
Evolution and Growth of Virtual Plants

Marc Ebner

Universität Würzburg, Lehrstuhl für Informatik II
Am Hubland, 97074 Würzburg, Germany
ebner@informatik.uni-wuerzburg.de

http://www2.informatik.uni-wuerzburg.de/staff/ebner/welcome.html

Abstract. According to the Red Queen hypothesis, an evolving pop-
ulation may be improving some trait, even though its fitness remains
constant. We have created such a scenario with a population of coevolv-
ing plants. Plants are modeled using Lindenmayer systems and rendered
with OpenGL. The plants consist of branches and leaves. Their repro-
ductive success depends on their ability to catch sunlight as well as their
structural complexity. All plants are evaluated inside the same environ-
ment, which means that one plant is able to cover other plants leaves.
Leaves which are placed in the shadow of other plants do not catch any
sunlight. The shape of the plant also determines the area where offspring
can be placed. Offspring can only be placed in the vicinity of a plant. A
number of experiments were performed in different environments. The
Red Queen effect was seen in all cases.

1 Motivation

The fitness of coevolving species may remain at the same level over time even
though each individual may be continually improving some specific trait. This
has been called the Red Queen hypothesis [20], after the Red Queen chess piece
in Lewis Carroll’s “Through the Looking Glass”. The queen has to keep running
just to stay in the same place. The classic example of the Red Queen effect is the
chase between cheetahs and gazelles. If the population of prey becomes faster,
some of the predators are unable to catch their prey. The slow ones will not be
able to reproduce. After some generations, mutations might lead to predators
which are a little faster than their ancestors. These individuals will again be
able to catch their prey easily and the status quo is maintained. In the course of
evolution both populations will become better at achieving their task. We have
visualized the Red Queen effect in a population of artificial plants.

Plants are usually represented as Lindenmayer systems or L-systems for
short [19]. Prusinkiewicz and Lindenmayer [19] have shown how complex, photo-
realistically looking plants can be created from a relatively small number of rules.
See Deussen et al. [3] for an introduction to the realistic modeling and render-
ing of plant ecosystems. Computer-simulated evolution of virtual plants was
pioneered by Niklas [16]. He performed an adaptive walk through a space of
branching patterns. Jacob [5–9] used a variant of genetic programming to evolve

context-free and context-sensitive L-Systems representing plants. He used a com-
bination of the number of blossoms, the number of leaves and the volume of the
plant as a fitness function. Two-dimensional plant morphologies were evolved by
Ochoa [17]. Kokai et al. [11, 12] also evolved L-Systems. They tried to generate
rules which, when executed and viewed, look identical to a given image. Mock
[15] developed a system where the user could take the role of a virtual gardener
selecting plants for reproduction. He also worked with an explicit fitness func-
tion that rewarded plants which are short but wide. Artificial models for natural
plant evolution were developed by Kim [10].

In contrast to most previous work on artificial plant evolution we allow in-
teractions between the plant and its environment. All plants are placed in the
same environment and evaluated together. Plants need to catch as much vir-
tual sunlight as possible in order to reproduce successfully. Because all plants
are evaluated inside the same environment, one plant may shadow the leaves of
other plants or it may even shadow its own lower leaves. If a plant reproduces
twice into the next generation, it will have to compete with a copy of itself.
We will see that after a short number of generations, maximum fitness starts to
fluctuate around a constant level. This contrasts sharply with a more continuous
evolution when plants are evaluated in isolation. However, even though fitness is
no longer rising, plants are still evolving and adapting to their environment. At
this point an evolutionary arms race [2] sets in. The plants need to grow higher
and higher in an attempt to gain more sunlight.

2 Plant Representation

Plants are modeled as deterministic, context-free L-Systems. A L-System is ba-
sically a string rewrite system where the individual letters of a word are trans-
formed according to a set of rules. The set of rules is applied to all letters in
parallel. A L-System is defined by an alphabet V , a starting word ω and a set
of rules P [19]. The starting word ω is a non-empty string ω ∈ V +. This word
is transformed using the set of rules. The set of rules is defined as a subset of
V × V +. Each rule consists of a predecessor a and a successor χ. Thus, a single
rule can be written as a → χ. The letter a will be replaced by the string χ

wherever it appears in the word. In case no successor is defined for a predecessor
a, it is assumed that the rule a → a also belongs to the set of rules P . This rule
leaves the letter a unchanged. By replacing all predecessors with their successors,
a new word is derived from the original one. This process is repeated 5 times
(for the experiments described in this paper). The final word is interpreted as a
sequence of commands for a three-dimensional drawing device.

Our alphabet consists of the symbols:

V = {f, l, +, -, <, >, /, \, [,], A, ..., Z}. (1)

The letter f produces a branch segment. It draws a cylinder and moves the
drawing device forward by a distance equal to the length of the cylinder. The
letter l produces a leaf. Here, the position of the drawing device does not change.

initial word: f
rules:

f → f\\<l[Afl]\\\-f

A → B-\f

B → CA

C → >

Fig. 1. Sample grammar of an evolved plant. The plant was evolved using coevolution
on a flat landscape.

All leaves of the plant have the same shape and size. These are the building blocks
which are used to build the plant. The symbols +, -, <, >, /, and \ can be used to
change the orientation of the drawing device. The orientation can by changed in
discrete steps of 22.5 degrees in both directions around any of the three axis of
the coordinate system. Thus, the sequence f+f creates a bent branch segment.
Branching structures can be created with the symbols [and]. Whenever the
symbol [is encountered during the interpretation of the drawing commands, the
current state, i.e. the three-dimensional position and orientation, of the drawing
device is pushed on a stack. Whenever the symbol] is encountered the topmost
state is popped from the stack. This restores the position and orientation of the
drawing device to a previously saved state. Thus, the sequence f[-f]+f creates
a Y-shaped branching structure. Additional symbols A through Z can be used to
define substructures. These symbols only play a role during development. When
interpreting the final word, they cause no operation. A sample grammar of an
evolved plant is shown in Figure 1.

3 Plant Evaluation

All individuals of a population are evaluated at the same time. Each individual
has a specific position (x, y) and orientation α inside an rectangular evaluation
area. Fitness is a function of the plant’s ability to collect sunlight as well as
the plant’s structural complexity. We assume that the sun is positioned directly
above the plant. The leaves of the plant may be used to collect virtual sunlight.
Figure 2 shows a plant viewed from above. The plant was rendered with OpenGL
using orthographic projection into a 512× 512 image. Shading calculations were
turned off. Cylinders were drawn in black and leaves in green. OpenGL uses a
technique called Z-buffer for hidden surface removal. Thus, the number of green
pixels in the image is a measure of the plant’s ability to collect sunlight. Use of
the Z-Buffer to estimate the amount of sunlight hitting a plant was proposed by
Beneš [1].

Fig. 2. The image on the left shows an image of the plant shown in Figure 1. The plant
is viewed from above, and rendered using orthographic projection. Leaves are drawn
with green color. The number of green pixels is used to calculate the plant’s fitness.
The image on the right shows the shadow of the plant. Offspring may grow anywhere
on this footprint of the plant. Thus a plant’s offspring are always placed in the parent’s
vicinity.

In a natural environment a plant faces competition from many sources. One
prime source of evolution may be the presence of other individuals. We have
modeled this by evaluating all individuals of the population at the same time.
All plants are rendered in a single image using orthographic projection. Each
plant is assigned a unique green color to draw the plant’s leaves. Cylinders are
again drawn in black. A sample population of 7 plants is shown in Figure 3. The
two images on the left show the plant population and the image on the right
shows the image which is used to determine the fitness values of the plants. If a
plant grows very tall it may shadow other plants. Thus, if coevolution is used,
there is an incentive for the plants to grow higher and higher. Note that this
type of coevolution does not use two separate populations. We only work with
a single population. All individuals of the population are evaluated in a single
environment.

The amount of light received is only one part of the fitness calculation. The
second part is due to the structural complexity of the plant. In our model a
branch segment costs 1 point and a leaf costs 3 points. This basic cost is mul-
tiplied with a factor which depends on the distance to the root of the plant.
Branches and leaves which are far away from the root are more costly than
branches and leaves which are close to the root. The structural complexity of a
plant is defined as

complexity =
∑

b∈B

costbranch · factorheight(b) +
∑

l∈L

costleaf · factorheight(l) (2)

where B is the set of branch segments, L is the set of leaves and height is the
number of branch segments between the current position and the root of the

Fig. 3. The two images on the left show 7 different evolved plants. Large plants shadow
smaller plants. The image on the right shows the image used to evaluate the plant’s
fitness values. Each plant has a unique color which is used to render the plant’s leaves.

plant. The following parameters were used during the experiments: factor =
1.1, costbranch = 1, and costleaf = 3. Fitness is calculated by subtracting the
structural complexity from the amount of light received:

fitness = 10 · pixels − complexity (3)

where pixels is the number of pixels covered by the plant’s leaves. The number of
green pixels is weighted with a factor of 10 which was determined experimentally.
If this value is too small, plants will not be able to grow very high as the number
of green pixels per plant is fixed when distributed evenly among all plants. On
the other hand, if this value is very large, plants have the potential to grow very
high. Negative fitness values are not allowed. If this occurs, the fitness is set to
zero.

4 Evolution of Artificial Plants

We use an evolutionary algorithm, a variant of genetic programming [13, 14] to
automatically generate new populations of plants [4]. To create the individuals
of the next generation we first chose a genetic operator at random. Depending
on the type of genetic operator one or two individuals are selected from the
original population. Parents are selected using tournament selection. This selec-
tion process does not depend on the spatial location of the plants. The following
genetic operators were used: permutation, mutation, insertion, add-branch, dele-
tion, one-point-crossover, sub-tree-crossover, delete branch, add-rule, delete-rule.
For a description of these operators see Ebner et al. [4]. Offspring are basically

created by making small changes to the selected individual (mutation) or by com-
bining segments of two selected individuals (crossover). Offspring are inserted
into the next generation until the generation is filled. Whenever an offspring is
created, we have to determine the position where it will grow. This position is
determined by rendering the plant using OpenGL with orthographic projection.
Cylinders and leaves are both drawn in black. A sample footprint of an evolved
plant is shown in Figure 2. From this footprint, we randomly select a position
to place the offspring. The orientation of the plant is chosen randomly. Thus,
offspring always grow in the vicinity of their parents.

5 Experiments

We ran experiments on three different landscapes. The landscapes were gener-
ated using Perlin noise [18]. The first landscape is essentially flat with small
height differences. Individuals are initially placed randomly within a small cir-
cular area in the center of the evaluation area. A population of 200 individuals
with tournament selection and a tournament size of 7 was used. The first gen-
eration contains only individuals with the single rule f → f. The starting word
is f. Therefore, all individuals of the first generation have a fitness of zero. Each
genetic operator was applied with a probability of 0.1 to generate an offspring.
Results for the flat landscape are shown in Figure 4. The second experiment was
carried out on a landscape with a large vertical slope. Results for this experi-
ment are shown in Figure 5. The third experiment was carried out on a landscape
where one fourth of the landscape was elevated. Results for this experiment are
shown in Figure 6.

In all three cases, maximum fitness stops increasing after generation 50. How-
ever, the evolutionary process has not come to a halt yet. Plants are still adapting
to their environment and changing their shape. Note, that we did not impose a
maximum height for the plants. However, the number of green pixels per plant is
fixed when distributed evenly among plants. Thus, this also limits the maximum
height attainable. Maximum complexity can be no larger than the first term
of the fitness function. Plants evolve to the point where no further increase in
structural complexity is possible. Plants all over the environment converged to
very similar looking plants. The best individuals of generation 250 are shown in
Figure 7.

6 Conclusion

Due to the Red Queen effect, evolution may occur even if fitness seems to remain
constant. We have shown this for a population of artificial plants. The plants
adapt to their environment even though maximum fitness starts to fluctuate
around a constant level. Plants were modeled using Lindenmayer systems and
evaluated using OpenGL. They need to catch virtual sunlight in order to repro-
duce. OpenGL proved to be very effective to evaluate the amount of sunlight
each plant receives. A similar mechanism was used to determine the position

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250

F
itn

es
s

Generation

Maximum
Average

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

G
re

en
 P

ix
el

s

Generation

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250

C
om

pl
ex

ity

Generation

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250

H
ei

gh
t

Generation

Fig. 4. Results for the experiment on a flat landscape. The first graph shows maximum
and average fitness over time. The second graph shows the number of green pixels, the
third graph shows plant complexity and the fourth graph shows the height of the best
plant of each generation. The images below show the population at generation 0, 4, 6,
7, 8, 9, 10, 14, 32, 64, 128, and 250. The population spreads from a small area in the
middle and eventually populates the whole area.

where offspring could be placed. Offspring were always placed in the vicinity of
their parent. Three types of environments were used to visualize the Red Queen
effect. An essentially flat landscape, a landscape with a large slope and a land-
scape with two height levels. In all three cases, instances of the plants quickly
populated the environment. After all of the environment was populated, an arms
race set in, which further shaped the plants. Plants need to outgrow their com-
petitors in order to gain sunlight. This lead to the evolution of higher and higher
plants.

0
10000
20000
30000
40000
50000
60000
70000
80000

0 50 100 150 200 250

F
itn

es
s

Generation

Maximum
Average

0

5000

10000

15000

20000

25000

0 50 100 150 200 250

G
re

en
 P

ix
el

s

Generation

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 50 100 150 200 250

C
om

pl
ex

ity

Generation

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250

H
ei

gh
t

Generation

Fig. 5. Results for the experiment on a landscape with a large slope. The images
below show the population at generation 0, 4, 6, 7, 8, 9, 10, 14, 32, 64, 128, and 250.
The population spreads from a small area on the right side, climbs up the slope and
eventually populates the whole area.

References

1. B. Beneš. An efficient estimation of light in simulation of plant development.
In R. Boulic and G. Hegron, eds., Computer Animation and Simulation 96, pp.
153–165, Springer-Verlag, Berlin, 1996.

2. R. Dawkins and J. R. Krebs. Arms races between and within species. Proc. R.

Soc. Lond. B, 205:489–511, 1979.

3. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and P. Prusin-
kiewicz. Realistic modeling and rendering of plant ecosystems. In SIGGRAPH ’98

Conf. Proceedings, Comp. Graphics, Orlando, FL, pp. 275–286. ACM Press, 1998.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250

F
itn

es
s

Generation

Maximum
Average

0

5000

10000

15000

20000

25000

0 50 100 150 200 250

G
re

en
 P

ix
el

s

Generation

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 50 100 150 200 250

C
om

pl
ex

ity

Generation

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250

H
ei

gh
t

Generation

Fig. 6. Results for the experiment on a landscape with two different height levels. The
images below show the population at generation 0, 4, 7, 8, 9, 10, 11, 15, 32, 64, 128, and
250. The population spreads from a small area in the lower right corner and eventually
populates the whole area.

4. M. Ebner, A. Grigore, A. Heffner, and J. Albert. Coevolution produces an arms
race among virtual plants. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and
A. G. B. Tettamanzi, eds., Genetic Programming: Proc. of the Fifth Europ. Conf.,

EuroGP 2002, Kinsale, Ireland, Springer-Verlag, Berlin, 2002.

5. C. Jacob. Genetic L-system programming. In Y. Davudor, H.-P. Schwefel, and
R. Männer, eds., Parallel Problem Solving from Nature – PPSN III. The Third

Int. Conf. on Evolutionary Computation. Jerusalem, Israel, pp. 334–343, Springer-
Verlag, Berlin, 1994.

6. C. Jacob. Evolution programs evolved. In H.-M. Voigt, W. Ebeling, I. Rechen-
berg, and H.-P. Schwefel, eds., Parallel Problem Solving from Nature – PPSN IV.

The Fourth Int. Conf. on Evolutionary Computation. Berlin, Germany, pp. 42–51,
Springer-Verlag, Berlin, 1996.

Fig. 7. Best individuals of experiments 1, 2, and 3. The fourth image shows a plant
which was evolved by evaluating the individuals in isolation. This mode of evalua-
tion produces a bush-shaped plant. It contrasts sharply with the plants evolved using
coevolution.

7. C. Jacob. Evolving evolution programs: Genetic programming and L-systems. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, eds., Proc. of the First

Annual Conf. on Genetic Programming, pp. 107–115, The MIT Press, Cambridge,
MA, 1996.

8. C. Jacob. Evolution and coevolution of developmental programs. Computer Physics

Communications, pp. 46–50, 1999.
9. C. Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan Kauf-

mann Publishers, San Francisco, CA, 2001.
10. J. T. Kim. Lindevol: Artificial models for natural plant evolution. Künstliche

Intelligenz, 1:26–32, 2000.
11. G. Kókai, Z. Tóth, and R. Ványi. Application of genetic algorithms with more

populations for Lindenmayer systems. In E. Alpaydin and C. Fyfe, eds., Int. ICSC

Symposium on Engineering of Int. Systems EIS ’98, University of La Laguna,

Tenerife, Spain, pp. 324–331, ICSC Academic Press, Canada/Switzerland, 1998.
12. G. Kókai, Z. Tóth, and R. Ványi. Evolving artificial trees described by para-

metric L-systems. In Proc. of the 1999 IEEE Canadian Conf. on Electrical and

Computer Engineering, Shaw Conference Center, Edmonton, Alberta, Canada, pp.
1722–1727. IEEE Press, 1999.

13. J. R. Koza. Genetic Programming. On the Programming of Computers by Means

of Natural Selection. The MIT Press, Cambridge, MA, 1992.
14. J. R. Koza. Genetic Programming II. Automatic Discovery of Reusable Programs.

The MIT Press, Cambridge, MA, 1994.
15. K. J. Mock. Wildwood: The evolution of L-system plants for virtual environments.

In Int. Conf. on Evolutionary Computation, Anchorage, Alaska, pp. 476–480, 1998.
16. K. J. Niklas. Computer-simulated plant evolution. Scientific American, 254(3):68–

75, 1986.
17. G. Ochoa. On genetic algorithms and Lindenmayer systems. In Parallel Problem

Solving from Nature - PPSN V, pp. 335–344, Springer-Verlag, Berlin, 1998.
18. K. Perlin. Noise, hypertexture, antialiasing and gesture. In D. S. Ebert, F. K.

Musgrave, D. Peachey, K. Perlin, and S. Worley, eds., Texturing and Modeling: A

Procedural Approach. 2nd Ed., pp. 209–274, AP Professional, Cambridge, 1998.
19. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer

Verlag, New York, 1990.
20. L. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1–30, July 1973.

