
Evolutionary Design of ObjetsUsing Sene GraphsMar EbnerUniversit�at W�urzburg, Lehrstuhl f�ur Informatik IIAm Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.dehttp://www2.informatik.uni-wuerzburg.de/staff/ebner/welome.htmlAbstrat. One of the main issues in evolutionary design is how to reatethree-dimensional shape. The representation needs to be general enoughsuh that all possible shapes an be reated, yet it has to be evolv-able. That is, parent and o�spring must be related. Small hanges to thegenotype should lead to small hanges of the �tness of an individual. Wehave explored the use of sene graphs to evolve three-dimensional shapes.Two di�erent sene graph representations are analyzed, the sene graphrepresentation used by OpenInventor and the sene graph representationused by VRML. Both representations use internal oating point variablesto speify three-dimensional vetors, rotation axes and rotation angles.The internal parameters are initially hosen at random, then remain�xed during the run. We also experimented with an evolution strategyto adapt the internal variables. Experimental results are presented forthe evolution of a wind turbine. The VRML representation produedbetter results.1 MotivationEvolutionary algorithms an be used to �nd strutures whih are optimal for agiven problem. In evolutionary design [4{6℄, eah individual represents a parti-ular shape. Geneti operators are used to hange these shapes. Seletion is usedto �nd strutures whih are suited for the given problem. The main questionto address is whih representation to use. Whih representation is best suitedto �nd shape? The representation has be be able to reate all possible shapes.In addition to this requirement the representation should be hosen suh thatparent and o�spring are losely related. If the �tness of parent and o�springare ompletely unorrelated we have a random �tness landsape and evolutiondegrades to random searh.So far, a number of di�erent representations have been used in evolutionarydesign. They range from diret enoding of shapes to generative enodings suhas L-Systems [7{9, 13℄. Several di�erent representations for three-dimensional ob-jets are known from the �eld of omputer graphis [17℄. Those representationswere reated to model three-dimensional objets and visualize them in a virtualenvironment. Some of these representations may also be used for evolutionary



design. In addition to being able to reate any possible shape these representa-tions need to be evolvable, that is, parent and hild have to be related. We areinvestigating a representation known from omputer graphis, a sene graph, forevolutionary design.2 Sene GraphA omputer graphis objet or entire sene an be stored in a sene graph. Asene graph is an ordered olletion of nodes. Several di�erent types of nodessuh as shape nodes, property nodes, transformation nodes, and group nodesexist. Shape nodes are used to de�ne elementary shapes suh as spheres, ubes,ylinders and ones. Property nodes an be used to de�ne the look of the elemen-tary shapes. The shapes are plaed at the origin of a loal oordinate system. Inorder to ombine di�erent shapes and to position these shapes relative to eahother we need transformation and group nodes. Transformation nodes hangethe urrent oordinate system. Using transformation nodes we an rotate, trans-late or sale the oordinate system any way we like. Group nodes an be usedto merge di�erent sene graphs. The ontents of the individual sene graphs areplaed in the same oordinate system.Two di�erent types of sene graphs are ommonly used. One is used by Open-Inventor [18℄, an objet-oriented library for 3D graphis, the other one is usedin the virtual reality modeling language (VRML) [1℄. In OpenInventor transfor-mation nodes are used as outer nodes of the tree. The sene graph is displayedby exeuting the ation stored in the root node and then traversing eah hildin turn. Transformation nodes hange the urrent oordinate system. All nodeswhih are exeuted after a partiular transformation node are inuened bythis transformation. To limit the inuene of the transformation nodes a spe-ial type of group node, alled separator node, exists. This group node storesthe urrent oordinate system on a stak before traversing its hildren. After allhildren have been traversed, the urrent oordinate system is restored. Objetsommonly have a separator at the root of the tree. Thus, suh objets an beombined easily to reate a larger sene.The sene graph used in VRML di�ers from the one used by OpenInventorin that transformation nodes are also separator nodes. In VRML transformationnodes are used as inner nodes of the tree. They hange the urrent oordinatesystem but this hange only a�ets the hildren of the transformation node.Thus, the distintion between separator nodes and group nodes is not neessaryin VRML. Figure 1 shows the di�erenes between an OpenInventor and a VRMLsene graph whih represent the same objet. Let us start with the VRML senegraph. The objet onsists of 4 ubes (A, B, C, and D). In VRML the objet isonstruted by positioning ube A (node 5) using a transformation node (node2). Next, ube B (node 3) is plaed at the origin. The transformation storedin node 2 only a�ets node 5 but does not a�et any other nodes. Cube C ispositioned relative to ube B and ube D is positioned relative to ube B. Thisis ahieved by positioning ube C (node 6) using a transformation node (node 4)



1

2

5 7

8

3 4

6

1

2 3 4 5 6 7

8 9

A

B

C

D

A

B C D

G

S

GA

BC

D

G

S

VRML Open Inventor

Group Node

Separator Node

Coordinate Transformation

CubeFig. 1. Di�erenes in the representation of the same objet between VRML and Open-Inventor. The same objet is represented one with a VRML sene graph and onewith an OpenInventor sene graph.followed by an additional transformation node (node 7) whih positions ube D(node 8) relative to the oordinate system of ube C. The transformation storedin node 4 a�ets all nodes below it (nodes 6, 7, and 8). Thus, ube D (node 8)is a�eted by two transformations (node 4 and 7).The OpenInventor sene graph has a di�erent struture. Cube A (node 9) ispositioned using a transformation node (node 8). The e�et of this transforma-tion is enapsulated using a separator node (node 2). Thus, the transformationstored in node 8 only a�ets node 9. It does not a�et any other nodes. Next,ube B (node 3) is positioned at the origin. Cube C is positioned relative toube B and ube D is positioned relative to ube D. The transformation storedat node 4 hanges the oordinate system and a�ets nodes 5, 6, and 7. Thetransformation stored at node 6 only a�ets node 7. Thus, ube C (node 5) isonly a�eted by the transformation node 4, whereas ube D (node 7) is a�etedby both transformations (node 4 and 6).Both sene graphs are trees and of ourse we an use geneti programmingto evolve suh sene graphs.3 Evolving Sene GraphsWe have used geneti programming [3, 10{12℄ to evolve sene graphs. Eah nodeis either a terminal symbol or an elementary funtion depending on the num-ber of arguments. Table 1 shows the elementary funtions and terminal symbolsused for the OpenInventor sene graphs. The elementary funtions and termi-nal symbols used for the VRML sene graphs are similar exept that the groupnode is not used and nodes Translate, TranslateX, TranslateY, TranslateZ,Rotate, RotateX, RotateY, RotateZ take two arguments. These transformationssave the urrent transformation matrix on a stak, evaluate their hildren andthen restore the original transformation matrix. In a sense, they work like om-



bined separator and transformation nodes. We also added a no-operation nodeto be able to add only a single subtree to a transformation node.Table 1. Elementary funtions and terminal symbols used for OpenInventor senegraphsName Internal Vars. Args. FuntionGroup none 2 Combines objets stored in subtrees.Separator none 2 Save urrent transformation matrix on stak, evalu-ate subtrees, pop transformation matrix from stak.Translate dx, dy, dz 0 Translates the oordinate system by [dx; dy; dz℄T .TranslateX dx 0 Translates the oordinate system by [dx; 0; 0℄T .TranslateY dy 0 Translates the oordinate system by [0; dy; 0℄T .TranslateZ dz 0 Translates the oordinate system by [0; 0; dz℄T .Rotate nx, ny, nz, a 0 Rotates the oordinate system by the angle a aroundthe vetor [nx; ny; nz℄T .RotateX a 0 Rotates the oordinate system around the X-Axis.RotateY a 0 Rotates the oordinate system around the Y-Axis.RotateZ a 0 Rotates the oordinate system around the Z-Axis.Cube w, h, d 0 Plaes a ube with dimensions w�h�d at the urrentposition.Sphere r 0 Plaes a sphere with radius r at the urrent position.Cylinder r, h 0 Plaes a ylinder with radius r and height h at theurrent position.
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Fig. 2. Eah node also ontains a number of internal variables. For instane, a trans-lation node ontains a vetor and a shape node desribing a ube ontains the size ofthe ube.Floating point variables may be stored inside eah node (Figure 2). For ashape node desribing a ube, these variables are used to speify the width,height, and depth of the ube. For a transformation node the variables are used tospeify the vetor whih translates the oordinate system. Thus, the topology ofthe objet is de�ned by the tree struture of the individual whih is evolved usinggeneti programming. The internal variables are initially seleted from a randomrange suitable for eah node. The values are set whenever a new node is reatedand then left unhanged during the ourse of the run. If a new subtree is reatedby the mutation operator, new nodes with new internal variables are generated.



These variables are thus similar to the standard ephemeral onstants exept thatthey are internal to a node. The internal variables are always exhanged withthe node during rossover.Mutation, and rossover operators are de�ned as usual. The mutation opera-tor �rst selets an individual. Next, a node is randomly seleted. Internal nodesare seleted with a probability of 90%, external nodes are seleted with a prob-ability of 10%. Then this node is replaed by a newly generated subtree. Thesubtree is generated with the grow method with a maximum depth of 6. If thenumber of nodes of the resulting individual is larger than 1000 or the depth ofthe tree is larger than 17, we add the parent to the next population instead. Therossover operator hooses two individuals. A random node is seleted in eahindividual and the two subtrees are swapped. Again, internal nodes are seletedwith a probability of 90%, external nodes are seleted with a probability of 10%.Constraints are imposed on the size of the individuals. If the number of nodesof an o�spring is larger than 1000 or the depth of the tree is larger than 17, weadd the parent to the next population instead.4 Evolving the Blades of a Wind TurbineAs a sample problem we have hosen to evolve the blades of a horizontal-axiswind turbine. We should note that our goal is to investigate the evolvabilityof di�erent representations for evolutionary design. We are not interested inatually �nding an optimal shape whih an be used for a real wind turbine.Indeed, the resulting shape looks more like a water than a wind turbine.
wind

blade

Fig. 3. A wind turbine is onstruted from three blades whih are rotated around aenter.To simulate the virtual mehanis we have used ODE (Open Dynamis En-gine) whih was developed by Smith [16℄. ODE is a library for simulating rigidbody dynamis in VR environments. ODE supports ollision detetion and ol-lision response of primitive geometry objets suh as ubes, spheres, apped



ylinders and planes. A apped ylinder is a ylinder with a half-sphere apat eah end. This type of ylinder is used by ODE beause it makes ollisiondetetion easier.A single individuals represents the shape of a blade of the turbine. The tur-bine is onstruted by adding three of the blades to a base (Figure 3). Eahblade is rotated by 120Æompared to the previous bade. A real turbine is movedby wind passing over both surfaes of an airfoil shaped blade [2℄. This ausespressure di�erenes between the top and the bottom surfaes of the blades. Wemodel wind as a �xed number of small spherial partiles. The partiles areplaed in front of the blade at random loations within a ertain radius aroundthe axis of the turbine.
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Fig. 4. Initialization and update of wind partiles. Wind partiles initially have astarting veloity of v0. During eah time step we apply a fore Fwind and a dampingfore Fd = ��dv to the partile.Eah partile initially has a starting veloity of v0 (Figure 4). The simulationis arried out for a �xed number of steps. During eah step we apply a foreFwind to eah wind partile. A damping fore Fd is also applied. This dampingfore is diretly proportional to the veloity of the partile Fd = ��dv. Thus,the total fore ating on a single wind partile is given byF = Fwind + Fd = Fwind � �dv:Collisions between wind partiles and the turbine's blades are deteted byODE. ODE alulates fores in response to ollisions between the blades andthe wind partiles. We don't allow ollisions between wind partiles as this isomputationally intratable. The wind partiles are only allowed to move withinthe volume of a virtual ylinder plaed around the turbine. If a wind partileleaves this ylinder it is again plaed at a random loation in front of the turbine.Fitness of an individual is de�ned as the average rotational energy of the rotor:�tness = 1steps stepsXi=1 12!iI!iwhere steps is the number of steps the simulation was done, I is the inertiamatrix of the turbine's rotor, and !i is the rotational veloity of the rotor attime step i.



5 ExperimentsExperiments were arried out with the following parameters. The rotor wasplaed at a height of 15 units above the ground plane. Maximum wind radiuswas set to 10 units. Wind partiles were reated 6 units in front of the rotor.Blades whose bounding box extends outside the virtual ylinder reeive a �tnessof zero. Blades whih are thiker than 4 units also reeive a �tness of zero.Spheres with radius 0.1 units were used as wind partiles. The number of windpartiles was set to 100. Eah partile has a starting veloity v0 = 1:5. Windfore Fwind was set to 0.03 units and �d, whih de�nes the amount of drag, wasset to 0.02. The simulation was arried out for 3000 steps.
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Fig. 5. Fitness statistis are shown for two experiments with a population size of 50individuals. One experiment used the OpenInventor sene graph to represent the bladesof a wind turbine. The other experiment used the VRML sene graph. The peak atgeneration 98 (maximum �tness of 1.957) resulted from a wind partile being aughtbetween the blade and the base of the wind turbine. This led to a large rotationalveloity of the rotor as the wind partile was freed.A population size of 50 individuals with tournament seletion of size 7 wasused. The best individual was always opied into the next generation. The pop-ulation was initialized using ramped half-and-half initialization with maximumdepths between 2 and 6. Mutation and rossover were applied with a probabilityof 50% eah. Figure 5 shows the results for both representations. Two evolvedwind turbine designs are shown in Figure 6. The wind turbine on the left wasevolved using the OpenInventor representation, the wind turbine on the right wasevolved using the VRML representation. The wind turbine whih was evolvedusing the VRML representation has a muh higher �tness (0.652) in omparisonto the turbine whih was evolved using the OpenInventor representation (0.105).



We then performed additional experiments to see if the VRML representation issigni�antly better than the OpenInventor representation. To exlude the pos-sibility that a partile was aught between the blade and the base of the windturbine we inreased the distane between the base and the rotor. Due to theamount of time required to evaluate a single run we were only able to perform10 runs for the OpenInventor representation and 10 runs for the VRML repre-sentation. A single run takes between one and three days to omplete. For eahsetup we ompared the maximum �tness ahieved after 200 generations with apopulation size of 50 individuals. A t-test was applied to analyze the results.The results with the VRML representation were signi�antly better than theOpenInventor representation (t=2.413).Eah subtree of the VRML sene graph is a substruture of the blade whihis enapsulated and an be exhanged using the rossover operation. With theOpenInventor representation the entire design may be disrupted by a singlemutation if group nodes are used instead of separator nodes. A single mutationan have a large impat beause transformations may inuene other subtrees.

�tness=0.105 �tness=0.652Fig. 6. Two evolved designs for the blades of a wind turbine. The one on the left wasevolved using the OpenInventor sene graph. The one on the right was evolved usingthe VRML sene graph.We also experimented with the use of an evolution strategy [14, 15℄ to adaptthe values of the internal parameters. The evolution strategy was nested inside ageneti programming loop. Rehenberg [14℄ desribes a method alled strutureevolution, where ontinuous parameters are adapted in an inner loop and dis-rete parameters are adapted in an outer loop. The same approah was followedhere. Geneti programming is used to adapt the topology of the objets and anevolution strategy is used to make small hanges to the struture. The geneti



programming loop was exeuted every n-th time step. We denote this type ofalgorithm as GPn=ES.Evolution strategies use Gaussian mutations to hange the variables. Let[v1; :::; vn℄ be n real valued variables. This vetor is mutated by adding a vetorof Gaussian mutations. Eah variable vi has an additional parameter Æi whihspei�es the standard deviation whih will be used to mutate the variable. Thestandard deviations are adapted by multiplying the standard deviations witheN(0;�) where N(0; �) is a Gaussian distributed random number with standarddeviation � . For our experiments we have set � = 0:05. This proess auto-matially adapts the step size of the mutation. Step sizes whih lead to largeimprovements are propagated into the next generation.GP10=ES GP20=ES

�tness=0.202 �tness=0.260Fig. 7. Evolved wind turbines using a mixed GP/ES algorithm for 200 generations.Figure 7 shows the results for wind turbines whih were evolved using thenested GP/ES algorithm. The wind turbine on the left was evolved using aGP10=ES-algorithm, the wind turbine on the right was evolved using a GP20=ES-algorithm. We again performed 10 runs for eah setup. The full set of statistisis shown in Table 2. The results of di�erent setups were ompared using a t-test.Table 3 shows if di�erenes were signi�ant at � = 0:05.Figure 8 shows the maximum �tness for all ten runs for eah setup. A possibleexplanation for these results is that bigger improvements ould be ahieved byvarying the topology of the shape as opposed to �ne-tuning the shape. If weapply an ES-mutation, all internal parameters are mutated at the same time.This auses the overall shape to hange a little from one generation to the next.However, if we apply a GP-mutation, the hange is loal to a subtree. A part ofthe struture may be added or removed. Larger �tness gains ould be ahievedby loally hanging the shape as opposed to varying the entire struture.



Table 2. Average and standard deviation of maximum �tness ahieved. Only 10 runsould be performed for eah algorithm due to the amount of time required to ompletea single run Algorithm � �IV GP 0.146944 0.051362IV GP10=ES 0.130383 0.083100IV GP20=ES 0.162535 0.129536VRML GP 0.341237 0.249383VRML GP10=ES 0.205339 0.148970VRML GP20=ES 0.269060 0.200728Table 3. Comparison of results using a t-testAlgorithm 1 Algorithm 2 jT j signi�ane at � = 0:05IV GP IV GP20=ES 0.536067 not signi�antIV GP IV GP10=ES 0.353820 not signi�antIV GP20=ES IV GP10=ES 0.660644 not signi�antVRML GP VRML GP20=ES 1.479385 not signi�antVRML GP VRML GP10=ES 0.712965 not signi�antVRML GP20=ES VRML GP10=ES 0.806116 not signi�antIV GP VRML GP 2.413064 signi�antIV GP20=ES VRML GP20=ES 1.389561 not signi�antIV GP10=ES VRML GP10=ES 1.410075 not signi�antAdditional experiments were made with a population size of 100 individuals.Figure 9 shows evolved wind turbines after 100 generations. The �rst wind tur-bine was evolved using the OpenInventor representation. The seond, third, andfourth wind turbines were evolved using the VRML representation. The seondwind turbine was evolved using the simple GP algorithm with �xed internalvariables. The third wind turbine was evolved using a GP10=ES-algorithm. Thefourth wind turbine was evolved using a GP20=ES-algorithm.6 ConlusionTwo di�erent sene graph representations for evolutionary design were analyzed.OpenInventor's sene graph is more volatile in omparison to a VRML senegraph. If group nodes are used, a single mutation may ompletely hange theoverall shape of the objet. Subtrees of a VRML representation are automati-ally enapsulated and may be extrated and plaed at other loations of thestruture. Floating point variables whih speify three-dimensional vetors, rota-tion axis or rotation angles are stored inside the nodes of the tree representation.These variables are initialized with random values from a spei� range. Afterinitialization, they remain unhanged for the life of the node. Signi�antly bet-
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Fig. 8. Fitness of best individual. Ten runs were performed for eah setup.OpenInventor VRML VRML VRMLGP GP GP10=ES GP20=ES
�tness=0.069 �tness=0.497 �tness=0.221 �tness=0.213Fig. 9. Results for a population size of 100 individuals after 100 generations.
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