshold is set too high, then some edges where the reflectance changes will also be
removed.

For comparison, our own algorithm is shown on the bottom of Figure 8 using the same
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Figure 8: Two dimensional variant of the retinex algorithm shown on the top (redrawn
from Horn [33]). On the bottom, our algorithm is shown in a similar notation.

notation. The integration step has been moved to the front. Note that the algorithm is
now much simpler. It consists of an integration stage followed by a computation of the
output using the color of the input pixel. The advantage of this algorithm is that it does
not require a threshold operation. Our algorithm can be implemented easily using neural
hardware. Should a division operation be difficult to implement, then this step can be
replaced using addition and subtraction. This leads to local color shifts [14]. A discussion
of local color shifts is, unfortunately, beyond the scope of this contribution.

Moore et al. [45] implemented a variant of the retinex algorithm [41] in VLSI. They
have used a resistive grid to blur the input image. The output color of a pixel o′i with
i ∈ {r, g, b} is given by

o′i(x, y) = log(ci(x, y)) − log(ci) ⊗ e−
|r|
σ

where ⊗ denotes convolution, r is the distance from the current pixel and σ is a scaling
factor which defines the extent of the blurring. Since the logarithm has been applied the
output colors must be transformed to the range [0, 1] for display. This is done using a
global operation over all pixels. Moore et al. determine the minimum and maximum value
over all pixels. Then they subtract the minimum value from the output color o′ and rescale
the result to the full range, i.e. they compute

oi(x, y) =
o′i(x, y) − min

max−min
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where

max = max{o′i(x, y)| for all (x, y) and i ∈ {r, g, b}}

min = min{o′i(x, y)| for all (x, y) and i ∈ {r, g, b}}.

Note that due to the use of a global operation in the algorithm it is not clear how this
algorithm could be mapped to a completely parallel algorithm.

6 Evaluation of Algorithms on an Object Recognition

Task

We have used color based object recognition to evaluate the performance of the algorithms
on the datasets of Barnard et al. [4]. Five different sets were used from this database.
The images were down-sampled to 50% of the original size in order to speed up the evalua-
tion. Image set 1 contains mainly Lambertian reflectors. Image set 2 contains objects with
metallic specularities. Image set 3 contains objects with non-negligible dielectric specu-
larities. Image set 4 contains objects with at least one fluorescent surface. Each image
set shows a number of different scenes under up to 11 different illuminants. Image set 5
differs from the previous sets in that the object was placed in a random position whenever
the illuminant was changed. A given color constancy algorithm is evaluated by applying
it to every image of the image set. We then selected two color corrected images from each
scene of single database. This gave us one test and one model image per scene. A match
between test and model image was established using histogram based object recognition.
Histogram based object recognition was originally introduced by Swain and Ballard [54].
A color histogram is created for each image and the χ2 divergence measure between test
and model histogram is computed. The χ2 divergence measure was proposed by Schiele
and Crowley [51, 52]. The model images are matched to the test images by choosing the
lowest divergence measure. This process is repeated 50 times by randomly selecting pairs
of images for each scene. A perfect color constancy algorithm which correctly estimates
the reflectances of the viewed objects would result in a recognition rate of 1.0. In this case,
if we also assume that the camera was not moved between images, the color distribution
of both the test and model images would be equivalent.

Table 3 shows the results for several color constancy algorithms. The random recogni-
tion rate is shown at the top of the table. Results are shown for the white patch retinex
algorithm, the gray world assumption, a simplified version of Horn’s algorithm, the algo-
rithm of Blake [5] and the retinex variant described by Moore et al. [45]. In order to make
the white patch retinex algorithm more robust, the color of the illuminant was estimated
by histogramming each color band. Instead of picking the maximum of each channel, the
illuminant was estimated by setting the white point at the highest percentile. The simpli-
fied version of Horn’s algorithm [33, 34] omits the application of the Laplacian operator,
the application of the threshold operation and also the re-integration step. This essentially
amounts to assuming that the illuminant is constant across the entire image. The threshold
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Table 3: Results for image sets 1 through 5. Histograms were computed in RGB space. For
each image set random performance is also shown. Best performance is marked in bold.

Histogram-based Object Recognition, RGB color space
Algorithm 1 2 3 4 5

Random Recognition Rate 0.045 0.071 0.111 0.167 0.050
White Patch Retinex 0.614 0.574 0.918 0.893 0.416
Gray World Assumption 0.752 0.536 0.953 0.950 0.311
Simplified Horn 0.442 0.443 0.620 0.593 0.198
Horn (1974)/Blake (1985) 0.465 0.394 0.560 0.607 0.232
Moore et al. (1991) Retinex 0.850 0.799 0.756 0.780 0.513
Local Space Average Color 0.9370.9370.937 0.8740.8740.874 1.0001.0001.000 1.0001.0001.000 0.5380.5380.538

used by the algorithm of Blake was set to 10/256. Local space average color for both the
algorithm of Moore et al. [45] and our algorithm is computed using a convolution with

e|r|/σ| with r = |x| + |y| and σ =
√

1−p
4p

. Among the different algorithms, the algorithm

based on local space average color resulted in the highest recognition rate across all image
sets.

7 Conclusion

Color constancy is an important problem in many areas of computer vision research. In
particular, color constancy is required to develop robust algorithms for service robots which
have to work under changing lighting conditions. It is equally important for consumer
photography. In order to develop algorithms which mimic the algorithms used by the
human visual system we also have to look at the neural architecture of the brain. The
whole visual system is a product of natural evolution and we have turned to artificial
evolution to search for an algorithm for color constancy.

Genetic programming was used to evolve an algorithm for color constancy for a parallel
architecture. The architecture was designed such that only local exchange of information
is possible. Only simple arithmetic operators were used as elementary functions. The
evolved solution concentrated only on a single color channel. Information from the other
color channels was not used. The evolved individual was tested on artificial as well as
real input images. We then developed a simple algorithm for color constancy based on
the computation of local space average color. It is biologically plausible and much simpler
than existing algorithms. In fact, it may even be integrated directly into CCD or CMOS
chips used in todays digital cameras.
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