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t. Creating interesting virtual worlds is a diÆ
ult task. We areusing a variant of geneti
 programming to automati
ally 
reate plantsfor a virtual environment. The plants are represented as 
ontext-free Lin-denmayer systems. OpenGL is used to visualize and evaluate the plants.Our plants have to 
olle
t virtual sunlight through their leaves in orderto reprodu
e su

essfully. Thus we have realized an intera
tion betweenthe plant and its environment. Plants are either evaluated separately orall individuals of a population at the same time. The experiments showthat during 
oevolution plants grow mu
h higher 
ompared to ratherbushy plants when plants are evaluated in isolation.1 MotivationCreating realisti
 virtual worlds for a person emerged in a virtual environment isvery diÆ
ult. Apart from arti�
ial obje
ts su
h as buildings and 
ars the virtualworld should also 
ontain plants, animals and other people to intera
t with.We have explored the possibility of evolving virtual plants [8℄. Evolving virtualplants instead of manually 
reating plants opens up the possibility to rapidly
reate a multitude of di�erent plants. These plants do not ne
essarily have toexist in the real world. But it is important that, whatever the stru
tures maylook like, the user re
ognizes them as plants.In our work plants are represented as Lindenmayer-systems or L-systems forshort [22℄. Prusinkiewi
z and Lindenmayer [22℄ have shown previously how 
om-plex, photo-realisti
ally looking plants 
an be 
reated from a relatively smallnumber of rules. Methods for realisti
 modeling and rendering of plant e
osys-tems are des
ribed by Deussen et al. [7℄. We use an evolutionary algorithm, avariant of geneti
 programming [17, 18℄ to automati
ally generate new popula-tions of plants. Probably one of the �rst experiments in this area was done byNiklas [20℄. Niklas performed an adaptive walk through plant spa
e of bran
hingpatterns. An experiment in whi
h di�erent bran
hing patterns 
ompete againstea
h other was also made. Other early experiments were done by Ja
ob [10{13℄ who also used a variant of geneti
 programming to evolve 
ontext-free and
ontext-sensitive L-Systems whi
h look like plants. Ja
ob used a 
ombination ofthe number of blossoms, the number of leaves and the volume of the plant as a



�tness fun
tion. Broughton et al. [2℄ evolved three-dimensional obje
ts similarto Dawkins' Biomorphs [6℄. They experimented with two di�erent paradigms,Geneti
 Programming and L-Systems both of whi
h, when interpreted de�ne athree-dimensional obje
t. Coates et al. [3℄ extended the experiments and evolvedshapes whi
h are adapted to spe
i�
 
onstraints, i.e. are able to 
at
h or avoidparti
les moving in a spe
i�
 dire
tion. Coevolution was used to evolve obje
tswith an en
losure. O
hoa [21℄ evolved two-dimensional plant morphologies usingL-systems. Kokai et al. [15, 16℄ evolved L-Systems whi
h des
ribe fra
tal imagesor stru
tures. Mo
k [19℄ evolved plants for an arti�
ial world where the usertook the role of a virtual gardener who 
ould sele
t plants for reprodu
tion. Kim[14℄ developed a model for the evolution of plant morphology. Plants were grownon a two-dimensional latti
e. Hornby and Polla
k [9℄ evolved L-Systems whi
hprodu
e tables and investigated the impa
t the 
hoi
e of representation has onthe result. Representing the individuals as L-systems produ
ed better results in
omparison to a dire
t en
oding.Our experiments di�er from the ones done by Ja
ob [10{12℄, Mo
k [19℄ andKokai et al. [15, 16℄ in that we allow intera
tions between the plant and itsenvironment. Plants need to 
at
h as mu
h virtual sunlight as possible usingtheir leaves. The amount of sunlight whi
h hits the plant is used to 
al
ulate aplant's �tness. We either evaluated ea
h plant individually or we evaluated allindividuals of a population at the same time. When all individuals are evaluatedat the same time then we also have an intera
tion between the plants of apopulation. One plant may pla
e its leaves above the leaves of another plant andthereby use up this sunlight whi
h would have otherwise been re
eived by theplant below. We see that 
oevolution of plants shapes the plants. Plants growmu
h higher and try to spread their leaves at the top 
ompared to rather bushylooking plants whi
h o

ur when plants are evaluated independently.2 Evolution of arti�
ial plantsWe have used deterministi
, 
ontext-free L-systems as a representation for ourplants. A 
ontext-free L-system 
onsists of an alphabet V , a starting word ! anda set of rules P [22℄. The starting word is de�ned over the alphabet V : ! 2 V +.The rules are de�ned as a subset of V � V +. Ea
h rule (a; �) 2 P 
onsists of aprede
essor a and a su

essor � where � 2 V �. If no su

essor is de�ned for aprede
essor a then we assume that a! a belongs to the set of rules P .A new word is derived from the initial word by repla
ing all letters of theword by their su

essors. This pro
ess is repeated for a spe
i�ed number of steps.For the experiments whi
h are des
ribed below we have used 5 developmentalsteps. The major di�eren
e between L-systems and the usual Chomsky grammar[4℄ is that in ea
h step all 
hara
ters of a word are repla
ed at the same time.This is supposed to model 
ell division of multi-
ellular organisms. After a wordhas been derived from the starting word we interpret the letters as 
ommandsfor a virtual drawing devi
e in three-dimensional spa
e. The symbols are readfrom left to right.



Table 1. Interpretation of the symbols of our alphabet.Symbol Des
riptionf draw a bran
h segment (
ylinder) and move forwardl draw a leaf[ push the 
urrent state (transformation matrix) onto the sta
k℄ pop state from sta
k> 22.5Ærotation around x axis< -22.5Ærotation around x axis\ 22.5Ærotation around y axis/ -22.5Ærotation around y axis+ 22.5Ærotation around z axis- -22.5Ærotation around z axisA, ..., Z no operation
Fig. 1. Building blo
ks for our plants. A bran
h segment is shown on the left and aleaf is shown on the right.We have used a relatively simple alphabet for our experiments. The alphabet
onsists of the symbols:V = ff; l; +; -; <; >; /; \; [; ℄; A; :::; ZgThe interpretation of the individual letters is shown in Table 1. The rules forthe letters f and A through Z are the only ones whi
h may be 
hanged dur-ing the 
ourse of the experiment. The other symbols of the alphabet 
annot betransformed. Symbols f and l are used to draw a bran
h segment and a leafrespe
tively. Figure 1 shows the building blo
ks from whi
h our plants are 
re-ated. All leaves of the plant have the same shape and size. Symbols +, -, <, >,/, \ are used to 
hange the orientation of the drawing devi
e. Symbols [ and℄ 
an be used to 
reate bran
hing stru
tures. The symbol [ pla
es the 
urrentstate (e.g. position and orientation) of the drawing devi
e onto the sta
k. Thesymbol ℄ pops the topmost state from the sta
k, thereby restoring the positionand orientation of the drawing devi
e to the one whi
h was previously saved. Thesymbols A through Z 
ause no operation and are only used during development.Ea
h individual 
onsists of one or more rules. The number of rules 
an be
hanged by the geneti
 operators. The prede
essor of the �rst rule is f, theprede
essor of the se
ond rule is A, the prede
essor of the third rule is B and soon. The initial word from whi
h the plant develops is f. Our initial populationonly 
ontains individuals with the single rule f ! f. That is, we start witha population of individuals whi
h only 
onsist of a single bran
h segment.The�tness of all individuals of the initial population is zero be
ause a bran
h is notable to 
olle
t any sunlight. A typi
al L-system is shown in Figure 2.



initial word: Arules:f! B/////fA! [<fCA℄/////[<fCA℄///////[<fCA℄B! fCC! [>>l℄Fig. 2. Sample grammar. The rules are derived from a grammar des
ribing a bush [22℄.Plants are evolved using a similar algorithm as in the geneti
 programmingparadigm [17, 18℄. To 
reate a new individual for the next generation, we �rst
hoose a geneti
 operator. Ea
h operator is asso
iated with a spe
i�
 proba-bility that this operator will be 
hosen. After the type of operator has beendetermined we either sele
t one or two individuals depending on the type ofoperator. Crossover operators require two individuals, mutation operators re-quire only a single individual. This pro
ess is repeated for a spe
i�ed number ofgenerations.- Permutation: Two neighboring symbols are ex
hanged.- Mutation: A randomly sele
ted symbol is repla
ed with a new symbol.- Insertion: A new symbol is inserted at a random lo
us.- Deletion: A symbol is deleted at a random lo
us.- One-Point-Crossover: Crossover is performed by sele
ting a rule and ex
hangingall rules between the two individuals whi
h follow the sele
ted rule.- Sub-Tree-Crossover: A randomly sele
ted bra
keted subtree is ex
hanged be-tween two individuals.- Add-Bran
h: An empty bran
h is added to an individual.- Delete-Bran
h: A possibly non-empty bra
keted subtree is deleted.- Add-Rule A new rule is appended to the individual, i.e. if the last rule is C! �then D! D is added.- Delete-Rule The last rule of an individual is deleted.Fig. 3. Geneti
 operators.Figure 3 shows a list of the geneti
 operators whi
h were used for the exper-iments. The geneti
 operators were 
hosen su
h that only relatively small stepsare possible between su

essive generations. That is, we did not in
lude opera-tions su
h as the random generation of subtrees. Reprodu
tion was not in
ludedin this set be
ause we found that it was not needed. Whenever an operator 
an-not be applied the individual is 
opied un
hanged into the next generation, i.e.it is not possible to do a subtree 
rossover whenever one of the individuals doesnot 
ontain a bra
keted expression.The �tness of ea
h individual is determined by rendering the plant as animage of size 640 � 640 using parallel proje
tion viewed from above. Leavesof the plant are drawn in a spe
ial 
olor whi
h is unique for ea
h plant and



di�erent from the 
olor used to draw the bran
h segment or the 
olor of theground. After we have rendered the plant we 
ount the number of pixels whi
hare 
overed by the plant's leaves. This is a dire
t measure of the plant's abilityto 
olle
t sunlight. Using the Z-Bu�er to estimate the amount of sunlight hittinga plant was suggested by Bene�s [1℄.In addition to the number of pixels we also determine the stru
tural 
omplex-ity of the plant. Bran
h segments and leaves be
ome more expensive to produ
ethe further they are away from the root of the plant. In our model a bran
hsegment 
osts 1 point and a leaf 
osts 3 points. This 
ost is multiplied with afa
tor whi
h takes the distan
e to the root of the plant in a

ount. We de�nethe stru
tural 
omplexity of a plant as
omplexity =Xb2B 
ostbran
h � fa
torheight(b) +Xl2L 
ostleaf � fa
torheight(l)where B is the set of bran
hes, L is the set of leaves and height returns thenumber of bran
h segments between the 
urrent position and the root of theplant. As parameters we have used fa
tor = 1:1, 
ostbran
h = 1 and 
ostleaf = 3.The �tness of a plant is 
al
ulated by subtra
ting the stru
tural 
omplexity fromthe amount of light re
eived.�tness = 10 � points� 
omplexitywhere points is the number of points 
overed by the plant's leaves. In 
ase of anegative �tness we set �tness to zero. The number of green points is weightedwith a fa
tor of 10 whi
h was determined experimentally. A single leaf orientedat a right angle 
overs 300 points.3 ExperimentsWe experimented with a population of 200 individuals with tournament sele
tionand a tournament size of 7. The probability to apply a parti
ular geneti
 operatorwas set to 0:1. Two experiments were made. In the �rst experiment individualsare evaluated in isolation. In this 
ase, the plant is positioned in the 
enter of asquare. Leaves whi
h are rendered outside of or below this square do not 
olle
tany sunlight. For the se
ond experiment all individuals of the population areevaluated at the same time. Ea
h plant is positioned randomly on the squarewith a randomly 
hosen orientation. If a plant pla
es its leaves above anotherplant's leaves then the one below does not re
eive as mu
h sunlight as if it wereevaluated in isolation. In this 
ase the �tness of a plant also depends on theneighborhood it is growing in. The results of these two experiments are shownin Figure 4 and Figure 5.Bush-like plants dominate during the �rst experiment. Plants need to maxi-mize the amount of light re
eived through the leaves while minimizing its stru
-tural 
omplexity. Any leaves whi
h are pla
ed below or outside of the squaresimulating ground only redu
e the �tness of the plant. In 
ontrast to the bush-like plants of the �rst experiment we observed thin and tall plants during the
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Fig. 4. Results of the experiment when ea
h plant was evaluated in isolation. Thegraph shows maximum and average �tness values over time. The images show thebest individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. Bush-like shapesdominate.se
ond experiment. A 
omparison between the best plant whi
h evolved duringthe two experiments is shown in Figure 6.During the se
ond experiment average �tness rises initially, then drops verymu
h and the �tness of the best plant starts to os
illate. At this point an evolu-tionary arms ra
e [5℄ sets in. This has also been 
alled the red queen hypothesis[23℄. A

ording to the red queen hypothesis the �tness of 
oevolving spe
ies mayremain at the same level over time. Nevertheless ea
h individual may be 
ontin-ually improving some spe
i�
 trait. If we look at the two 
omponents (amountof light re
eived and stru
tural 
omplexity) of the �tness of an individual we seethat the stru
tural 
omplexity of the plant still in
reases steadily even though
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Fig. 5. Results of the experiment when all plants where evaluated at the same time.The graph shows maximum and average �tness values over time. The images show thebest individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. The plants growhigher and higher in attempt to gain more sunlight.



Fig. 6. Plants evolved using 
oevolution grow higher and are thinner in 
omparisonto plants evolved in isolation. The image on the left shows the best plant when plantswere evaluated in isolation, the image in the middle shows the best plant evolved using
oevolution. The image on the right shows the whole population of plants.maximum �tness os
illates heavily and 
omplexity has a negative e�e
t on �t-ness. Plants need to out-grow their 
ompetitors in order to gain more light. Ifone plant grows higher than another plant it needs more points for its stru
turebut at the same time it also re
eives more light than its 
ompetitors. Figure8 shows a 
omparison of the average height and average volume of the plantsduring the two experiments. Plants evolved during the �rst experiment o

upya mu
h larger volume than the plants evolved during the se
ond experiment. In
omparison, the plants evolved during the se
ond experiment grow higher thanthe plants evolved during the �rst experiment.
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Fig. 7. The graphs on the left show the �tness 
omponents for the �rst experiment. Thegraphs on the right show the 
omponents for the se
ond experiment. The top graphsshow the plant's 
omplexity and the bottom graphs show the number of green points.
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Fig. 8. Comparison of plant height and plant volume for the two experiments.4 Con
lusionThe experiments show how it is possible to use evolutionary te
hniques to 
reaterealisti
ally looking plants for an arti�
ial environment. Plants have to 
olle
tvirtual sunlight through their leaves. Fitness is 
al
ulated as the amount ofsunlight re
eived minus the 
ost for 
reating the plant. Plants were evaluatedeither individually or using 
oevolution. During 
oevolution we evaluated allplants at the same time. In this 
ase the �tness of a plant depends on its abilityto 
olle
t sunlight as well as on the neighborhood it is growing in. Thus we haverealized an intera
tion between the plant and its environment.We found that during 
oevolution an arms ra
e sets in. Plants grow higherand higher in an attempt to 
olle
t more sunlight than its neighbor. Plants whi
hare evaluated in isolation look bushier whereas plants whi
h are evaluated using
oevolution look tree-like. The data shows that during 
oevolution even though�tness stays 
onstant or de
reases progress is being made. Plants evolved during
oevolution keep in
reasing their stru
tural 
omplexity in order to 
at
h morelight than a neighboring plant. Further experiments 
ould in
lude the simulationof gravity and use of 
ollision dete
tion algorithms. At present, the time requiredto evaluate the individuals pre
lude these type of experiments.Referen
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