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Abstract. In color image processing, several sensors are used which re-
spond to the light in the red, green and blue parts of the spectrum.
When working with color images taken by an optical system it is very
important to know the sensitivity of the entire optical system. The op-
tical system consists of the sensor, lens and any filters which may be
used. The response characteristics of the lens and filters can be mea-
sured inside the laboratory. However, for many digital cameras it is not
clear how the sensors contained inside the camera respond to light. This
information may not be available from the manufacturer of the camera.
Even if we knew the response characteristics of the sensor, it may not
be clear what algorithms are employed by the manufacturer before the
data is finally stored as an image file. We show how genetic programming
may be used to obtain the sensor response functions using a single image
from a calibration target as input together with the reflectance data of
this calibration target.

1 Motivation

The sensor array contained inside a digital camera measures the incident light.
For many digital cameras, data about how the sensor responds to light is not
publicly available because this data may not be released by the manufacturer.
Knowing how the RGB values stored inside the image depend on the irradiance
entering the lens of the camera is very important for colorimetry [1,2] and the
research area of color constancy [3,4,5,6,7]. We show how genetic programming
[8,9,10] can be used to obtain the sensor response functions using an image from
a calibration target as input.

A standard sensor consists of a single type of light sensitive sensor and dif-
ferently colored filters which are placed in front of the sensor to make it respond
to light in the red, green and blue parts of the spectrum. These sub-pixel sen-
sors are often arranged in a pattern which is called a Bayer pattern [11]. A full
color image is obtained by interpolating the data from adjacent sensors. Other
types of sensors where all three components of the incident light are measured at
the same position also exist. Imaging chips which measure more than the three
components red, green, and blue have also been developed.



The response of a sensor for a given wavelength is proportional to the irra-
diance falling onto the sensor times the sensitivity of the sensor for that given
wavelength. The energy measured by the sensor is obtained by integrating over
all wavelengths. If we know the irradiance falling onto the optical system and
also know the energy measured by the sensor, then we can formulate an opti-
mization problem in order to find the sensitivities of the optical system. Data
is typically measured at intervals of 10nm. Therefore, we have 32 data points
inside the visible range from 390nm to 700nm. Finding the sensitivity of an op-
tical system is basically an optimization problem where the 32 sensitivities at
positions {390nm, 400nm, ..., 700nm} have to be found.

A number of different problems in image processing have been addressed by
the evolutionary computation community. Zhang and Ji [12] as well as Rode-
horst and Hellwich [13], have used a genetic algorithm for camera calibration.
An evolutionary strategy was used by Cerveri et al. [14] to obtain the internal or
external parameters of a camera. Johnson et al. [15] used a genetic algorithm for
projector calibration. Carvalho et al. [16] has used a least squares approach to
obtain the response function of a sensor. A genetic algorithm was used to maxi-
mize the prediction ability of an extended generalized cross-validation measure.

Ebner [17] was the first to apply an evolutionary strategy [18,19] to obtain
the sensor response curves of an optical system. Due to the type of problem,
constraints have to be enforced in order to solve it. Ebner has shown that best
results were obtained by enforcing the constraints directly on the genotype. We
will show how genetic programming can be used to find a solution to this type
of problem. By properly choosing the set of terminal symbols and the set of
elementary functions, constraints are enforced naturally.

This article is structured as follows. First, we describe the model of color
image formation. We then explain how finding the response curves of an optical
sensor can be defined as an optimization problem. Next, we show how genetic
programming can be used to find a solution to this problem. We performed
experiments on simulated data where the ground truth is known and also ob-
tained the sensor response curves for two commercially available digital cameras.
Conclusions are given at the end of the paper.

2 Theory of Color Image Formation

Suppose that we use our optical system to take an image of a calibration target
illuminated by a light source of known spectral power distribution. A calibration
target consists of many differently colored patched of known reflectances. The
optical system measures the light which is reflected from the calibration target.
Let Np be the number of colored patches on the calibration target. Let E(p, λ)
be the irradiance which is falling onto patch p at wavelength λ. Some of the
irradiance is absorbed by the patch, the remainder is reflected and may enter
the lens of the camera. Let R(p, λ) be the reflectance of patch p at wavelength
λ. We will assume that the optical system is using three sensors which measure
the light in the red, green and blue parts of the spectrum. Let Si(λ) be the



sensitivity of the sensor i ∈ {r, g, b}. Then the energy Ii(p) measured by sensor
i for patch p is modeled as

Ii(p) =

∫
Si(λ)R(p, λ)E(p, λ)dλ. (1)

The integration is performed over all wavelengths to which the sensor responds.
This model of color image formation is used by many algorithms in colorimetry
and color constancy [20,21,22].

We now assume that the calibration target is a Lambertian reflector, i.e. an
object which reflects the incident light in all directions. Let the radiance given
off by the light source which illuminates the calibration target be L(λ). Then
the irradiance falling onto the calibration target is simply E(p, λ) = L(λ) cos α

where α is the angle between the normal vector nS describing the orientation
of the calibration target and the unit vector nL pointing into the direction of
the light source from the object patch. Hence, the energy Ii(p) measured by the
sensor i for object patch p is given by

Ii(p) = G(p)

∫
Si(λ)R(p, λ)L(λ)dλ (2)

where G(p) = nSn
T
L(p) = cosα is a geometry factor. The geometry factor scales

all channels equally.
Digital cameras usually do not save the energy data measured by the sensors.

Most produce an output image using the sRGB color space [23]. If the sRGB
color space is used, then the measured data is stored in a non-linear way such
that the non-linearity of the output device is compensated for. This is called
a gamma correction. If we process such images of our calibration target, then
this gamma correction needs to be undone such that the processed color data
depends linearly on the measured data. Some digital cameras also allow the user
to select that the raw measured data be stored in an image file. In this case, the
raw data can be processed directly. From now on, we will assume that our optical
system produces RGB color triplets ci as output and that we have ci = Ii.

3 Evolving the Sensitivities of an Optical System

We now show how evolutionary computation can be used to estimate the sensi-
tivities of an optical system. Figure 1 shows the data flow which is used by our
system. First an image of a calibration target is taken with the optical system.
For our experiments we will be using a standard IT8 calibration target made by
Wolf Faust. Such targets are frequently used for calibration of scanners or other
optical systems. This calibration target consists of 22×12 colored patches at the
top and 24 different gray patches at the bottom. It comes with a complete set
of reflectances for each of the patches for wavelengths 390nm to 700nm in steps
of 10nm.

Once an image of the calibration target has been taken, the pixel values of
each patch are averaged in order to obtain a single color measurement c(p) =
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Fig. 1. Data flow of the method to obtain the sensitivities of an optical system. First,
the optical system is used to take an image of the calibration target with known
reflectances. The reflectance data is used by the evolutionary algorithm to compute
the fitness of possible solutions to this problem. After several generations, the optimal
sensitivities found by the evolutionary algorithm are output.

[cr(p), cg(p), cb(p)] for each patch p. Pixels close to the border of a patch are not
included in the average as they are assumed to be linear combinations of the
adjacent colors. Thus, we now have a virtually noise free measurement c(p) =
I(p) for each patch p. The calibration target comes with known reflectance data
R(p, λ) for each patch p for each wavelength λ. Before we can solve Equation
2 for S(λ) = [Sr(λ), Sg(λ), Sb(λ)], we also need an estimate of the radiance
L(λ) which is emitted by the light source. One way to obtain the radiance is to
measure it using a spectrometer. Another way is to use a light source which has
a known spectral power distribution.

Digital cameras usually perform some kind of white balancing. They correct
the image colors for the spectral power distribution of the illuminant. Most
consumer cameras either perform automatic white balancing or allow the user
to set one of several possible illuminants, such as sun, cloudy sky, neon light,
light bulb or flash. Given such a camera, it is best to set the white balance to sun
and then take an image of the calibration target on a sunny day. Professional
cameras allow the user to choose a particular color temperature. In most cases, it
is not known what processing is actually performed inside the camera to obtain
the RGB color triplets from the measured data.



Since we have assumed that we took appropriate measures to control the
illuminant and that the camera corrects for the type off illuminant used, we now
have to solve the following equation to obtain S(λ).

c = G

∫
S(λ)R(λ)dλ (3)

Note that the geometry factor G scales all color channels equally. It can be
removed by computing chromaticities ĉ.

ĉ =
1

cr + cg + cb

c (4)

We will be coding the sensor response curves S(λ) as the individuals of our
evolutionary algorithm. Given an individual which represents a particular set
of sensor response curves, we can then compute how well this set describes the
actual set of response curves. In order to determine the fitness of an individual,
we compare the measured chromaticities ĉM (p) which were obtained from the
image of the calibration target with the theoretical chromaticities ĉT (p) which
are computed using the known reflectances for all patches p.

The known reflectances Rp(λ) are used to compute the theoretical chromatic-
ities ĉT (p) for patch p. Let S(λ) be the sensor response curve represented by a
particular individual. Then the theoretical response is given as

cT (p) =
∑

λ∈{390,...,700}

S(λ)Rp(λ). (5)

Let ĉT (p) be the corresponding chromaticity, i.e.

ĉT (p) =
1∑

i ciT (p)
cT (p). (6)

The deviation Efit between the theoretical and the measured response is our
error measure

Efit =
∑

p

(ĉT (p) − ĉM (p))2 . (7)

In other words, we compute the sum of the squared differences between ĉT and
ĉM over all 288 image patches of the calibration target. The error measure Efit

describes how well the sensitivities of any given individual match those of the
optical system. We want to minimize this error measure. A perfect individual
would have Efit = 0.

4 Obtaining the Sensitivities of an Optical System using

Genetic Programming

Ebner [17] has previously used an evolutionary strategy to obtain the sensor
response curves Si(λ) which closely match the sensor response curves of an op-
tical system. An evolutionary strategy is usually used for parameter optimiza-
tion. For this type of problem, an individual is simply a vector of floating point
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Fig. 2. Evolutionary strategy representation. The sensitivity of the three sub-sensors
is stored consecutively inside the genotype. The drawback of this representation is
that two adjacent sensitivities are independent from each other leading to a response
function which may not necessarily be a smooth response function.

values which represents the sensitivities of the three sub-sensors at positions
{390nm, 400nm, ..., 700nm}. Such an individual is shown in Figure 2. Due to the
type of problem, the search space has to be constrained in order to guide evolu-
tion into the correct part of the search space. Here, we have several constraints.
The first constraint is that the real sensor response curves are positive for all
wavelengths λ, i.e. we have Si(λ) ≥ 0. Another constraint is that the sensor re-
sponse curve is smooth without any discontinuities. Due to the computation of
chromaticities, we also have the constraint that a uniform scaling of all parame-
ters will not change the result. These constraints can be enforced either through
the fitness function or through a repair mechanism on the genotype. Ebner [17]
showed that enforcing all the constraints directly on the genotype produced best
results.

Instead of encoding an individual as a floating point vector and then enforcing
the constraints on the genotype, one may also use a more natural representa-
tion for this type of problem. The sensitivity of a sensor is usually Gaussian
shaped. One can consider the sensitivity as a combination of Gaussians. This
leads us to a genetic programming representation where the terminal symbols
are Gaussians which have a particular position and standard deviation inside
the visible spectrum and the set of elementary functions simply consists of the
addition function. This representation is shown in Figure 3. The nodes are Gaus-
sian functions which depend on the wavelength λ. The internal nodes are used
to combine these Gaussian functions.

The set of elementary functions and terminal symbols is shown in Table 1.
The terminal symbol sG(µ, σ) computes the following function.

sG(µ, σ) = se−
(λ−µ)2

2σ2 (8)
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Fig. 3. Genetic programming representation. The response function of a sensor con-
sisting of three sub-sensors responding to light in the red, green, and blue part of the
spectrum is represented by three trees.

Table 1. Set of elementary functions and terminal symbols.

Name Symbol Arity Internal Variables

Gaussian G 0 (s, µ, σ)
Addition + 2 none

The three variables s, µ and σ are stored inside each node. The internal param-
eter s specifies the strength of the Gaussian, µ specifies its position within the
visual spectrum and σ specifies the standard deviation of the Gaussian. Addi-
tion is used as the only elementary function. This representation allows us to
naturally enforce the constraints. The evolved sensor response curves are simply
added Gaussians. Therefore, the evolved sensor response curves are smooth and
also fulfill the constraint that the curves are positive for each wavelength λ.

Individuals of the first generation are generated randomly. We then select
one of the genetic operators at random. The list of genetic operators are shown
in Table 2. Several operators change the structure of the individual, i.e. the trees,
while one evolutionary strategy type of mutation operator modifies the internal
parameters of all nodes. Offspring are generated until the new population is
filled. This process is then iterated for several generations.



Table 2. Genetic programming operators.

Name of Operator Method to generate offspring

Mutation-ES Evolutionary strategy type of mutation. All nodes of the in-
dividual are mutated by adding Gaussian distributed random
numbers to the internal parameters. Each internal parameter
x has an associated standard deviation δ which is mutated
using δ := δeN(0,τ). The parameter x is then mutated using
x := x + N(0, δ). N(µ, σ) denotes a random number having
a normal distribution with mean µ and standard deviation
σ.

Mutation-GP An individual is selected from the parent population. A ran-
dom node of a random tree of this individual is chosen. In-
ternal nodes are chosen with a probability of 90%. External
nodes are chosen with a probability of 10%. A new sub-tree
is generated and replaces the chosen node.

Extend-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is cho-
sen. The chosen terminal node is replaced by the elementary
function “Addition”. A new terminal node is generated. The
new terminal node and the node that was previously chosen
become the child nodes of the newly generated elementary
function.

Prune-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is
chosen. The parent node of the chosen terminal node is re-
placed by the other sub-tree of the parent node. If the tree
only consists of a single terminal node then a new terminal
node is generated replacing the old one.

Crossover Two individuals are selected from the parent population. A
random sub-tree is selected within the same random tree of
both individuals. The two sub-trees are then exchanged be-
tween the two individuals. For each crossover, we only gen-
erate a single offspring. The second offspring is discarded.

Tree-Crossover Two individuals are selected from the parent population. We
generate one offspring selecting the trees for the offspring
from either the first or the second parent.

5 Experiments

A population size of 1000 individuals was used. It was evolved for 1000 gener-
ations. Thus, a total of 106 fitness evaluations were performed. All individuals
from the first generation consisted of three Gaussians (one for each tree) with
random positions along the range from [390, 700] and standard deviations from
the range [1, 100]. An evolutionary strategy type of mutation was used to opti-
mize the strength, the position as well as the standard deviations of all Gaussians
of an individual. We are using a standard evolutionary strategy mutation oper-
ation with automatic step size adaptation, i.e. each internal parameter has an



associated standard deviation. The mutation step size was initialized to σ = 0.01
and the variation of the step size was set to 5%, i.e. τ = 0.05. The remaining
genetic operators modify the structure of the individual.

The best individual was always reproduced once into the next generation. The
remaining individuals of the population were filled using the following percent-
ages: Mutation-ES (90%), Mutation-GP (2%), Extend-Mutation (2%), Prune-
Mutation (2%), Crossover (2%), Tree-Crossover (2%). Tournament selection with
a tournament size of 5 was used to select individuals. A human would probably
approach the problem by first adapting the position and standard deviation of
the single Gaussian for each tree and then refining this solution using additional
Gaussians as needed. That’s why we applied the evolutionary strategy type of
mutation much more frequently than the other operators.
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Fig. 4. Three different sensor response functions which are used to evaluate the evolu-
tionary algorithm.

We first evaluated the proposed method on two sample problems where the
ground truth data is known. We generated synthetic response functions by over-
laying Gaussians. These two synthetic response functions are shown in Figure
4. A virtual calibration target with known reflectances was also created. The
synthetic response functions were then used to compute the response of the sim-
ulated sensor using Equation 5. The evolutionary algorithm evaluates the fitness
of an individual using Equation 7. Since we know the actual response function
S(λ), we can evaluate how well the evolved response function S̃(λ) matches this
data. For this evaluation, the evolved response function is normalized such that
the maximum response is 1.0. The fit to the actual data is then evaluated by
computing

Eactual =
1

96

∑
λ∈{390,...,700}

∑
i∈{r,g,b}

(Si(λ) − S̃i(λ))2. (9)

The results obtained for both synthetic response functions are shown in Table
3. A total of 10 runs were performed for each sample problem. The table shows



Table 3. Experimental results obtained during 10 different runs. The standard devia-
tion is shown in round brackets.

Exp Efit Eactual

Test 1 0.0024(0.0030) 0.0033(0.0092)
Test 2 0.0517(0.0226) 0.0057(0.0024)

the average minimum error measure Efit and also the average deviation between
the evolved solution and the actual sensor response function Eactual. The stan-
dard deviations are also shown. The best of the evolved individuals during all 10
runs is shown in Figure 5. The best individuals approximate the actual sensor
response curves quite well. However, a problem of this approach is also apparent.
Gaussians with a small standard deviation may be introduced which only have
a small impact on the fitness of the individual and hence are only eventually
removed. At present, it is not clear whether the approach of Ebner [17] or the
approach presented here is better suited to this problem. This will be evaluated
in future research.
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Fig. 5. Best evolved sensor response curves during all 10 runs for the two experiments.

Apart from testing the proposed method on artificial data, we also used it to
obtain the sensitivities of two commercially available digital cameras: a Canon
10D and a FujiFilm FinePix F30. The results obtained are shown in Figure 6.

6 Conclusion

Knowing the spectral sensitivity of an optical system is very important for color
vision research. The spectral sensitivities are a result of the type of sensor used
and are also influenced by the type of lens and filters which are placed in front
of the sensor. We have shown how genetic programming may be applied to this
type of problem. The method uses a calibration target with known reflectances.
The optical system is used to take an image of the calibration target. Evolution
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Fig. 6. Best evolved sensor response curves for two commercially available cameras: a
Canon 10D with an EF 28-135mm 1:3.5-5.6 IS USM Canon lens and an UV filter and
a FujiFilm FinePix F30.

then searches for sensor response curves which reproduce the colors shown in the
image of the calibration target. Previously, evolutionary strategies were used to
address this problem. Constraints have to be enforced in order to produce a
physically plausible sensitivity. This is because the energy measured by a sensor
is given by integrating over a range of wavelengths. With our approach the
constraints are naturally fulfilled by the type of representation used. We simply
represent a sensor response curve as the sum over several Gaussians represented
as a tree. The shape of this tree is evolved using genetic programming. Internal
parameters which define the position and standard deviations of the Gaussians
are evolved using an evolution strategy. We have used two sample problems
where the ground truth data is available to evaluate the approach. We then
applied this method to obtain the sensor response curves of two commercially
available digital cameras.
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