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Abstract. Creating interesting virtual worlds is a difficult task. We are
using a variant of genetic programming to automatically create plants
for a virtual environment. The plants are represented as context-free Lin-
denmayer systems. OpenGL is used to visualize and evaluate the plants.
Our plants have to collect virtual sunlight through their leaves in order
to reproduce successfully. Thus we have realized an interaction between
the plant and its environment. Plants are either evaluated separately or
all individuals of a population at the same time. The experiments show
that during coevolution plants grow much higher compared to rather
bushy plants when plants are evaluated in isolation.

1 DMotivation

Creating realistic virtual worlds for a person emerged in a virtual environment is
very difficult. Apart from artificial objects such as buildings and cars the virtual
world should also contain plants, animals and other people to interact with.
We have explored the possibility of evolving virtual plants [8]. Evolving virtual
plants instead of manually creating plants opens up the possibility to rapidly
create a multitude of different plants. These plants do not necessarily have to
exist in the real world. But it is important that, whatever the structures may
look like, the user recognizes them as plants.

In our work plants are represented as Lindenmayer-systems or L-systems for
short [22]. Prusinkiewicz and Lindenmayer [22] have shown previously how com-
plex, photo-realistically looking plants can be created from a relatively small
number of rules. Methods for realistic modeling and rendering of plant ecosys-
tems are described by Deussen et al. [7]. We use an evolutionary algorithm, a
variant of genetic programming [17,18] to automatically generate new popula-
tions of plants. Probably one of the first experiments in this area was done by
Niklas [20]. Niklas performed an adaptive walk through plant space of branching
patterns. An experiment in which different branching patterns compete against
each other was also made. Other early experiments were done by Jacob [10-
13] who also used a variant of genetic programming to evolve context-free and
context-sensitive L-Systems which look like plants. Jacob used a combination of
the number of blossoms, the number of leaves and the volume of the plant as a



fitness function. Broughton et al. [2] evolved three-dimensional objects similar
to Dawkins’ Biomorphs [6]. They experimented with two different paradigms,
Genetic Programming and L-Systems both of which, when interpreted define a
three-dimensional object. Coates et al. [3] extended the experiments and evolved
shapes which are adapted to specific constraints, i.e. are able to catch or avoid
particles moving in a specific direction. Coevolution was used to evolve objects
with an enclosure. Ochoa [21] evolved two-dimensional plant morphologies using
L-systems. Kokai et al. [15, 16] evolved L-Systems which describe fractal images
or structures. Mock [19] evolved plants for an artificial world where the user
took the role of a virtual gardener who could select plants for reproduction. Kim
[14] developed a model for the evolution of plant morphology. Plants were grown
on a two-dimensional lattice. Hornby and Pollack [9] evolved L-Systems which
produce tables and investigated the impact the choice of representation has on
the result. Representing the individuals as L-systems produced better results in
comparison to a direct encoding.

Our experiments differ from the ones done by Jacob [10-12], Mock [19] and
Kokai et al. [15,16] in that we allow interactions between the plant and its
environment. Plants need to catch as much virtual sunlight as possible using
their leaves. The amount of sunlight which hits the plant is used to calculate a
plant’s fitness. We either evaluated each plant individually or we evaluated all
individuals of a population at the same time. When all individuals are evaluated
at the same time then we also have an interaction between the plants of a
population. One plant may place its leaves above the leaves of another plant and
thereby use up this sunlight which would have otherwise been received by the
plant below. We see that coevolution of plants shapes the plants. Plants grow
much higher and try to spread their leaves at the top compared to rather bushy
looking plants which occur when plants are evaluated independently.

2 Evolution of artificial plants

We have used deterministic, context-free L-systems as a representation for our
plants. A context-free L-system consists of an alphabet V', a starting word w and
a set of rules P [22]. The starting word is defined over the alphabet V:w € V.
The rules are defined as a subset of V x V. Each rule (a,x) € P consists of a
predecessor a and a successor Y where y € V*. If no successor is defined for a
predecessor a then we assume that a — a belongs to the set of rules P.

A new word is derived from the initial word by replacing all letters of the
word by their successors. This process is repeated for a specified number of steps.
For the experiments which are described below we have used 5 developmental
steps. The major difference between L-systems and the usual Chomsky grammar
[4] is that in each step all characters of a word are replaced at the same time.
This is supposed to model cell division of multi-cellular organisms. After a word
has been derived from the starting word we interpret the letters as commands
for a virtual drawing device in three-dimensional space. The symbols are read
from left to right.



Table 1. Interpretation of the symbols of our alphabet.

Symbol Description

draw a branch segment (cylinder) and move forward

draw a leaf

push the current state (transformation matrix) onto the stack
pop state from stack

22.5°rotation around x axis

-22.5°rotation around x axis

22.5°rotation around y axis

-22.5°rotation around y axis

22.5°rotation around z axis

- -22.5°rotation around z axis

A, ..., Z no operation

Fig. 1. Building blocks for our plants. A branch segment is shown on the left and a
leaf is shown on the right.
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We have used a relatively simple alphabet for our experiments. The alphabet
consists of the symbols:

V:{f,l’+,—,<’>’/,\, [,],A,...,Z}

The interpretation of the individual letters is shown in Table 1. The rules for
the letters £ and A through Z are the only ones which may be changed dur-
ing the course of the experiment. The other symbols of the alphabet cannot be
transformed. Symbols £ and 1 are used to draw a branch segment and a leaf
respectively. Figure 1 shows the building blocks from which our plants are cre-
ated. All leaves of the plant have the same shape and size. Symbols +, -, <, >,
/, \ are used to change the orientation of the drawing device. Symbols [ and
] can be used to create branching structures. The symbol [ places the current
state (e.g. position and orientation) of the drawing device onto the stack. The
symbol 1 pops the topmost state from the stack, thereby restoring the position
and orientation of the drawing device to the one which was previously saved. The
symbols A through Z cause no operation and are only used during development.

Each individual consists of one or more rules. The number of rules can be
changed by the genetic operators. The predecessor of the first rule is f, the
predecessor of the second rule is A, the predecessor of the third rule is B and so
on. The initial word from which the plant develops is £f. Our initial population
only contains individuals with the single rule £ — f£. That is, we start with
a population of individuals which only consist of a single branch segment.The
fitness of all individuals of the initial population is zero because a branch is not
able to collect any sunlight. A typical L-system is shown in Figure 2.



initial word: A
rules:

f —>B/////f

A — [<fCAl/////[<£fCA1///////[<£fCA]
B — fC

Cc — [>>11]

Fig. 2. Sample grammar. The rules are derived from a grammar describing a bush [22].

Plants are evolved using a similar algorithm as in the genetic programming
paradigm [17,18]. To create a new individual for the next generation, we first
choose a genetic operator. Each operator is associated with a specific proba-
bility that this operator will be chosen. After the type of operator has been
determined we either select one or two individuals depending on the type of
operator. Crossover operators require two individuals, mutation operators re-
quire only a single individual. This process is repeated for a specified number of
generations.

- Permutation: Two neighboring symbols are exchanged.

- Mutation: A randomly selected symbol is replaced with a new symbol.

- Insertion: A new symbol is inserted at a random locus.

- Deletion: A symbol is deleted at a random locus.

- One-Point-Crossover: Crossover is performed by selecting a rule and exchanging
all rules between the two individuals which follow the selected rule.

- Sub-Tree-Crossover: A randomly selected bracketed subtree is exchanged be-
tween two individuals.

- Add-Branch: An empty branch is added to an individual.

- Delete-Branch: A possibly non-empty bracketed subtree is deleted.

- Add-Rule A new rule is appended to the individual, i.e. if the last rule is C — x
then D — D is added.

- Delete-Rule The last rule of an individual is deleted.

Fig. 3. Genetic operators.

Figure 3 shows a list of the genetic operators which were used for the exper-
iments. The genetic operators were chosen such that only relatively small steps
are possible between successive generations. That is, we did not include opera-
tions such as the random generation of subtrees. Reproduction was not included
in this set because we found that it was not needed. Whenever an operator can-
not be applied the individual is copied unchanged into the next generation, i.e.
it is not possible to do a subtree crossover whenever one of the individuals does
not contain a bracketed expression.

The fitness of each individual is determined by rendering the plant as an
image of size 640 x 640 using parallel projection viewed from above. Leaves
of the plant are drawn in a special color which is unique for each plant and



different from the color used to draw the branch segment or the color of the
ground. After we have rendered the plant we count the number of pixels which
are covered by the plant’s leaves. This is a direct measure of the plant’s ability
to collect sunlight. Using the Z-Buffer to estimate the amount of sunlight hitting
a plant was suggested by Benes [1].

In addition to the number of pixels we also determine the structural complex-
ity of the plant. Branch segments and leaves become more expensive to produce
the further they are away from the root of the plant. In our model a branch
segment costs 1 point and a leaf costs 3 points. This cost is multiplied with a
factor which takes the distance to the root of the plant in account. We define
the structural complexity of a plant as

complexity = Z COSthranch - factor?Bh () 4 Z COStear - factoreisht(®)
beB leL

where B is the set of branches, L is the set of leaves and height returns the
number of branch segments between the current position and the root of the
plant. As parameters we have used factor = 1.1, coStyranch = 1 and costieasr = 3.
The fitness of a plant is calculated by subtracting the structural complexity from
the amount of light received.

fitness = 10 - points — complexity

where points is the number of points covered by the plant’s leaves. In case of a
negative fitness we set fitness to zero. The number of green points is weighted
with a factor of 10 which was determined experimentally. A single leaf oriented
at a right angle covers 300 points.

3 Experiments

We experimented with a population of 200 individuals with tournament selection
and a tournament size of 7. The probability to apply a particular genetic operator
was set to 0.1. Two experiments were made. In the first experiment individuals
are evaluated in isolation. In this case, the plant is positioned in the center of a
square. Leaves which are rendered outside of or below this square do not collect
any sunlight. For the second experiment all individuals of the population are
evaluated at the same time. Each plant is positioned randomly on the square
with a randomly chosen orientation. If a plant places its leaves above another
plant’s leaves then the one below does not receive as much sunlight as if it were
evaluated in isolation. In this case the fitness of a plant also depends on the
neighborhood it is growing in. The results of these two experiments are shown
in Figure 4 and Figure 5.

Bush-like plants dominate during the first experiment. Plants need to maxi-
mize the amount of light received through the leaves while minimizing its struc-
tural complexity. Any leaves which are placed below or outside of the square
simulating ground only reduce the fitness of the plant. In contrast to the bush-
like plants of the first experiment we observed thin and tall plants during the
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Fig. 4. Results of the experiment when each plant was evaluated in isolation. The
graph shows maximum and average fitness values over time. The images show the
best individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. Bush-like shapes
dominate.

second experiment. A comparison between the best plant which evolved during
the two experiments is shown in Figure 6.

During the second experiment average fitness rises initially, then drops very
much and the fitness of the best plant starts to oscillate. At this point an evolu-
tionary arms race [5] sets in. This has also been called the red queen hypothesis
[23]. According to the red queen hypothesis the fitness of coevolving species may
remain at the same level over time. Nevertheless each individual may be contin-
ually improving some specific trait. If we look at the two components (amount
of light received and structural complexity) of the fitness of an individual we see
that the structural complexity of the plant still increases steadily even though
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Fig. 5. Results of the experiment when all plants where evaluated at the same time.
The graph shows maximum and average fitness values over time. The images show the
best individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. The plants grow
higher and higher in attempt to gain more sunlight.



Fig. 6. Plants evolved using coevolution grow higher and are thinner in comparison
to plants evolved in isolation. The image on the left shows the best plant when plants
were evaluated in isolation, the image in the middle shows the best plant evolved using
coevolution. The image on the right shows the whole population of plants.

maximum fitness oscillates heavily and complexity has a negative effect on fit-
ness. Plants need to out-grow their competitors in order to gain more light. If
one plant grows higher than another plant it needs more points for its structure
but at the same time it also receives more light than its competitors. Figure
8 shows a comparison of the average height and average volume of the plants
during the two experiments. Plants evolved during the first experiment occupy
a much larger volume than the plants evolved during the second experiment. In
comparison, the plants evolved during the second experiment grow higher than
the plants evolved during the first experiment.
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Fig. 7. The graphs on the left show the fitness components for the first experiment. The
graphs on the right show the components for the second experiment. The top graphs
show the plant’s complexity and the bottom graphs show the number of green points.
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Fig. 8. Comparison of plant height and plant volume for the two experiments.

4 Conclusion

The experiments show how it is possible to use evolutionary techniques to create
realistically looking plants for an artificial environment. Plants have to collect
virtual sunlight through their leaves. Fitness is calculated as the amount of
sunlight received minus the cost for creating the plant. Plants were evaluated
either individually or using coevolution. During coevolution we evaluated all
plants at the same time. In this case the fitness of a plant depends on its ability
to collect sunlight as well as on the neighborhood it is growing in. Thus we have
realized an interaction between the plant and its environment.

We found that during coevolution an arms race sets in. Plants grow higher
and higher in an attempt to collect more sunlight than its neighbor. Plants which
are evaluated in isolation look bushier whereas plants which are evaluated using
coevolution look tree-like. The data shows that during coevolution even though
fitness stays constant or decreases progress is being made. Plants evolved during
coevolution keep increasing their structural complexity in order to catch more
light than a neighboring plant. Further experiments could include the simulation
of gravity and use of collision detection algorithms. At present, the time required
to evaluate the individuals preclude these type of experiments.
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