
Coevolution Produes an Arms Rae AmongVirtual PlantsMar Ebner, Adrian Grigore, Alexander He�ner, and J�urgen AlbertUniversit�at W�urzburg, Lehrstuhl f�ur Informatik IIAm Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.dehttp://www2.informatik.uni-wuerzburg.deAbstrat. Creating interesting virtual worlds is a diÆult task. We areusing a variant of geneti programming to automatially reate plantsfor a virtual environment. The plants are represented as ontext-free Lin-denmayer systems. OpenGL is used to visualize and evaluate the plants.Our plants have to ollet virtual sunlight through their leaves in orderto reprodue suessfully. Thus we have realized an interation betweenthe plant and its environment. Plants are either evaluated separately orall individuals of a population at the same time. The experiments showthat during oevolution plants grow muh higher ompared to ratherbushy plants when plants are evaluated in isolation.1 MotivationCreating realisti virtual worlds for a person emerged in a virtual environment isvery diÆult. Apart from arti�ial objets suh as buildings and ars the virtualworld should also ontain plants, animals and other people to interat with.We have explored the possibility of evolving virtual plants [8℄. Evolving virtualplants instead of manually reating plants opens up the possibility to rapidlyreate a multitude of di�erent plants. These plants do not neessarily have toexist in the real world. But it is important that, whatever the strutures maylook like, the user reognizes them as plants.In our work plants are represented as Lindenmayer-systems or L-systems forshort [22℄. Prusinkiewiz and Lindenmayer [22℄ have shown previously how om-plex, photo-realistially looking plants an be reated from a relatively smallnumber of rules. Methods for realisti modeling and rendering of plant eosys-tems are desribed by Deussen et al. [7℄. We use an evolutionary algorithm, avariant of geneti programming [17, 18℄ to automatially generate new popula-tions of plants. Probably one of the �rst experiments in this area was done byNiklas [20℄. Niklas performed an adaptive walk through plant spae of branhingpatterns. An experiment in whih di�erent branhing patterns ompete againsteah other was also made. Other early experiments were done by Jaob [10{13℄ who also used a variant of geneti programming to evolve ontext-free andontext-sensitive L-Systems whih look like plants. Jaob used a ombination ofthe number of blossoms, the number of leaves and the volume of the plant as a



�tness funtion. Broughton et al. [2℄ evolved three-dimensional objets similarto Dawkins' Biomorphs [6℄. They experimented with two di�erent paradigms,Geneti Programming and L-Systems both of whih, when interpreted de�ne athree-dimensional objet. Coates et al. [3℄ extended the experiments and evolvedshapes whih are adapted to spei� onstraints, i.e. are able to ath or avoidpartiles moving in a spei� diretion. Coevolution was used to evolve objetswith an enlosure. Ohoa [21℄ evolved two-dimensional plant morphologies usingL-systems. Kokai et al. [15, 16℄ evolved L-Systems whih desribe fratal imagesor strutures. Mok [19℄ evolved plants for an arti�ial world where the usertook the role of a virtual gardener who ould selet plants for reprodution. Kim[14℄ developed a model for the evolution of plant morphology. Plants were grownon a two-dimensional lattie. Hornby and Pollak [9℄ evolved L-Systems whihprodue tables and investigated the impat the hoie of representation has onthe result. Representing the individuals as L-systems produed better results inomparison to a diret enoding.Our experiments di�er from the ones done by Jaob [10{12℄, Mok [19℄ andKokai et al. [15, 16℄ in that we allow interations between the plant and itsenvironment. Plants need to ath as muh virtual sunlight as possible usingtheir leaves. The amount of sunlight whih hits the plant is used to alulate aplant's �tness. We either evaluated eah plant individually or we evaluated allindividuals of a population at the same time. When all individuals are evaluatedat the same time then we also have an interation between the plants of apopulation. One plant may plae its leaves above the leaves of another plant andthereby use up this sunlight whih would have otherwise been reeived by theplant below. We see that oevolution of plants shapes the plants. Plants growmuh higher and try to spread their leaves at the top ompared to rather bushylooking plants whih our when plants are evaluated independently.2 Evolution of arti�ial plantsWe have used deterministi, ontext-free L-systems as a representation for ourplants. A ontext-free L-system onsists of an alphabet V , a starting word ! anda set of rules P [22℄. The starting word is de�ned over the alphabet V : ! 2 V +.The rules are de�ned as a subset of V � V +. Eah rule (a; �) 2 P onsists of apredeessor a and a suessor � where � 2 V �. If no suessor is de�ned for apredeessor a then we assume that a! a belongs to the set of rules P .A new word is derived from the initial word by replaing all letters of theword by their suessors. This proess is repeated for a spei�ed number of steps.For the experiments whih are desribed below we have used 5 developmentalsteps. The major di�erene between L-systems and the usual Chomsky grammar[4℄ is that in eah step all haraters of a word are replaed at the same time.This is supposed to model ell division of multi-ellular organisms. After a wordhas been derived from the starting word we interpret the letters as ommandsfor a virtual drawing devie in three-dimensional spae. The symbols are readfrom left to right.



Table 1. Interpretation of the symbols of our alphabet.Symbol Desriptionf draw a branh segment (ylinder) and move forwardl draw a leaf[ push the urrent state (transformation matrix) onto the stak℄ pop state from stak> 22.5Ærotation around x axis< -22.5Ærotation around x axis\ 22.5Ærotation around y axis/ -22.5Ærotation around y axis+ 22.5Ærotation around z axis- -22.5Ærotation around z axisA, ..., Z no operation
Fig. 1. Building bloks for our plants. A branh segment is shown on the left and aleaf is shown on the right.We have used a relatively simple alphabet for our experiments. The alphabetonsists of the symbols:V = ff; l; +; -; <; >; /; \; [; ℄; A; :::; ZgThe interpretation of the individual letters is shown in Table 1. The rules forthe letters f and A through Z are the only ones whih may be hanged dur-ing the ourse of the experiment. The other symbols of the alphabet annot betransformed. Symbols f and l are used to draw a branh segment and a leafrespetively. Figure 1 shows the building bloks from whih our plants are re-ated. All leaves of the plant have the same shape and size. Symbols +, -, <, >,/, \ are used to hange the orientation of the drawing devie. Symbols [ and℄ an be used to reate branhing strutures. The symbol [ plaes the urrentstate (e.g. position and orientation) of the drawing devie onto the stak. Thesymbol ℄ pops the topmost state from the stak, thereby restoring the positionand orientation of the drawing devie to the one whih was previously saved. Thesymbols A through Z ause no operation and are only used during development.Eah individual onsists of one or more rules. The number of rules an behanged by the geneti operators. The predeessor of the �rst rule is f, thepredeessor of the seond rule is A, the predeessor of the third rule is B and soon. The initial word from whih the plant develops is f. Our initial populationonly ontains individuals with the single rule f ! f. That is, we start witha population of individuals whih only onsist of a single branh segment.The�tness of all individuals of the initial population is zero beause a branh is notable to ollet any sunlight. A typial L-system is shown in Figure 2.



initial word: Arules:f! B/////fA! [<fCA℄/////[<fCA℄///////[<fCA℄B! fCC! [>>l℄Fig. 2. Sample grammar. The rules are derived from a grammar desribing a bush [22℄.Plants are evolved using a similar algorithm as in the geneti programmingparadigm [17, 18℄. To reate a new individual for the next generation, we �rsthoose a geneti operator. Eah operator is assoiated with a spei� proba-bility that this operator will be hosen. After the type of operator has beendetermined we either selet one or two individuals depending on the type ofoperator. Crossover operators require two individuals, mutation operators re-quire only a single individual. This proess is repeated for a spei�ed number ofgenerations.- Permutation: Two neighboring symbols are exhanged.- Mutation: A randomly seleted symbol is replaed with a new symbol.- Insertion: A new symbol is inserted at a random lous.- Deletion: A symbol is deleted at a random lous.- One-Point-Crossover: Crossover is performed by seleting a rule and exhangingall rules between the two individuals whih follow the seleted rule.- Sub-Tree-Crossover: A randomly seleted braketed subtree is exhanged be-tween two individuals.- Add-Branh: An empty branh is added to an individual.- Delete-Branh: A possibly non-empty braketed subtree is deleted.- Add-Rule A new rule is appended to the individual, i.e. if the last rule is C! �then D! D is added.- Delete-Rule The last rule of an individual is deleted.Fig. 3. Geneti operators.Figure 3 shows a list of the geneti operators whih were used for the exper-iments. The geneti operators were hosen suh that only relatively small stepsare possible between suessive generations. That is, we did not inlude opera-tions suh as the random generation of subtrees. Reprodution was not inludedin this set beause we found that it was not needed. Whenever an operator an-not be applied the individual is opied unhanged into the next generation, i.e.it is not possible to do a subtree rossover whenever one of the individuals doesnot ontain a braketed expression.The �tness of eah individual is determined by rendering the plant as animage of size 640 � 640 using parallel projetion viewed from above. Leavesof the plant are drawn in a speial olor whih is unique for eah plant and



di�erent from the olor used to draw the branh segment or the olor of theground. After we have rendered the plant we ount the number of pixels whihare overed by the plant's leaves. This is a diret measure of the plant's abilityto ollet sunlight. Using the Z-Bu�er to estimate the amount of sunlight hittinga plant was suggested by Bene�s [1℄.In addition to the number of pixels we also determine the strutural omplex-ity of the plant. Branh segments and leaves beome more expensive to produethe further they are away from the root of the plant. In our model a branhsegment osts 1 point and a leaf osts 3 points. This ost is multiplied with afator whih takes the distane to the root of the plant in aount. We de�nethe strutural omplexity of a plant asomplexity =Xb2B ostbranh � fatorheight(b) +Xl2L ostleaf � fatorheight(l)where B is the set of branhes, L is the set of leaves and height returns thenumber of branh segments between the urrent position and the root of theplant. As parameters we have used fator = 1:1, ostbranh = 1 and ostleaf = 3.The �tness of a plant is alulated by subtrating the strutural omplexity fromthe amount of light reeived.�tness = 10 � points� omplexitywhere points is the number of points overed by the plant's leaves. In ase of anegative �tness we set �tness to zero. The number of green points is weightedwith a fator of 10 whih was determined experimentally. A single leaf orientedat a right angle overs 300 points.3 ExperimentsWe experimented with a population of 200 individuals with tournament seletionand a tournament size of 7. The probability to apply a partiular geneti operatorwas set to 0:1. Two experiments were made. In the �rst experiment individualsare evaluated in isolation. In this ase, the plant is positioned in the enter of asquare. Leaves whih are rendered outside of or below this square do not olletany sunlight. For the seond experiment all individuals of the population areevaluated at the same time. Eah plant is positioned randomly on the squarewith a randomly hosen orientation. If a plant plaes its leaves above anotherplant's leaves then the one below does not reeive as muh sunlight as if it wereevaluated in isolation. In this ase the �tness of a plant also depends on theneighborhood it is growing in. The results of these two experiments are shownin Figure 4 and Figure 5.Bush-like plants dominate during the �rst experiment. Plants need to maxi-mize the amount of light reeived through the leaves while minimizing its stru-tural omplexity. Any leaves whih are plaed below or outside of the squaresimulating ground only redue the �tness of the plant. In ontrast to the bush-like plants of the �rst experiment we observed thin and tall plants during the
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Fig. 4. Results of the experiment when eah plant was evaluated in isolation. Thegraph shows maximum and average �tness values over time. The images show thebest individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. Bush-like shapesdominate.seond experiment. A omparison between the best plant whih evolved duringthe two experiments is shown in Figure 6.During the seond experiment average �tness rises initially, then drops verymuh and the �tness of the best plant starts to osillate. At this point an evolu-tionary arms rae [5℄ sets in. This has also been alled the red queen hypothesis[23℄. Aording to the red queen hypothesis the �tness of oevolving speies mayremain at the same level over time. Nevertheless eah individual may be ontin-ually improving some spei� trait. If we look at the two omponents (amountof light reeived and strutural omplexity) of the �tness of an individual we seethat the strutural omplexity of the plant still inreases steadily even though
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Fig. 5. Results of the experiment when all plants where evaluated at the same time.The graph shows maximum and average �tness values over time. The images show thebest individual at generations 0, 4, 8, 16, 32, 64, 128, 256, and 500. The plants growhigher and higher in attempt to gain more sunlight.



Fig. 6. Plants evolved using oevolution grow higher and are thinner in omparisonto plants evolved in isolation. The image on the left shows the best plant when plantswere evaluated in isolation, the image in the middle shows the best plant evolved usingoevolution. The image on the right shows the whole population of plants.maximum �tness osillates heavily and omplexity has a negative e�et on �t-ness. Plants need to out-grow their ompetitors in order to gain more light. Ifone plant grows higher than another plant it needs more points for its struturebut at the same time it also reeives more light than its ompetitors. Figure8 shows a omparison of the average height and average volume of the plantsduring the two experiments. Plants evolved during the �rst experiment oupya muh larger volume than the plants evolved during the seond experiment. Inomparison, the plants evolved during the seond experiment grow higher thanthe plants evolved during the �rst experiment.
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Fig. 7. The graphs on the left show the �tness omponents for the �rst experiment. Thegraphs on the right show the omponents for the seond experiment. The top graphsshow the plant's omplexity and the bottom graphs show the number of green points.
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Fig. 8. Comparison of plant height and plant volume for the two experiments.4 ConlusionThe experiments show how it is possible to use evolutionary tehniques to reaterealistially looking plants for an arti�ial environment. Plants have to olletvirtual sunlight through their leaves. Fitness is alulated as the amount ofsunlight reeived minus the ost for reating the plant. Plants were evaluatedeither individually or using oevolution. During oevolution we evaluated allplants at the same time. In this ase the �tness of a plant depends on its abilityto ollet sunlight as well as on the neighborhood it is growing in. Thus we haverealized an interation between the plant and its environment.We found that during oevolution an arms rae sets in. Plants grow higherand higher in an attempt to ollet more sunlight than its neighbor. Plants whihare evaluated in isolation look bushier whereas plants whih are evaluated usingoevolution look tree-like. The data shows that during oevolution even though�tness stays onstant or dereases progress is being made. Plants evolved duringoevolution keep inreasing their strutural omplexity in order to ath morelight than a neighboring plant. Further experiments ould inlude the simulationof gravity and use of ollision detetion algorithms. At present, the time requiredto evaluate the individuals prelude these type of experiments.Referenes1. B. Bene�s. An eÆient estimation of light in simulation of plant development.In R. Bouli and G. Hegron (eds.), Computer Animation and Simulation 96, pp.153{165, Berlin, 1996. Springer-Verlag.2. T. Broughton, A. Tan, and P. S. Coates. The use of geneti programming inexploring 3d design worlds. In R. Junge (ed.), CAAD Futures 1997. Pro. of the7th Int. Conf. on Computer Aides Arhitetural Design Futures, Munih, Germany,pp. 885{915, Dordreht, 1997. Kluwer Aademi Publishers.3. P. Coates, T. Broughton, and H. Jakson. Exploring three-dimensional designworlds using Lindenmeyer systems and geneti programming. In P. J. Bentley(ed.), Evolutionary Design by Computers, pp. 323{341. Morgan Kaufmann, 1999.4. M. D. Davis and E. J. Weyuker. Computability, Complexity, and Languages. Aa-demi Press Limited, San Diego, CA, 1983.
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