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ABSTRACT
A digital sensor which is used inside a digital camera usu-
ally responds to a range of wavelengths. The response of
the sensor is proportional to the product of the irradiance
falling onto the sensor and the sensitivity of the sensor in-
tegrated over all wavelengths. Knowledge of the sensor’s
response function is important for colorimetry and the re-
search area of color constancy. Such data may not always
be available from the manufacturer of the camera. The sen-
sitivity of the imaging device is a result of the hardware
properties of the imaging chip, the lens and filters used, and
the post-processing done by the processor contained inside
the camera. We will be using an evolution strategy to ob-
tain the sensor response curves of a camera given a single
image of a calibration target.

Categories and Subject Descriptors
I.4.1 [Digitization and Image Capture]: Camera cali-
bration; G.1.6 [Optimization]: Constrained optimization;
G.1.6 [Optimization]: Global optimization

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Spectral Sensitivity, Evolution Strategies, Constraints, Cam-
era Calibration, Colorimetry

1. MOTIVATION
A digital camera is equipped with a sensor array which

measures the incident light in order to obtain an image of
the scene viewed. Filters are used to make the sensor ar-
ray respond to light in the red, green and blue parts of the
spectrum. The sensors are usually arranged in a matrix as
shown in Figure 1 which is called a Bayer pattern [1]. When
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the image is generated, data from adjacent sensors are in-
terpolated in order to obtain the RGB color for each image
pixel. Some imaging chips, e.g. the Foveon X3 sensor [16],
measure the RGB components for each image pixel. Some
cameras also use more than three sensors.

A sensor usually responds to a range of wavelengths. The
response of the sensor is proportional to the product of the
irradiance falling onto the sensor and the sensitivity of the
sensor integrated over all wavelengths. We will formalize
this below. The sensitivity of the sensor is not always avail-
able from the manufacturer of the camera. For instance,
for our research we are using a Canon 10D. Unfortunately,
the sensitivities of the imaging sensor could not be obtained
from Canon.

We will be using an evolution strategy [25, 28, 12] to ob-
tain the sensor response curves of a digital camera given a
single image of a calibration target. The sensitivity curves
are a result of the entire device which consists of the im-
age sensor, the lens together with filters which may be used
and also the internal processing done by the camera. Note
that the goal of this is not color calibration. We want to
obtain the sensor response curves given an imaging device
and a calibration target. Of course, once the sensitivities
are known, this information can also be used for colorime-
try [33, 19]. Knowledge of the sensor’s response function is
also important in the area of color constancy [32, 9, 10, 11].

A number of authors have already used evolutionary algo-
rithms for a variety of image processing applications. Some
have used evolutionary algorithms for camera calibration,
e.g Zhang and Ji [35] or Rodehorst and Hellwich [26], who
used a genetic algorithm or Cerveri et al. [4] who worked
with an evolution strategy. Johnson et al. [20] have used a
genetic algorithm for projector calibration.

In these cases, the internal or external parameters of either
a camera or a projector were determined using an evolution-
ary algorithm. More relevant to the research described here,
is the research of Carvalho et al. [3] who used a genetic algo-
rithm to maximize the prediction ability of an extended gen-
eralized cross-validation measure. In contrast to this work,
we will be using an evolution strategy where the sensitiv-
ities of the sensor are coded into the genotype. Because
of the use of integrated signals, the problem can only be
solved if appropriate constraints are enforced. Our research
focuses on how the necessary constraints such as positivity
or smoothness can be applied.

There is a large body of literature with regard to evolu-
tionary algorithms and constraint handling. Extensive sur-
veys can be found in [29, 22, 23, 34, 6]. Kuri-Morales and
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Figure 1: Bayer pattern (left). Filters are used to make the sensor respond in the red, green, and blue part
of the spectrum (right).

Gutiérrez-Garćıa [21] evaluate different constraint handling
approaches. Many researchers use penalty functions in or-
der to enforce constraints, e.g. [18, 17]. It has also be sug-
gested to provide a search direction from infeasible solutions
to feasible solutions [7]. A differential evolution approach
for constrained multi-objective optimization problems was
proposed by Sarker et al. [27]. Constraint handling via
multi-objective optimization was proposed by Coello Coello
[5]. Constraint handling via multi-objective optimization in
a multi-objective fitness context is described by Vieira et al.
[31]. Instead of using penalty functions, we can also enforce
hard constraints on the genotype. In this case, the genotype
is modified or repaired such that the constraint is enforced.
We will also be looking at how to incorporate smoothness
constraints. A new iterative method is proposed on how to
incorporate a smoothness constraint iteratively.

Before we describe the type of evolution strategy used, we
first formalize our model of color image formation.

2. THEORY OF COLOR IMAGE
FORMATION

A digital sensor measures the light reflected from the ob-
jects around us. Consider a single light source which illumi-
nates the scene. The radiance emitted by the light source
falls onto an object patch. Part of the irradiance is ab-
sorbed, the remainder is reflected. Eventually, the reflected
light will enter the lens of the camera or the ray of light will
disappear into infinity. Inside the camera, the irradiance
will be measured by a sensor array. At each image position
we will have one image sensor. Each image position has one
corresponding object patch. The correspondence will be de-
termined by the type of lens used. Let L(x, y, λ) be the irra-
diance at wavelength λ which is falling onto the object patch
corresponding to image pixel (x, y). Let R(x, y, λ) be the re-
flectance, i.e. the percentage of reflected light at wavelength
λ. The reflectance also varies with the position (x, y). Let
S(x, y) be the response characteristic of the sensor. Then
the energy measured by a single sensor I at position (x, y)
of the sensor array is given by

I(x, y) =

Z

S(x, y)R(x, y, λ)L(x, y, λ)dλ (1)

where the integration is done over all wavelengths λ to which
the sensor responds. This model is frequently used in col-
orimetry and color constancy [2, 8, 15].

A digital camera usually uses three different types of sen-
sors which primarily respond to the red, green and blue parts
of the spectrum. Let Si(λ) with i ∈ {r, g, b} be the response
curves of the three sensors, i.e

S(λ) = [Sr(λ), Sg(λ), Sb(λ)]. (2)

In this case, the energy measured by the three sensors will
be given by

I(x, y) =

Z

S(λ)R(x, y, λ)L(x, y, λ)dλ (3)

with I = [Ir(x, y), Ig(x, y), Ib(x, y)].
In case of a Lambertian surface which reflects light equally

in all directions, the result will be scaled by the scalar prod-
uct of the normal vector which points from the surface patch
into the direction of the light source and the normal vector of
the surface. Let nS(x, y) be the normal vector of the surface
patch and let nL(x, y) be the normal vector which points
into the direction of the light source. We use G(x, y) =
nT

S (x, y)nL(x, y) to denote the geometry factor. The geom-
etry factor scales all color channels equally and we obtain

I(x, y) = G(x, y)

Z

S(λ)R(x, y, λ)L(x, y, λ)dλ. (4)

When the measured image data is saved into an image, a
gamma correction is usually applied. Most often the sRGB
standard [30] is used to store images. The sRGB standard
uses the following transfer function [24].

gammasRGB(x) =

(

12.92x if x ≤ 0.0031308

1.055x
1

2.4 − 0.055 if x > 0.0031308

(5)
This transform has a linear section for small intensities. The
sRGB standard contains a power function with an exponent
of 2.4, however, the overall curve is best described by the
function

gamma(x) = x1/2.2. (6)

Modern cathode ray tubes have a gamma factor of 2.5, i.e.
they have a transfer function of gamma(x) = x2.5 which
results in an end-to-end gamma which is suitable for an of-
fice environment. The gamma correction together with the
non-linearity of the display device ensures that the colors
are accurately displayed. High quality flat panel displays
allow choosing the sRGB color space for display. Digital



Figure 2: IT8 calibration target made by Wolf Faust.
An IT8 target may be used to calibrate scanners or
similar imaging devices.

images are frequently stored using the sRGB color space.
When processing image data from a file we have to undo
this gamma correction such that the image data is again
linear.

3. OPTIMIZATION OF SENSOR
RESPONSE CURVES

In order to determine the response curves of the image
sensors used by the imaging device we first take an image of
a calibration target. Figure 2 shows an IT8 calibration tar-
get made by Wolf Faust. This calibration target consists of
22×12 different colored patches. A gray scale with 24 differ-
ent gray tones is located at the bottom ranging from white
to black. Along with the calibration target comes a com-
plete set of reflectances covering wavelengths from 390nm
to 700nm in steps of 10nm.

Before processing the data it is important to linearize the
data as described above, i.e. the gamma correction is un-
done. For each image patch we then compute the average
pixel value of the pixels which belong to the patch. Pixels
from the boundary of the patch are not included in the aver-
age as such pixels are considered to be linear combinations
of the two adjacent colors. This is because of the Bayer
pattern of the sensor that is used frequently. Such a sen-
sor is also used inside the camera model we experimented
with. Thus, for each image patch we now have the color I
which was measured by the sensor. For each patch we also
know the reflectances R(x, y, λ). The irradiance L(x, y, λ)
can be measured using a spectrometer. Alternatively, we
can also use a standardized illuminant where the spectral
power distribution is known. When we take an image of the
calibration target using a digital camera we have the option
of specifying the type of illuminant used. The illuminant
can either be set to a specific color temperature or it can
be set to one of sun, cloudy sky, neon light, light bulb or
flash. The camera then adjusts for the type of illuminant
used. Unfortunately, in most cases, it is not known what
internal processing is done by the camera. Since we assume
that the camera corrects for the illuminant L(λ), we have to
solve the following equation for S(λ)

I = G

Z

S(λ)R(λ)dλ (7)

where we have omitted the index (x, y) which refers to the
current patch.

The geometry factor G scales all color channels equally.
Thus, we can remove this factor by computing chromatici-
ties.

Î =
1

Ir + Ig + Ib
I (8)

We will use an evolution strategy [25, 28, 12] to find the
sensor response curves of the digital camera (a Canon EOS
10D) which took the image of the calibration target. Re-
flectance data is available from 390nm to 700nm in steps
of 10nm. Therefore we can optimize for the sensor response
curves S(λ) with λ ∈ {390nm, 400nm, ..., 700nm}. Evolution
strategies work with real valued genotypes. Since we have
three sensors, the genotype will consist of 3 × 32 floating
point values. Let xi be the values which have to be opti-
mized, i.e. we have x1 = Sr(390), x2 = Sr(400), ... x32 =
Sr(700), x33 = Sg(390), x34 = Sg(400), ..., x64 = Sg(700),
x65 = Sb(390), x66 = Sb(400), ..., x96 = Sb(700).

Evolution strategies mutate a genotype by adding a vec-
tor with normally distributed values. One can either use a
single standard deviation for all values or one can use sep-
arate standard deviations for each value which has to be
optimized. We will be working with separate standard devi-
ations. This has the advantage that the standard deviation
may be tuned to the parameter xi. Let σi be the standard
deviation for parameter xi. In this case, mutation of an
individual is defined as

σi := σie
N(0,σb) (9)

xi := xi + N(0, σi) (10)

where σb is the standard deviation which is used to mutate
the standard deviations σi. The genotype which we will be
using is shown in Figigure 3. Half of the genotype consists
of the standard deviations which are used to mutate the
parameters xi, the other half consists of the parameters xi.

4. ERROR MEASURE AND
INCORPORATING CONSTRAINTS

Each individual i represents a set of sensor response curves
S(λ). Using these response curves we can compute the in-
tensities such a sensor would measure for a given patch p.

Ii(p) =
X

λ∈{390,...,700}

S(λ)Rp(λ) (11)

Let Îi(p) be the corresponding chromaticities. Let Îact(p)
be the actual chromaticities which were obtained from the
image of the calibration target. Our error measure Efit is
then defined as

Efit =
X

p

“

Îi(p) − Îact(p)
”2

. (12)

This measures how good the estimated sensitivities explain
the actual data values. In other words, we compute the
squared differences between the output which would be ob-
tained using the response curves of the individual and the ac-
tual output which was obtained over all 288 image patches.
We want to minimize this error measure.

In addition, it is clear from the problem statement that
a sensor has a sensitivity larger than zero, i.e. S(λ) ≥ 0
for all wavelengths λ. We could either try to enforce these
constraints by augmenting the fitness function such that we
also optimize for positive sensitivities. However, we can also
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Figure 3: Each genotype represents three response curves for the three channels red, green, and blue. The
genotype consists of 96 parameters xi with i ∈ {1, ..., 96} (32 per channel) and 96 standard deviations σi,
which are used as mutation step sizes, i.e. we have a standard evolution strategy with automatic step size
adaptation. Decoding of the individual is also shown. We have x1 = Sr(390), x2 = Sr(400), ..., x96 = Sb(700).

enforce this constraint directly. In this case, we set a param-
eter to zero should it become negative.

xi :=

(

xi if xi ≥ 0

0 otherwise
σi :=

(

σi if xi ≥ 0 or σi ≤ σmin

σmin otherwise

(13)
Since we compare only chromaticities, the result is invari-

ant to uniform scaling of all sensitivities. This gives us the
constraint that the maximum sensitivity can be normalized
to 1. Again this could be incorporated into the fitness func-
tion or we could enforce it directly. In the latter case, we
could - after mutation of individuals - normalize the sensi-
tivities of the individual such that the maximum sensitivity
is 1.

xi := xi/s where s = max{xi|i ∈ {1, ..., 96}} (14)

We may also try to enforce a smoothness constraint, as-
suming that the sensitivities of the sensors vary smoothly.
This could also be incorporated into the fitness function.
Alternatively, we could enforce the smoothness constraint
by smoothing neighboring parameters of the individual. Let
p be a smoothing parameter. Then we could smooth neigh-
boring parameters as follows.

xi :=

8

>

<

>

:

(1 − 1
2
p)xi + 1

2
pxi+1 if i = 1, 33 or 65

(1 − 1
2
p)xi−1 + pxi + (1 − 1

2
p)xi+1 otherwise

1
2
pxi−1 + (1 − 1

2
p)xi if i = 32, 64 or 96

(15)
Instead of enforcing the constraints by modifying the geno-

type, we could try to enforce these constraints via the fitness
function. We have already defined the main error measure

Efit above. We could augment this error measure by incorpo-
rating additional terms which measure the deviation below
zero Ezero, normalization Enorm and the smoothness of the
sensitivity Esmooth. These components can be defined as

Ezero =
X

i

y2
i with yi =

(

xi if xi < 0

0 otherwise
(16)

Enorm = (1 − s)2 (17)

where s = max{xi|i ∈ {1, ..., 96}}

Esmooth =
X

b∈{0,1,2}

X

i∈{2,...,32}

(x32b+i−1 − x32b+i)
2(18)

The overall error measure would then be given by

E = w1Efit + w2Ezero + w3Enorm + w4Esmooth (19)

where the weights wi may be set to influence the relative
importance of the constraints.

5. EXPERIMENTAL RESULTS
For our experiments, we have used a (100, 500) evolution

strategy [25, 28, 12], i.e. 100 parents produce 500 offspring.
For each offspring, two parents are randomly selected and
a 2 point crossover operator is applied. Only one offspring
is actually used. Then the mutation operator is applied as
described above. Parameters of xi were initialized uniformly
from the range [0, 1]. The standard deviations were initial-
ized randomly from the range [0.01, 0.0001] and σb was set
to 0.01. We are using a comma evolution strategy. The
best 100 are selected among the offspring as parents for the
next generation. Using this scenario we ran 7 experiments.



Table 1: List of experiments. Different types of fitness functions and constraints on the genotype of the
individual were used. For each experiment, 10 individual evolutionary runs of 1000 generations were made.

Exp. Fitness Directly Enforced Constraints
A EA = Efit none
B EB = Efit + Ezero + Enorm + Esmooth none
C EC = w1Efit + w2Ezero + w3Enorm + w4Esmooth none
D Pareto optimization using (Efit, Ezero, Enorm, Esmooth) none
E EE = Efit Eqn. 13
F EF = Efit Eqn. 13, Eqn. 14
G EG = Efit Eqn. 13, Eqn. 14, Eqn. 15

The different experiments are summarized in Table 1. For
experiment A, the error measure was solely determined by
the fit to the data. For experiment B, the error measure
was set to the sum of the error measures describing the fit
to the data, the positivity of the parameters, the normaliza-
tion, and the smoothness. For experiment C, we also used
the sum over the different error measures, however this time
each term is weighted such that the sum of a single term
over all individuals of the population is equal to 1. In other
words, each term is equally important. Experiment D uses
pareto optimization [14, 13]. Each individual is assigned a
rank according to the number of individuals which dominate
that individual. Best individuals are assigned rank 0. In-
dividuals which are dominated by one other individual are
assigned rank 1 and so on. Note that, for each generation,
we are selecting 100 parents among 500 offspring. It may
well be that more than 100 individuals have rank 0. In this
case, we have to decide which individuals are actually se-
lected. We resolve this problem by augmenting the rank ri

of the individual i with a percentage pi which is computed
as follows

pi =
EC(i)

4
(20)

where EC(i) is the error measure computed for individual i
of the population as described in experiment C. Since each
term of EC is less than or equal to one, we have 0 ≤ pi ≤
1. Then the augmented rank r̂i is given by r̂i = ri + pi.
Selection is done using r̂.

Experiments E through G all use constraints on the geno-
type. For experiment E, we have limited all parameters to
positive values using Eqn. 13. For experiment F, we have
used the positivity constraint by applying Eqn. 13 and we
also used the normalization by applying Eqn. 14. For ex-
periment G, we have used the constraints of Eqn. 13 and
Eqn. 14 and in addition also used the smoothness constraint
of Eqn. 15.

For each experiment, 10 runs with different seeds for the
random number generator were carried out. Figure 4 shows
the minimum, average and maximum of the error measure
Efit over all generations shown for the run which produced
the lowest error measure Efit. Figure 5 shows the results
we obtained. For each experiment, the best individual (ac-
cording to Efit) from all 10 runs is shown. For experiment
D, we chose the individual having minimum distance to the
origin using the same weighting as was used for experiment
C among the individuals of the pareto front. The standard
deviation of the minimum obtained error measure Efit was
0.095, 0.169, 4.209, 3.583, 0.210, 0.116, and 0.412 for exper-
iments A, B, C, D, E, F, and G respectively. Experiments
C, and D have a larger standard deviation in the results

obtained. This is of no surprise as for these experiments,
multi-objective optimization was used. The minimum er-
ror measure Efit for the data over all 10 runs was 7.092,
8.674, 52.764, 22.258, 10.623, 10.334, 15.441 for experiments
A through G. It is clear that the results obtained in exper-
iment A do not describe a physical sensor which responds
positively to light. There are a large number of wavelengths
for which the sensor responds negatively. Incorporating ad-
ditional constraints into the fitness function provides only
limited success. Constraining the genotype as done in ex-
periment G works best. We now obtain a smooth sensor
response function and see how the sensors actually respond
to light in the red, green and blue parts of the spectrum.

6. CONCLUSION
We have used an evolution strategy to find the response

curves of the sensors used inside a digital camera. Individu-
als were represented as floating point vectors describing the
sensitivity of the sensors for each wavelength. Obtaining
sensor response curves is not as straight forward as our ex-
periments have shown. Although a very good fit to the data
could be obtained, this was not enough. Constraints had
to be enforced on the genotype in order to obtain plausible
response curves.
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