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Abstract Light, which is reflected from an ob-
ject, varies with the type of illuminant used.
Nevertheless, the color of an object appears to
be approximately constant to a human observer.
The ability to compute color constant descrip-
tors from reflected light, is called color con-
stancy. In order to solve the problem of color
constancy, some assumptions have to be made.
One frequently made assumption is that on av-
erage, the world is gray. We address the prob-
lem of color constancy and focus on the use of
space average color for color constancy. Instead
of computing global space average color we sug-
gest to use local space average color as the il-
luminant frequently varies across an image. We
discuss several different methods on how to com-
pute local space average color. The performance
of the different algorithms as well as related
algorithms is evaluated on an object recogni-
tion task. Algorithms based on local space aver-
age color are simple, yet highly effective for the
problem of color constancy. Such algorithms are
particularly suited for object recognition tasks.
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1 Motivation

Let us take some kind of sensor such as analog
film or a digital sensor array with which we take
an image from a scene. The sensor measures the
light which is reflected from the objects. The re-
flected light depends on the response function of
the sensor, on the material properties of the ob-
jects and the type of illuminant used. Assuming
a narrow band response function for the sen-
sors, the response is roughly proportional to the
reflectance of the object times the intensity of
the illuminant for a particular wavelength. Sup-
pose that we have a wall which reflects light
uniformly for all wavelengths, i.e. a white wall,
and that the wall is illuminated using light from
a light bulb with more energy in the red and
green parts of the spectrum compared to the
blue part of the spectrum, i.e. a slightly yellow-
ish light source. When the light is reflected from
the wall and measured by the sensor it will ap-
pear to be yellow. Thus, if we take an image
of the white wall which is illuminated by the
yellowish light source, then the wall will appear
yellow instead of white in a photograph. How-
ever, it is clear to a human observer, that the
wall is white and not yellow. The human vi-
sual system is somehow able to compute color
constant descriptors from the light entering the
eye. This ability is called color constancy (Zeki,
1993; Ebner, 2007a).

Computing color constant descriptors is ob-
viously very important for consumer photo-
graphy. The colors shown in a photograph
should be exactly the same colors as perceived
by the observer at the time when he or she took
the photograph. If we had a correct model of
human color vision Ebner (2007b), we would be
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able to produce prints which would satisfy am-
ateur photographers all around the world.

However, color constancy is also very impor-
tant for object recognition tasks as well as a va-
riety of methods from machine vision which rely
on color images. Quite often algorithms work
in one particular lighting condition but not in
another one. Color based object recognition be-
comes much simpler if reflectances were known.
If the reflectances are not known it pays to first
obtain an estimate of the reflectances and then
use this estimate instead of the measured color
of the objects for recognition. Color constancy
algorithms are important for any computer vi-
sion algorithm based on color.

The reader should take note that the two ob-
jectives just described, mimicking human color
constancy and obtaining an estimate of the re-
flectances are not the same. Even though human
color perception correlates with integrated re-
flectance as shown by McCann et al. (1976), the
human visual system does not actually estimate
the reflectance of objects as the experiments of
Helson (1938) have shown. Both objectives may
be followed in their own right and both are valu-
able research questions.

A number of different algorithms have been
developed to address the problem of color con-
stancy – from Land and McCann’s original
Retinex algorithm (Land and McCann, 1971) to
gamut constraint methods (Barnard et al., 1997;
Forsyth, 1988, 1990), color constancy based on
Bayesian decision theory (Brainard and Free-
man, 1997), color by correlation (Barnard et al.,
2000; Finlayson et al., 1997, 2001), comprehen-
sive color normalization (Finlayson et al., 1998),
use of neural networks (Funt et al., 1996) or
computation of intrinsic images (Weiss, 2001;
Finlayson and Hordley, 2001b; Tappen et al.,
2002; Finlayson et al., 2004). Some algorithms
have also been based on the dichromatic re-
flection model (Tominaga, 1991; D’Zmura and
Lennie, 1992; Finlayson and Schaefer, 2001; Ris-
son, 2003; Ebner and Herrmann, 2005). In order
to address the problem of color constancy, many
authors assume that the illuminant is constant
across the image.

Only a few authors have considered a spa-
tially varying illuminant. A notable exception
is the original Retinex algorithm of Land and
McCann (1971). Horn (1974, 1986) extended
the algorithm to two dimensions. The algorithm
works by first applying a Laplacian and then
using a threshold operation to distinguish be-

tween a change in reflectance from a change
of the illuminant. Changes of the illuminant
are suppressed after which the application of
the Laplacian is undone through an integrative
step. Blake (1985) extended Horn’s algorithm
by separating the Laplacian into two gradient
operations and applying the threshold operation
in between. Land also proposed an alternative
formulation of his original Retinex algorithm
(Land, 1986). In this version of the Retinex algo-
rithm, color constant descriptors are computed
by first taking the logarithm of the input and
then subtracting the logarithm of the average
color of the surround. Moore et al. (1991) im-
plemented a variant of this algorithm in VLSI.
However, this algorithm requires global opera-
tion which is carried out over all pixels in order
to compute a color corrected output. Rahman
et al. (1999) suggested to perform the color cor-
rection on multiple scales. The method may not
only be used for color constancy but also for dy-
namic range compression. The two-dimensional
gamut constraint algorithm has been extended
by Barnard et al. (1997) to work with images
which were taken under a spatially varying illu-
minant. Algorithms for color constancy assum-
ing a constant illuminant throughout the im-
age as well as algorithms which allow for a spa-
tially varying illuminant are addressed in a re-
cent book on color constancy (Ebner, 2007a).
An overview over color constancy algorithms is
also given by Agarwal et al. (2006).

Most algorithms are computationally quite
complex. For instance, in order to implement
the gamut constraint methods one needs to com-
pute the convex hull of a set of points which
is a very difficult problem if implemented us-
ing finite precision arithmetic. In contrast, the
methods presented in this contribution are easy
to implement and - as the experimental results
show - quite effective at computing color con-
stant descriptors. We show that the method
may even be integrated into imaging chips or
display devices because the method is com-
pletely parallel. In addition, a variant of the
method which is presented here is also a can-
didate for the process which computes color
constant descriptors within the human brain
(Ebner, 2007b).

We previously reported on a parallel algo-
rithm for color constancy (Ebner, 2004) based
on the computation of local space average color.
Here, we we describe how this parallel algorithm
may be implemented using a resistive grid which
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allows integration into imaging chips and dis-
play devices. We also show how the resistive
grid can be quickly simulated using successive
over-relaxation. We will evaluate the algorithms
described in this contribution along with other
algorithms known from the literature using a va-
riety of test images from different sources. We
will see that algorithms based on local space
average color are particularly suited for object
recognition tasks.

The main contribution of this article is as
follows. (1) We give an overview on how to com-
pute local space average color depending on the
computational architecture which is available,
(2) we show how color constancy may be per-
formed directly inside an imaging chip using
a simple resistive grid without any need of a
global scaling operation, (3) we show how to ex-
tend Finlayson’s comprehensive color constancy
algorithm (Finlayson et al., 1998) to work with
varying illuminants within a scene by using lo-
cal space average color, and (4) we also present
a thorough evaluation of the performance of
algorithms based on the computation of local
space average color. In particular, the accuracy
of the computed data is evaluated and algo-
rithms based on local space average color are
compared to more complex color constancy al-
gorithms.

The article is structured as follows. First, we
will briefly review some theory of color image
formation. Then we will review the gray world
assumption. We will show how the gray world
assumption may be used to estimate the illu-
minant locally for each image pixel. Next, we
show how a resistive grid may be used to do
this estimation quickly. A resistive grid may be
used inside an image chip to compute a color
corrected output before a CPU has retrieved
the data from the imaging chip. All algorithms
are evaluated on a standard set of images to be
used for color constancy experiments. We also
evaluate all algorithms on a particularly diffi-
cult set of real world images with multiple dif-
ferently colored illuminants. The performance
of algorithms based on the computation of local
space average color is compared to additional
well known algorithms from the literature. At
the end of the article we will give some conclu-
sions.

2 Theory of Color Image Formation

Consider an array of sensors which measures
the incident light. Each sensor responds to light
from some part of the visible spectrum. Let S(λ)
be a vector which describes the response char-
acteristics of the sensor, i.e. Si(λ) describes the
response curve of the i-th sensor for wavelength
λ. Most sensor arrays use three different sensors
which respond to light in the red, green, and
blue part of the spectrum. In this case, we have
i ∈ {r, g, b}. Some sensor arrays with 4 different
sensors also exist. Light from an object patch
enters the lens of the camera and falls onto an
infinitesimal small patch on the sensor. Let us
consider two corresponding locations xobj on the
object and xI on the image sensor. Let E(λ,xI)
be the irradiance of wavelength λ falling onto
an infinitesimal small patch on the sensor array.
The energy measured by the sensor is given by

I(xI) =

∫

E(λ,xI)S(λ)dλ (1)

where the integration is done over all wave-
lengths. Let L(λ,xobj) be the radiance from a
light source falling onto the corresponding ob-
ject position xobj. The amount of light reflected
from the surface is specified by the reflectance
function R(λ,xobj). Thus, for a Lambertian sur-
face which reflects the light equally in all direc-
tions, we have

E(λ,xI) = R(λ,xobj)L(λ,xobj). (2)

The object geometry at position xobj introduces
a scaling factor G(xobj). A Lambertian surface
illuminated by a point light source can be mod-
eled using

G(xobj) = cosα = NobjNL (3)

where α is the angle between the normal vector
of the surface Nobj and a vector which points
into the direction of the light source NL at po-
sition xobj. Thus, the intensity I measured by
the sensor is given by

I(xI) = G(xobj)

∫

R(λ,xobj)L(λ,xobj)S(λ)dλ.

(4)

This model of color image formation is fre-
quently used by many color constancy algo-
rithms (Buchsbaum, 1980; Finlayson, 1996; Fin-
layson et al., 1995; Finlayson and Hordley,
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2001a; Finlayson et al., 1994a, 2004; Finlayson
and Hordley, 2001b; Finlayson et al., 2002; Fin-
layson and Schaefer, 2001; Finlayson et al.,
1998; Forsyth, 1988, 1992; Novak and Shafer,
1992).

Even though each sensor responds to a range
of wavelengths, the sensor’s response charac-
teristics can often be approximated by Dirac’s
delta functions (Finlayson and Hordley, 2001b)

Si(λ) = δ(λ − λi) (5)

with i ∈ {r, g, b}. In this model, each sensor re-
sponds to light of a single wavelength. If the
sensor’s response characteristics are not narrow
band they may be sharpened (Finlayson et al.,
1994a,b; Finlayson and Funt, 1996; Barnard
et al., 2001). Assuming that the sensor can be
modeled by delta functions, simplifies the light-
ing equation considerably, we obtain

Ii(xI) = G(xobj)R(λi,xobj)L(λi,xobj) (6)

for the intensity Ii(xI) measured by sensor i
at position xI on the sensor array. From now
on, we will denote the sensor position as well as
the corresponding object position using image
coordinates (x, y). We use the index i to denote
the color band, i.e. wavelength. Let

c(x, y) = [cr(x, y), cg(x, y), cb(x, y)] (7)

be the color of the image at position (x, y). As-
suming a linear relationship between the energy
measured by the sensor I and the image data,
we have

c(x, y) = I(x, y) = G(x, y)R(x, y)L(x, y) (8)

where R(x, y) = [Rr(x, y), Rg(x, y), Rb(x, y)]
is a vector describing the reflectances and
L(x,y) = [Lr(x, y), Lg(x, y), Lb(x, y)] is a vec-
tor describing the illuminant. The multiplica-
tion is carried out component-wise, i.e. if c = ab

then ci = aibi with i ∈ {r, g, b}. In other words,
the intensity of each color channel is propor-
tional to the product of the reflectance and the
light falling onto the object scaled by a geometry
factor. Since we only have three measurements
but at least 6 unknowns, some assumptions have
to be made in order to estimate the reflectance
from an image.

Note, that here we have assumed a linear re-
lationship between the energy measured by the
sensor and the image data. In practice one of-
ten needs to process images which are stored as

JPEG or in some other file format. If nothing
is known about the process on how the image
was created, then it is usually assumed that the
image was stored using the sRGB color space
(Stokes et al., 1996). The sRGB color space is
device independent and allows exchange of im-
ages between different machines. It stores im-
ages with a gamma correction applied. Many
digital cameras store their images using the
sRGB color space. In order to restore the lin-
ear relationship between image data and mea-
sured intensities we have to undo any gamma
correction before processing.

3 The Gray World Assumption

A simple scaling of the color channels suffices to
obtain a color corrected image if the response
curves of the receptors are very narrow-band
and we assume that the illuminant is uniform
over the entire image. The required scaling fac-
tor can be computed using the gray world as-
sumption. The gray world assumption was pro-
posed by Buchsbaum (1980). It estimates the
illuminant by computing global space average
color. The fact that the illuminant can be es-
timated by computing some kind of average of
the light reaching the observer was known for a
long time. It was also suggested by Land (see
Judd (1960)). Buchsbaum was the first to for-
malize the method. The assumption is that, on
average, the world is gray. Buchsbaum estimates
the illuminant by assuming that a certain stan-
dard spatial spectral average exists for the en-
tire visual field. This average can be used to esti-
mate the illuminant. Once the illuminant is esti-
mated, the reflectances can be computed. Quite
a large number of algorithms have been pro-
posed that use the gray world assumption in one
way or another (Ebner, 2003, 2004, 2006; Fin-
layson et al., 1998; Gershon et al., 1987; Moore
et al., 1991; Paulus et al., 1998; Pomierski and
Groß, 1995; Rahman et al., 1999; Tominaga,
1991).

Our derivation of the gray world assump-
tion differs from the one given by Buchsbaum.
Buchsbaum assumed overlapping response char-
acteristics of the sensor array. We will assume
non-overlapping response characteristics. It has
been shown that only in some specific cases a
more general transform (Barnard et al., 2001;
Finlayson et al., 1994a) is helpful. We will also
include geometry information into the reflection
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model. Buchsbaum’s model did not use any ge-
ometry information. As we have already seen
above, the intensity ci(x, y) of color channel i
at position (x, y) of the image can be approxi-
mated by

ci(x, y) = G(x, y)Ri(x, y)Li(x, y). (9)

The first term, G(x, y), is a factor which de-
pends on the scene geometry at the correspond-
ing object point. The second term, Ri(x, y),
is the amount of light reflected at the corre-
sponding object position for the wavelength λi.
The third term, Li(x, y), is the intensity of the
light emitted by the light source. The illumi-
nant scales the product of the geometry factor
and the reflectance of the object. Thus, we can
achieve color constancy by dividing this expres-
sion by the illuminant. An independent scaling
of the color bands suffices for a uniform illumi-
nant.

Let us assume that the colors of the objects
shown in the image are uniformly distributed
over the entire color range and that we have
a single uniform illuminant Li(x, y) = Li. Let
the image intensities be in the range [0, 1]. If
we have a number of objects in the scene with
a sufficiently large number of different colors,
then the average of a sufficiently large number
of pixels will be close to 1

2L. Using the above
derivation for the image data, space average
color a = [ar(x, y), ag(x, y), ab(x, y)] of an im-
age with n pixels is given by

ai =
1

n

∑

x,y

ci(x, y) (10)

=
1

n

∑

x,y

G(x, y)Ri(x, y)Li (11)

= Li

1

n

∑

x,y

G(x, y)Ri(x, y). (12)

We can consider both the object geometry and
the reflectance to be independent random vari-
ables, i.e. there is no correlation between the
shape of an object and its color. For a large
number of image pixels, we have

ai = LiE[GRi] (13)

where E[GRi] denotes the expected value of the
geometry factor times the reflectance. Because
of the independence assumption, we have

ai = LiE[G]E[Ri]. (14)

Let us now assume that reflectances Ri are uni-
formly distributed over the interval [0, 1], i.e.
some objects absorb most of the incident light
(Ri ≈ 0) and some reflect most of the incident
light (Ri ≈ 1). This basically means that all
colors are equally likely provided that we have
narrow band sensors and all the different sensor
responses are perceived as different colors. If we
make this assumption, we obtain

ai = LiE[G]
1

2
. (15)

Using this equation, we can estimate the color
of the illuminant as

Li ≈
2

E[G]
ai = fai (16)

where f = 2
E[G] is a scaling factor. This scaling

factor depends on the scene viewed. Because we
are computing an average pixel value, it is very
important that the relationship between pixel
colors and measured sensor values is linear. If
the relationship is not linear (possibly due to
a gamma correction) it has to be linearized by
undoing the gamma correction.

Once the color of the illuminant is known,
it can be used to estimate the product of the
geometry factor times the reflectances. Let oi be
the computed output color which is independent
of the illuminant. We have,

oi(x, y) =
ci(x, y)

fai

≈
ci(x, y)

Li

= G(x, y)Ri(x, y).

(17)

The factor f scales all color channels by the
same amount. It only affects the lightness of the
image but not the colors. If we set f = 2, we as-
sume a perpendicular orientation between ob-
ject and camera, i.e. E[G]=1. Since the factor
f scales all channels equally, this factor basi-
cally only adjusts the brightness of the image.
Using f = 2 will improve overall brightness in
extended dark areas of the image. It automati-
cally causes the resulting average of the image
to be moved to 1

2 which is necessary for a com-
pletely parallel algorithm. A suitable value for
this factor can also be estimated directly from
the image. We simply need to rescale all chan-
nels such that only 1% of all pixels are clipped.

If we have two or more light sources then
the assumption, that the illuminant is uniform
over the entire image, is violated. In this case,
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one needs to estimate the illuminant locally for
each image pixel. The intensity of color band i
at position (x, y) in the image is given by

ci(x, y) = G(x, y)Ri(x, y)Li(x, y). (18)

If we estimate the illuminant Li(x, y) locally for
each image pixel then we can again compute a
color corrected image by dividing each pixel by
the estimated color of the illuminant

ci(x, y)

Li(x, y)
=

Gi(x, y)Ri(x, y)Li(x, y)

Li(x, y)
(19)

= Gi(x, y)Ri(x, y). (20)

The result is a color corrected image which is
independent of the color of the illuminant. The
geometry factor could be removed by normaliz-
ing the colors. Instead of computing global space
average color we can compute local space aver-
age color as an estimate of the illuminant. In
this case, the estimate is given by

Li(x, y) ≈ fai(x, y) (21)

where f is a scaling factor as described above,
e.g. f = 2.

Figure 1 shows results for the gray world as-
sumption for two sample images. The image on
the left shows a typical office scene. For this im-
age, the gray world assumption works nicely.
The reader should take note of the fact that
the gray world assumption only works (assum-
ing a sample scene which is not achromatic) if
there are a sufficiently large number of differ-
ent colors in the scene. This can be seen in the
image shown on the right. This image shows
a leaf from a banana plant which mostly con-
tains green colors and a bit of yellow. Its av-
erage is [0.19, 0.27, 0.04]. It is obvious that the
gray world assumption does not work if there
are only very few different colors in the scene.

A variant of the gray world hypothesis was
recently proposed by van de Weijer and Gevers
(2005); van de Weijer et al. (2007). Note that
for the gray world assumption it is assumed that
the black level is set correctly for the imaging
device. Van de Weijer et al. suggest to apply
the gray world hypothesis to edges. This has
the advantage that the black level does not have
to be set correctly. The color of the illuminant
is estimated by first computing local edges at
scale σ. The edge differences are averaged over
the entire image. The illuminant L is thus given

by

L = f

(
∫

∣

∣

∣

∣

δncσ(x)

δxn

∣

∣

∣

∣

p

dx

)

1
p

(22)

where f is a scaling factor, n is the order of the
derivative, p is the Minkowski norm and σ is
the scale parameter. Use of the Minkowski norm
is due to Finlayson and Trezzi (2004). Van de
Weijer et al. (2007) report very good illuminant
estimation results for n = 2, p = 7 and σ = 5.

4 Estimating the Illuminant Locally

Local space average color can be computed eas-
ily using a convolution. Let g(x, y) be a kernel
function then local space average color ai(x, y)
is given by

ai(x, y) = (23)

k(x, y)

∫ ∫

ci(x, y)g(x − x′, y − y′)dx′dy′

the scaling factor k(x, y) is chosen such that

k(x, y)

∫ ∫

g(x′, y′)dx′dy′ = 1. (24)

A possible choice for a kernel function would

be either a Gaussian, i.e. g(x, y) = e−
r2

2σ2 with

r =
√

x2 + y2 or an exponential function, i.e.

g(x, y) = e−
|x|+|y|

σ . For the gray world assump-
tion to hold, the support of the Gaussian has
to be sufficiently large. A suitable choice in
case of a Gaussian kernel is σ = 0.18s where
s = max{nx, ny}/2 and nx and ny is the width
and height of the input image. In case of an
exponential kernel, the kernel should be slighly
smaller in order for both kernels to produce
the same estimate of the illuminant. A suit-
able choice is σ = 0.17s. The scaling factors
were chosen such that the support for the ker-
nel is larger than 0.1 for 34% of the image. This
choice is near optimal for the images contained
in dataset no. 1 which is used in the experiments
below. Figure 2 shows the dependence of the av-
erage standard deviation of the pixels of several
scenes contained in this data set after the color
constancy algorithm based on local space aver-
age color has been applied.

Given an arbitrary input image with a spa-
tially varying illuminant, the scaling parameter
σ can be tuned to this illuminant. The above
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Fig. 1 Results using the gray world assumption for two different input images. The image on the left
shows a typical office scene. The image on the right shows a leaf from a banana plant. The gray world
assumption only works if there are a sufficiently large number of different colors in the scene.
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Fig. 2 Dependence of the average per pixel stan-
dard deviation on the size of support. The stan-
dard deviation is computed across several images
showing the same scene after the color constancy
algorithm based on local space average color has

been applied with an exponential kernel e
−

r
σps and

s s = max{nx, ny}/2 and nx and ny is the width
and height of the input image.

choice for the support of the kernel essentially
means that the kernel extends over one third of
the image. Hence, this kernel removes a slowly
changing illuminant from the image. Implicit in
this choice of support is that the illuminant is

either constant or linearly changing over an area
of 34% of the image. This is a quite reasonable
assumption for many photographs as Figure 2
shows.

Since the illuminant has to be estimated lo-
cally for each image pixel we can search for a
parallel algorithm (Ebner, 2004, 2006). There
are two major incentives for parallelizing this
color constancy algorithm: (1) A parallel al-
gorithm for color constancy can be mapped
to what is known about the human stages of
color perception. Many algorithms for color con-
stancy which have been developed cannot read-
ily be mapped to what is known about the hu-
man visual system. Some algorithms, such as
the gamut constraint algorithms are computa-
tionally very complex and it is not apparent
how the human visual system would compute or
work with complex hulls of the observed gamut.
(2) A parallel algorithm for color constancy may
be integrated directly into imaging chips or even
output devices such as flat panel displays. Cur-
rently digital cameras usually apply color con-
stancy algorithms after the imaging chip has ac-
quired the data.

Let us now assume that we have a grid
of processing elements, i.e. a single instruction
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multiple data (SIMD) type of architecture (Al-
masi and Gottlieb, 1994). Each processing ele-
ment is running the same instructions but pro-
cessing different data. We will be using one pro-
cessing element per image pixel. This is not
strictly required as we could resize images be-
fore processing. Each processing element will es-
timate local space average color.

Once we have an estimate of local space aver-
age color, we can perform a rescaling of the color
channels as described above to arrive at a color
constant image. Each processing element is con-
nected to its neighbors. We can either work with
connections to the 4 nearest neighbors or the 4
diagonal neighbors. We can also use a neighbor-
hood of 8. Since we only have local connections
between processing elements, the algorithm can
be scaled to arbitrary image sizes just by ex-
tending or reducing the number of processing
elements used.

Let c(x, y) be the measured color at location
(x, y) of the grid. We assume that three different
color bands are processed independently, i.e.

c(x, y) = [cr(x, y), cg(x, y), cb(x, y)]. (25)

Initially, we do not have an estimate of local
space average color. Let us just suppose for a
moment that we did and let a be this estimate
of local space average color.

a(x, y) = [ar(x, y), ag(x, y), ab(x, y)] (26)

Let N(x, y) be the neighboring processing el-
ements of element (x, y). We then iterate the
following update equations for all three color
bands

a′(x, y) :=
1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

a(x′, y′) (27)

a(x, y) := c(x, y) · p + a′(x, y) · (1 − p) (28)

where p is a small percentage. The first oper-
ation (Eqn 27) simply averages the data from
the neighboring elements. The second operation
(Eqn 28) slowly fades the measured color of the
current element into the computed average. The
result is a new estimate of local space average
color a. If we iterate the above equations in-
definitely, the data diffuses between neighboring
elements. This process converges to local space
average color for each pixel. The parameter p de-
termines the extent over which local space aver-
age color will be computed. It is similar though

not quite identical to the smoothing of the in-
put image using an exponential kernel as will be
described in Section 5.

The parameter p, just as the scaling param-
eter σ, depends on the size of the image. The
parameter has to be chosen such that the aver-
aging is done over a reasonably large area of the
entire image. If the parameter p is large, then
local space average color will be computed for a
small neighborhood. If the parameter p is small,
then local space average color will be computed
for a large neighborhood. Setting the parameter
p = 0.0005 for images of size 256 × 256 gives
reasonable results. We describe below how this
parameter can be set in practice by showing the
correspondence between the resistive grid im-
plementation and the smoothing using an expo-
nential kernel.

We can view the second step of the averaging
operation as a biased average, e.g.

a(x, y) =
a′(x, y) · ( 1

p
− 1) + c(x, y)
1
p

. (29)

If we set p = 0.0005, we obtain

a(x, y) =
a′(x, y) · 1999 + c(x, y)

2000
. (30)

In other words, the average has a carrying ca-
pacity of 2000. We have 1999 components of a′

and one component of c.
Note that the current average is multiplied

by (1−p) each iteration. Since (1−p) is smaller
than 1, this component will slowly decay to-
wards zero. Thus, we now see that the initial-
ization of local space average color can be arbi-
trary. Whatever value we use to initialize local
space average color, after a large number of it-
erations, little will be left of the original value.

Figure 3 illustrates the averaging operation
for a small 3 × 3 mesh of processing elements.
It is assumed here that only a single band is
processed. The elements are initialized with the
numbers from 1 to 9. If we keep averaging the
data from neighboring elements, we arrive at the
correct global average after a small number of
iterations. So far, we did not include the cen-
ter element into the averaging operation. Not
including the center element may lead to oscil-
lations. The oscillatory behavior disappears if
the center element is included.

Figure 4 shows local space average color
computed for a sample image. The images show
snapshots after 1, 100, and 500 iterations. For
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step 1 step 100 step 500

Fig. 4 Snapshots of local space average color after 1, 100, and 500 time steps.
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Fig. 3 By iteratively averaging data from neigh-
boring processing elements, we compute the global
average of the values. The sequence shows what hap-
pens if we initialize a 3 × 3 mesh of processing ele-
ments with numbers from 1 to 9.

this example, we have initialized the original es-
timate of local space average color at time step
0 to be zero. Thus, the image after the first
time step is just the input image (except for
scaling). Over time, the algorithm refines its es-
timate of local space average color. The color
diffuses through the processing elements until a
stable state is reached.

The parameter p may be used to control
the extent of the averaging operation. Figure 5
shows local space average color computed from
the same image but with different values of p.
From left to right, the parameter p was set to
0.05, 0.005, 0.0005. If p is large, then local space
average color will be computed for a small neigh-
borhood. If p is small, local space average color
will be computed for a large neighborhood. This
begs the question to what value should this pa-
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Time until Convergence

Standard
SOR

Fig. 6 Time to convergence is shown for different
values of p. Successive over-relaxation provides a
considerable speed-up.

rameter be set. The area has to be large enough
such that the gray world assumption is valid.
In other words, the area over which local space
average color will be computed has to be large
enough such that the colors contained in this
region are sufficiently diverse. Thus, we have to
take care that the parameter p is set to a small
enough value. What happens if we set p to a
value which is too small? Assuming an infinites-
imally small value for p, the algorithm com-
putes global space average color. In this case,
we would not be able to remove small linear
changes of the illuminant which may be present
across the image. We will describe below how
to compute the parameter p from the smooth-
ing factor σ which we used for the exponential
kernel. The correspondence between the two is

σ =

√

1 − p

4p
. (31)

The number of iterations required until con-
vergence obviously also depends on the choice of
the parameter p. If p is large, convergence will
be achieved earlier. Convergence will take longer
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p=0.05 p=0.005 p=0.0005

Fig. 5 Local space average color (after convergence) computed for different values of p.

if p is small. At each step, the color of the cur-
rent pixel is multiplied by p and then added to
the intermediate average. Therefore, we need at
least 1

p
iterations to bring local space average

color into the range of the color c of the cur-
rent pixel. Figure 6 shows how the time until
convergence depends on the number of itera-
tions. If we set p = 0.0004, we need approxi-
mately 27000 iterations until convergence. This
is quite a large number and will take a pro-
hibitive length of time to run for large images
on a sequential computer. If the algorithm is
run on parallel hardware, then this is not a con-
straint. In fact, as we will see in the next sec-
tion, the algorithm can be implemented using
a resistive grid. A significant speed-up can also
be achieved by using successive over-relaxation
(Bronstein et al., 2001; Demmel, 1996). Succes-
sive over-relaxation is based on the difference
between the old and the new estimate computed
for the current processing element. This differ-
ence tells us the direction in which to move, i.e.
the corrective step. Instead of adjusting the cur-
rent estimate by this difference, the current es-
timate is adjusted using a slightly larger step.

An additional parameter w is used to ad-
just the step size. If we apply successive over-
relaxation, then local space average color ã is
computed as

a′(x, y) :=
1

|N(x, y)|

∑

(x′,y′)∈N(x,y)

ã(x′, y′) (32)

a(x, y) := a′(x, y) · (1 − p) + c(x, y) · p (33)

ã(x, y) := ã(x, y) · (1 − w) + a(x, y) · w (34)

where the center element is included in the
neighborhood N . The time until convergence is
considerably faster compared to the standard
method. Convergence times for w = 1.999 are
shown in Figure 6. An additional speed-up can
be achieved if we use a resistive grid to es-
timate local space average color. Neighboring
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Fig. 7 A two-dimensional resistive grid.

points are weighted exponentially in an expo-
nential grid. Therefore, the computation which
is carried out by a resistive grid is almost equiv-
alent to the convolution of the input with an

exponential kernel g(x, y) = e
−|r|

σ where σ de-
notes the area of support and r = |x| + |y|. If
we use a resistive grid to compute local space
average color the result will be available almost
instantaneously.

5 Implementation using a Resistive Grid

Figure 7 shows a two-dimensional resistive grid
which can be used to compute local space av-
erage color. Input is fed into the network from
above. Each input resistor has the resistance Ro.
All other resistors have the resistance R. Kirch-
hoff’s law (Orear, 1982) states that the current
flowing into the node at position (x, y) must
be equivalent to the current flowing out of the
node. Let Io(x, y) be the current flowing into
the network at position (x, y) and let Ileft, Iright,
Iup, and Idown be the current flowing to the left,
right, up and down. Thus, we have,

Io(x, y) =Ileft(x, y) + Iright(x, y)+

Iup(x, y) + Idown(x, y).
(35)

We obtain the voltage across the resistor using
Ohm’s law. Let U be the voltage across a re-
sistor R, then the current flowing through the
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resistor is given by I = U
R

. Let Uo(x, y) be the
applied voltage and let U(x, y) be the voltage
at node (x, y) then we obtain

1

Ro

(U(x, y) − Uo(x, y))

=
1

R
(U(x − 1, y) + U(x + 1, y)+

U(x, y − 1) + U(x, y + 1)) −
4

R
U(x, y). (36)

We can solve this equation for U(x, y).

U(x, y) =

Ro

4Ro + R
(U(x − 1, y) + U(x + 1, y)+

U(x, y − 1) + U(x, y + 1))

+
R

4Ro + R
Uo(x, y) (37)

This expression is equivalent to the update
equations as described above. We need three re-
sistive grids, one for each color band to estimate
local space average color. We now see that lo-
cal space average color a(x, y) corresponds to
the voltage U(x, y) at points (x, y) of the grid.
The color of the input pixel corresponds to the
voltage Uo(x, y) applied at grid point (x, y). We
can compute the relationship between the per-
centage p and the resistances Ro and R of the
resistive grid.

p =
R

4Ro + R
(38)

If we solve this for Ro

R
, we obtain

Ro

R
=

1 − p

4p
. (39)

In other words, the resistance Ro has to be
larger than the resistance R by a factor of 1−p

4p
.

We now look at the function which is com-
puted by the resistive grid, i.e.

1

Ro

(U(x, y) − Uo(x, y))

=
1

R
(U(x − 1, y) + U(x + 1, y)+

U(x, y − 1) + U(x, y + 1)) −
4

R
U(x, y). (40)

The right hand side is the discrete version of
the Laplace operator. If we go to the continuous
domain, we obtain

1

Ro

(U(x, y) − Uo(x, y)) =
1

R
∇2U(x, y). (41)

Let us now represent both U(x, y) and
Uo(x, y) by its Fourier transform U(wx, wy) and
Uo(wx, wy).

U(x, y) =
∫ ∫

U(wx, wy)ei(wxx+wyy)dwxdwy (42)

Uo(x, y) =
∫ ∫

Uo(wx, wy)ei(wxx+wyy)dwxdwy (43)

Let σ =
√

Ro

R
, this gives us

U(x, y) − Uo(x, y) = σ2∇2U(x, y). (44)

If we now substitute U(x, y) and Uo(x, y) both
written in terms of their Fourier transform, we
obtain
∫ ∫

(U(wx, wy) − Uo(wx, wy)) ei(wxx+wyy)dwxdwy

= −σ2

∫ ∫

(w2
x+w2

y)U(wx, wy)ei(wxx+wyy)dwxdwy

(45)

Thus, it must be that

U(wx, wy) =
Uo(wx, wy)

1 + σ2(w2
x + w2

y)
. (46)

Therefore, the output computed by the resistive
grid is

U(x, y) =

∫ ∫

Uo(wx, wy)

1 + σ2(w2
x + w2

y)
ei(wxx+wyy)dwxdwy.

(47)

In simulation we can compute the output by ap-
plying a Fourier transform and then multiplying
the result by

1

1 + σ2(w2
x + w2

y)
, (48)

after which the result is transformed back into
the spatial domain. A serious drawback of this



12 Marc Ebner

RoI o RoRo

RR R R

leftI Iright

Fig. 8 A one-dimensional resistive grid.

method is that toroidal boundary conditions are
assumed. Therefore, local space average color
computed for pixels at the lower boundary of
the image will be a mixture of the color of the
pixels located at the lower and upper border of
the image. If we assume that there is an illumi-
nation gradient across the image, the estimate
will most likely be incorrect.

Since a one-dimensional network is easier
to handle, let us consider the one-dimensional
case for a moment. A one-dimensional network
of resistors is shown in Figure 8. When we do
the same derivation as above, except for a one-
dimensional resistive grid, we arrive at the fol-
lowing equation (Jähne, 2002).

1

Ro

(U(x) − Uo(x)) =
1

R

∂2

∂x2
U(x) (49)

Its solution is

U(x) =

∫

Uo(w)

1 + σ2w2
eiwxdw (50)

where Uo(w) is the one-dimensional Fourier
transform of Uo(x). Thus, for the one-
dimensional case, we simply multiply the
Fourier transform by 1

1+σ2w2 in the frequency
domain. A multiplication in the frequency do-
main is equivalent to a convolution in the spa-
tial domain (Gonzalez and Woods, 1992; Horn,
1986; Jähne, 2002; Jain et al., 1995; Parker,
1997; Shapiro and Stockman, 2001). Therefore,
we can achieve the same result by convolv-
ing Uo(x) with the inverse Fourier transform

of 1
1+σ2w2 . The Fourier transform of e−

|x|
σ is

2σ
1+σ2w2 (Bronstein et al., 2001). The function
computed by a one-dimensional resistive grid is
therefore simply a convolution of the input with
1
2σ

e−
|x|
σ . The correspondence between the pa-

rameter σ, the resistors of the resistive grid and
the parameter p is given by

σ =

√

Ro

R
=

√

1 − p

4p
. (51)
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Fig. 9 A resistive grid where each node point is
connected to ground via a capacitor.

When we solve this equation for p, we obtain

p =
1

4σ2 + 1
(52)

where σ is the scaling factor of the exponential
kernel. This allows us to tune the parameter to
the size of the image. In practice, we first com-
pute the scaling factor of the exponential kernel
as described in Section 4 and then compute the
factor p.

Going back to the two-dimensional case, we
have to find the inverse Fourier transform of

1

1 + σ2(w2
x + w2

y)
(53)

in order to find the function computed by
the two-dimensional resistive grid. The Fourier

transform of e−
r
σ with r =

√

x2 + y2 is
2πσ2

(1+σ2(w2
x+w2

y))
3
2

(Weisstein, 1999). The Fourier

transform of e−
r
σ with r = |x| + |y| is

4σ2

(1+σ2w2
x)(1+σ2w2

y) . In other words, the output

computed by the resistive grid is not quite de-
scribed by either a convolution with e−

r
σ with

r =
√

x2 + y2 or e−
r
σ with r = |x|+ |y|. In prac-

tice, however, we can approximate the output
computed by the resistive grid with a convolu-
tion using either one of the two kernels. Note

that the kernel e−
|x|+|y|

σ is separable which is
an advantage because it can be applied in both
the x and y direction independently. Of course,

we can also use the kernel e−
x2+y2

2σ2 which is also
separable. Both the output from an exponen-
tial kernel, as well as from a Gaussian kernel,
closely matches the output computed by a resis-
tive grid. The root mean squared error between
the output computed by the resistive grid and
the output obtained from an exponential ker-
nel is 0.009289 for the sample image shown in
Figure 10.

We have already noted above, that the com-
putation of local space average color using the
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parallel algorithm, which is described above, can
be viewed as a diffusion process where color
flows form one processing element to the next.
A similar analogy can be made with the resis-
tive grid (Jähne, 2002). In order to see this, let
us remove the input resistors and connect each
grid point to ground via a capacitor. This gives
us the circuit shown in Figure 9. Let IC(x, y) be
the current flowing through the capacitor at po-
sition (x, y). The current flowing through the ca-
pacitor is given by IC(x, y) = 1

C
∂
∂t

U(x, y). This
gives us the following equation which describes
the voltage U(x, y) at each grid point (x, y)

0 =
U(x − 1, y) − U(x, y)

R

+
U(x + 1, y) − U(x, y)

R

+
U(x, y − 1) − U(x, y)

R

+
U(x, y + 1) − U(x, y)

R

− C
∂

∂t
U(x, y)

If we again go to the continuous domain, we
obtain

0 =
1

R

(

∂2

∂x2
+

∂2

∂y2

)

U(x, y) − C
∂

∂t
U(x, y)(54)

RC
∂

∂t
U(x, y) =

(

∂2

∂x2
+

∂2

∂y2

)

U(x, y) (55)

This equation describes a diffusion process
(Bronstein et al., 2001; Jähne, 2002; Weickert,
1997). Let j be a flow which occurs in a di-
rection opposite to the concentration gradient.
Since the concentration is given by U(x, y) and
its gradient is ∇U(x, y), the flow j is given by

j = −D∇U(x, y) (56)

where D is the diffusion coefficient. The fact
that the net charge of the system is constant,
is described by the continuity equation (Jähne,
2002; Nolting, 1992).

∂

∂t
U(x, y) + ∇j = 0 (57)

Using the continuity equation, we again arrive
at the above equation.

∂

∂t
U(x, y) = ∇(D∇U(x, y)) = D∇2U(x, y)

(58)

The general solution to the homogeneous dif-
fusion equation with U(x, y)|t=0 = f(x, y) is
given by (Bronstein et al., 2001; Jähne, 2002;
Weickert, 1997)

U(x, y) = gD
√

2t(r) ⊗ f(x, y) (59)

where ⊗ denotes convolution and gσ(r) with r =
√

x2 + y2 is a Gaussian kernel

gσ(r) =
1

2πσ2
e−

r2

2σ2 . (60)

6 Comprehensive Local Space Average

Color

In Section 7, we will evaluate the performance
of the algorithm which has just been described.
We will compare its performance with other al-
gorithms known from the literature. Some of the
algorithms allow for a spatially varying illumi-
nant while others do not. An algorithm called
comprehensive normalization which was origi-
nally developed by Finlayson et al. (Finlayson
et al., 1998) assumes that a single uniform illu-
minant is present. In this section, we describe
how this algorithm may be extended to work
also in the presence of a spatially varying illu-
minant.

Comprehensive normalization removes both
dependencies due to lighting geometry as well as
dependencies on the type of illuminant. The in-
fluence of scene geometry is removed by normal-
izing all pixel values. The influence of the illu-
minant is removed using the gray world assump-
tion. These two operations are interleaved and
iteratively applied until convergence is reached.

Let Anorm be the algorithm which removes
the geometry information by normalizing all col-
ors, i.e.

oi(x, y) =
ci(x, y)

∑

j∈{r,g,b} cj(x, y)
. (61)

Let Agray be the algorithm which applies the
gray world assumption, i.e.

oi(x, y) =
1

3

ci(x, y)
1
n

∑

x′,y′ ci(x′, y′)
. (62)

Here, a scaling factor of 1
3 instead of 1

2 is used.
This scaling factor is required in order to reach a
stable state. Note that after the first operation,
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the average value of a single channel is 1
3 . Thus

in the end, both requirements can be fulfilled
simultaneously.

Let us denote the input image by I0. Com-
prehensive normalization iteratively applies the
two algorithms Anorm and Agray to a given im-
age Ij .

Ij+1 = Agray(Anorm(Ij)) (63)

This process continues until convergence, i.e.
Ij+1 = Ij . Finlayson et al. (1998) have shown
that by iteratively applying both normalization
algorithms convergence is always reached. The
algorithm may be stopped after the difference
falls below a suitably defined threshold. Because
of the normalization, all intensity information
is lost. It may be added back to the image by
scaling all color channels using the intensity of
the original image. Let L = wrcr + wgcg + wbcb

be the lightness of the input color with weights
wr = 0.2125, wg = 0.7154, wb = 0.0721. Let
L′ = wrm1

cr

cb
+wgm2

cg

cb
+wb be the lightness of

the output color then the adjusted output color
is given by

o =
L

L′

[

m1
cr

cb

, m2
cg

cb

, 1

]

. (64)

Comprehensive normalization assumes that
the illuminant is uniform over the entire image.
A possible extension of this method is to use
local space average color instead of global space
average color. In other words, for each step of
the comprehensive normalization procedure, we
would first normalize the colors and then use
local space average color instead of global space
average color to do another normalization.

7 Experimental Results

Figure 10 shows results on the accuracy of esti-
mating the illuminant using space average color.
The input image, showing a number of ran-
domly arranged matte surfaces, is taken from
the database created by Barnard et al. (2002c).
Barnard et al. created a set of test images in
order to test color constancy algorithms1. The
images are linear, i.e. no gamma correction has
been applied, and are therefore very dark. They
were also purposely under-exposed in order to

1 http://www.cs.sfu.ca/∼colour/data/index.html

avoid any clipped pixel values. Detailed infor-
mation on the spectral power distribution of all
illuminants used and the response functions of
the camera sensor is also available. Barnard et
al. measured the color of the illuminant through
the sensor of the camera by taking an image of
a white reference standard.

Given this ground truth we can compare lo-
cal space average color to the color which is
computed by the different methods as described
above. The second row of Figure 10 shows lo-
cal space average computed once using an ex-
ponential kernel, once using a Gaussian kernel
and once using a grid of processing elements or
a resistive grid. A comparison between the es-
timated and the actual color of the illuminant
along a horizontal line of the image is shown in
the graphs below. The chromaticities of the es-
timated color matches the chromaticities of the
actual illuminant closely in the center of the im-
age. The angular error (defined in Eqn 67) and
the actual color of the illuminant gets larger as
the border of the image is approached due to
the presence of a black background. The Gaus-
sian kernel produces a smoother approximation
compared to the results when either the expo-
nential kernel or the resistive grid is used.

8 Evaluation of Algorithms

Color based object recognition can be used to
evaluate the performance of the different algo-
rithms (Funt et al., 1998). Color is an impor-
tant cue and may be used to locate an object
in a scene cluttered with other objects (Swain
and Ballard, 1991). Here, we are not concerned
with locating an object but in determining how
well the algorithms compute color constant de-
scriptors from the input data. Hence, we will use
image matching to evaluate the performance of
the different algorithms.

We again use the extensive database of im-
ages created by Barnard et al. (2002c) to test
color constancy algorithms. The database con-
sists of five different sets of images. Each set
shows a variety of different objects illuminated
by different illuminants. We down-sampled the
images to 50% of the original size in order to
speed up the evaluation. We also aligned the im-
ages from the first four sets with sub-pixel accu-
racy. In total, 19 images had to be removed from
the resulting sets because these images could
not be perfectly aligned. For instance, a ball was
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Fig. 10 Local space average color computed using an exponential kernel, a Gaussian kernel, and a resistive
grid. The first image on the top is the input image which was taken from a database for color constancy
research created by Barnard et al. (2002c). The graphs below show the angular error between the estimated
and the actual color of the illuminant along a horizontal line of the image.

moved slighly by the experimenter whenever the
light source was changed. Hence images of this
ball were removed completely from the image
sets. We confirmed that the alignment does not
have a large influence on the recognition rate. In
some cases, the recognition rate became slighly
better, in other cases it became slightly worse.
The reason why this alignment is necessary will
become clear later on. Set 1 contains mainly
Lambertian reflectors. Set 2 contains objects
with metallic specularities. Set 3 contains ob-
jects with non-negligible dielectric specularities.
Set 4 contains objects with at least one fluores-
cent surface. Set 5 is different from the previous
sets. For set 5 the object was placed in a random
position whenever the illuminant was changed.

The image sets of Barnard et al. show scenes
which were illuminated by a single illuminant.
In order to further test the performance of the
different algorithms on scenes which were illumi-
nated non-uniformly, we created additional im-

age sets. Image sets 6 through 9 show natural
scenes which were illuminated with a variety of
different light sources including red, green, blue
and yellow light bulbs. The light bulbs were just
ordinary light bulbs with a color coating. We
have placed the light sources to the left and to
the right of the scene. Either one or both of the
lights were turned on. In some scenes a desk
lamp was present which was turned on for some
of the images. Ceiling lamps and natural illu-
mination was also present in some of the im-
ages. The images of sets 6, 7, and 8 were taken
with an analog camera (a Canon EOS 5) and
then digitized. Images of set 6 were digitized
by ordering a CD-ROM of the developed film.
Images of set 7 are from a Kodak Picture CD.
Images of set 8 were scanned using a calibrated
film scanner (a Canon FS4000US). Images of
set 9 were taken with a digital camera (a Canon
EOS 10D). The white balance was set to 6500K
and the sRGB color space was used. The images
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were also aligned with sub-pixel accuracy and
down-sampled to a range of around 360 × 240
pixel for further processing. Table 1 describes
all image sets used.

Let us assume that we are given a perfect
color constancy algorithm which computes color
constant descriptors which are independent of
the illuminant. A perfect color constancy al-
gorithm would compute the same output for
each scene irrespective of the type of illumi-
nant used. Note that in practice most color
constancy algorithms are not perfect. For in-
stance, many algorithms assume that the input
image is free from shadows. If an image is fed
into such an algorithm containing shadows then
the shadows are still present in the output im-
age. An algorithm which estimates reflectance
or computes a descriptor based on reflectance
(Finlayson et al., 2002; Finlayson and Hord-
ley, 2001b; Geusebroek et al., 2001) should pro-
duce an output image free from shadows. Algo-
rithms based on local space average color can
only handle shadows which are large in extent
and without any sharp boundaries. These algo-
rithms only attenuate shadows but do not re-
move them entirely.

We run each input image through a color
constancy algorithm and then perform image
matching based on the color distribution of the
output image. Use of the color distribution for
image matching has the advantage that small
shadow areas do not have a large impact on
the color distribution of the image. The recog-
nition rate will depend on the color constancy
algorithm being able to compute a color con-
stant output. Recognition rates will be lower
for color constancy algorithms which compute
color descriptors which are only approximately
color constant. Of course, measuring recogni-
tion rates, only tests for illuminant invariance.
It does not test for equivalence to a perceived
color.

We evaluate each algorithm by applying it
to every image of the image set. Recognition
performance is evaluated by selecting two color
corrected images for each scene. One is the test
image the other one is the model image. A his-
togram is computed to establish a match be-
tween the test image and one of the possible
model images. This method of histogram based
object recognition was introduced by Swain and
Ballard (1991). Swain and Ballard originally
used histogram intersection in order to estab-
lish the best match. Schiele and Crowley (1996,

2000) proposed the χ2 divergence measure. Let
HT be the color histogram of the test image
and and let HM be the color histogram of the
model image. Let H(c) be the probability that
the color c occurs in the image. The χ2 diver-
gence measure is then computed as

χ2(HT , HM ) =
∑

c

(HT (c) − HM (c))2

HT (c) + HM (c)
. (65)

The lowest divergence measure tells us which
model image best matches the data of the test
image. This is done for all images of the test
set. The selection of test and model images and
subsequent matching is repeated 100 times to
determine the recognition rate. Note that if we
assume that we have n different illuminants per
scene and m different scenes then we would have

to carry out
(

n(n−1)
2

)m

experiments to cover

all possible combinations of model and test im-
ages. With n ≈ 10 and usually m > 10 this is
infeasible. The recognition rate is reported as
the number of times the correct model image is
chosen. A recognition rate of 1.0 would signal
that all model images are correctly matched to
the test images all of the time.

Table 3 shows object recognition results for
the white patch Retinex algorithm, scaling us-
ing global space average color, the gray edge
hypothesis, the simplified version of Horn’s al-
gorithm (Horn, 1974, 1986), the algorithm of
Blake (1985), the algorithm of Moore et al.
(1991), the algorithm of Rahman et al. (1999),
the gamut constraint method of Forsyth (1988,
1990), comprehensive normalization (Finlayson
et al., 1998), scaling using local space average
color and comprehensive normalization using lo-
cal space average color. We also report results
for a very simple algorithm which transforms
each color band to the range [0, 1] (Full Range
Per Band). The parameters which were used
for the different algorithms are summarized in
Table 2. Note that Table 4 shows the perfor-
mance on the same data sets except that the
histograms were computed in RGB chromaticity
space. Computation of color constant descrip-
tors using local space average color gives best re-
sults for image sets 1 through 4 when histogram
matching is done in RGB color space. A perfect
recognition rate was achieved for sets 3 and 4.
Computation of comprehensive local space aver-
age color gives best results on set 5. If the com-
parison is done in RGB chromaticity space, the
algorithm of Moore et al. which also computes
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Table 1 Image sets. Image sets 1 through 5 were created by Barnard et al. (2002c). Image sets 6 through
9 contain images showing natural scenes with spatially varying illuminants. Images of sets 1-4 and 6-8
were aligned with sub-pixel accuracy.

No. of Images No. of
No. Name Scenes per Scene Images Alignment

1 Lambertian Objects 21 2-11 212 aligned
2 Metallic Objects 14 9-11 146 aligned
3 Specular Objects 9 4-11 83 aligned
4 Fluorescent Objects 6 9-11 59 aligned
5 Different Objects 20 11 220 not
6 Natural Scenes (CD-ROM) 4 13-27 73 aligned
7 Natural Scenes (Kodak Photo CD) 5 5-27 54 aligned
8 Natural Scenes (Canon FS4000US) 9 4-28 130 aligned
9 Natural Scenes (Canon 10D) 10 12-20 137 not

Table 2 Parameters used for the color constancy algorithms.

Name of Algorithm Parameters

Full Range Per Band Transforms each color band to the range [0, 1].
White Patch Retinex Rescaling of each channel was done at 4%.
Gray World Assumption The scaling factor was determined automatically from the image

by scaling all pixels such that only 2% of the pixels are clipped.
Gray Edge Hypothesis The parameters were set as follows: n = 2, p = 7, and σ = 5.

The scaling factor was determined automatically from the image
by scaling all pixels such that only 2% of the pixels are clipped.

Simplified Algorithm of Horn No parameters required.
Horn (1974)/Blake (1985) The threshold was set to 3.
Moore et al. (1991) Local space average color was computed using an exponential

kernel with a sigma of σ = 0.17s where s = max{nx, ny}/2 and
nx is the width of the image and ny is the height of the input
image.

Rahman et al. (1999) Three exponential kernels are applied with σj ∈
{1s, 0.17s, 0.05s} where s = max{nx, ny}/2 and nx is the
width of the image and ny is the height of the input image.

Gamut Constraint 3D If an empty intersection is created, the convex hulls are increased
by a small amount. This process is repeated until a non-empty
intersection is achieved.

Comprehensive Normalization The intensity of the original image was used to add back the
original shading information.

Local Space Average Color The scaling factor was set to 2. Local space average color was
computed using an exponential kernel with a sigma of σ = 0.17s
where s = max{nx, ny}/2 and nx is the width of the image and
ny is the height of the input image.

Comprehensive Local Space
Average Color

Five levels were used for normalization. Local space average
color was computed using an exponential kernel with a sigma
of σ = 0.17s where s = max{nx, ny}/2 and nx is the width of
the image and ny is the height of the input image. The intensity
of the original image was used to add back the original shading
information.

local space average color performed best on set
5. The algorithm of Rahman performed best on
sets 1, 3, and 4 with a perfect recognition rate
on sets 3 and 4. A perfect recognition rate was
also achieved using simple scaling by local space
average color for set 4. The algorithm of Moore
et al. performed best on set 5. Comprehensive

local space average color performed best on set
2.

The recognition rates on image set 5 is much
lower across all of the algorithms except for
comprehensive local space average color, com-
pared to the recognition rates for sets 1 through
4. This is due to the fact that object recogni-
tion becomes much harder once the object to
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Table 3 Object recognition results for image sets 1 through 9. Histograms were computed in RGB space.
Random performance is also shown. Best performance is marked in bold.

Algorithm 1 2 3 4 5 6 7 8 9

Random Recognition Rate 0.048 0.071 0.111 0.167 0.050 0.250 0.200 0.111 0.100
Full Range Per Band 0.562 0.524 0.764 0.702 0.483 0.400 0.418 0.346 0.265
White Patch Retinex 0.613 0.672 0.939 0.885 0.409 0.370 0.332 0.369 0.290
Gray World Assumption 0.789 0.664 0.960 0.872 0.428 0.380 0.332 0.363 0.315
Gray Edge Hypothesis 0.691 0.606 0.871 0.810 0.400 0.410 0.276 0.351 0.289
Simplified Horn 0.462 0.451 0.744 0.617 0.182 0.507 0.4680.4680.468 0.328 0.169
Horn (1974)/Blake (1985) 0.480 0.409 0.597 0.613 0.254 0.435 0.438 0.304 0.152
Moore et al. (1991) Retinex 0.913 0.805 0.796 0.825 0.500 0.525 0.356 0.414 0.418
Rahman et al. (1999) 0.877 0.832 0.787 0.845 0.496 0.410 0.328 0.376 0.388
Gamut Constraint 3D 0.555 0.513 0.741 0.707 0.468 0.398 0.370 0.340 0.263
Comprehensive Normalization 0.593 0.533 0.889 0.820 0.236 0.410 0.386 0.373 0.367
Local Space Average Color 0.9520.9520.952 0.8840.8840.884 1.0001.0001.000 1.0001.0001.000 0.537 0.545 0.432 0.4930.4930.493 0.417
Comprehensive L.S.A. Color 0.487 0.600 0.622 0.670 0.5670.5670.567 0.5650.5650.565 0.448 0.441 0.4910.4910.491

Table 4 Object recognition results for image sets 1 through 9. Histograms were computed in chromaticity
space. Random performance is also shown. Best performance is marked in bold.

Algorithm 1 2 3 4 5 6 7 8 9

Random Recognition Rate 0.048 0.071 0.111 0.167 0.050 0.250 0.200 0.111 0.100
Full Range Per Band 0.574 0.482 0.723 0.767 0.357 0.495 0.412 0.303 0.172
White Patch Retinex 0.696 0.735 0.969 0.960 0.429 0.443 0.312 0.330 0.202
Gray World Assumption 0.820 0.704 0.978 0.930 0.441 0.497 0.346 0.328 0.222
Gray Edge Hypothesis 0.730 0.634 0.861 0.858 0.427 0.505 0.326 0.326 0.206
Simplified Horn 0.463 0.422 0.624 0.637 0.251 0.453 0.470 0.316 0.138
Horn (1974)/Blake (1985) 0.370 0.362 0.500 0.643 0.176 0.395 0.410 0.294 0.139
Moore et al. (1991) Retinex 0.940 0.918 0.991 0.985 0.5520.5520.552 0.565 0.440 0.449 0.335
Rahman et al. (1999) 0.9550.9550.955 0.904 1.0001.0001.000 1.0001.0001.000 0.485 0.485 0.412 0.404 0.316
Gamut Constraint 3D 0.571 0.478 0.696 0.730 0.354 0.507 0.340 0.300 0.159
Comprehensive Normalization 0.727 0.632 0.970 0.952 0.166 0.490 0.404 0.348 0.269
Local Space Average Color 0.945 0.912 0.998 1.0001.0001.000 0.528 0.492 0.414 0.442 0.313
Comprehensive L.S.A. Color 0.930 0.9220.9220.922 0.968 0.998 0.467 0.6520.6520.652 0.5160.5160.516 0.5190.5190.519 0.3580.3580.358

be recognized may be in arbitrary pose. Note
that even though a single illuminant was used
to illuminate the scenes of sets 1 through 5, the
algorithms based on local space average color
perform better than the standard gray world
assumption on sets 1, 2 and 5. The algorithms
based on local space average color are also able
to compensate for any illumination intensity
gradients which may have been present in the
image. Note that once we move to chromatic-
ities, the difference between the performance
of the algorithms based on local space average
color and the standard gray world assumption
is reduced.

Results for image sets 6 through 9 are also
shown in Table 3 and Table 4. Image matching
in the presence of a non-uniform illumination is
a much more difficult problem. Thus, the recog-
nition rates are lower compared to the results
on image sets 1 through 5. Another cause for

lower performance of the algorithms on sets 6
through 9 is that the data is processed multiple
times (first through the response function of the
film and then again through the response func-
tion of the digitizer). The simplified algorithm of
Horn performed best on set 7. Computation of
color constant descriptors using local space av-
erage color gave best results on image set 8 if the
comparison is done in RGB color space. Com-
prehensive local space average color performed
best on sets 6 and 9. If the comparison is done in
RGB chromaticity space then comprehensive lo-
cal space average color gave best results for sets
6 through 9. The interested reader is referred to
Ebner (2007a) for additional data and tests on
the performance of the algorithms.

Evidently, algorithms using local space av-
erage color perform very well on image match-
ing tasks. Why is this the case? In order to in-
vestigate the matter further, we computed the
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average standard deviation σ1 of the image pix-
els across the different scenes after a color con-
stancy algorithm has been applied. This is the
reason why we require aligned images. A per-
fect color constancy algorithm would have an
average standard deviation of zero for all im-
age pixels, i.e. each pixel would be mapped to
the object reflectance or some other constant
value. However, simply mapping the data to
some constant value (whatever the input may
be) is not good enough for object recognition.
The result has to be non-trivial. Object recog-
nition becomes easier the better the color space
is used. Thus, let us also compute the standard
deviation σ2 of the image pixels within a sin-
gle image. We do not want a constant output
across all image pixels of a single image. The
smaller the first measure (σ1), the better the
color constancy algorithm. The larger the sec-
ond measure (σ2), the larger the spread of the
output pixels. In other words, algorithms with a
large standard deviation σ2 map the input col-
ors to a large part of the available color space.
Algorithms with a small standard deviation may
only use a subspace of the available color space.
Given the two standard deviations, we can com-
pute a color constancy measure m.

m =
σ2

σ1
(66)

When we look at the correlation between the
color constancy measure and the performance
on the image matching task as shown in Fig-
ure 11, we find that the measured data corre-
late very well. The higher the color constancy
measure the higher the recognition rate. Algo-
rithms with a low color constancy measure per-
form poorly on the image matching task. The
algorithms based on local space average color
and the algorithm which used local space aver-
age color to scale each channel by twice the local
space average color in particular is very good at
producing a color constant output but at the
same time also uses a large part of the available
color space.

Since the ground truth data is available for
the illuminant used for data sets 1 through
5, we can compare the color of the illuminant
which was estimated by the algorithms to the
actual color of the illuminant. Barnard et al.
(2002a,b) performed an in depth study on how
accurately color constancy algorithms estimate
the color of the illuminant. They conducted ex-
periments using synthetic as well as real images.

We will focus on real images here. Barnard et
al. used the angular error between the actual
and the estimated illuminant as a primary error
measure. They also measured the distance be-
tween the actual and the estimated illuminant
in RG chromaticity space. For each algorithm,
Barnard et al. (2002a,b) report the root mean
squared error of these error measures. For some
algorithms they also report illuminant RGB er-
ror and the brightness error (R + G + B). Both
are not considered here.

Let LE = [LE,r, LE,g, LE,b] be the estimated
illuminant. Let LT = [LT,r, LT,g, LT,b] be the
actual illuminant. Then the angular error Eα is
given by

Eα = cos−1 LE · LT

|LE ||LT |
. (67)

The second error measure is based
on chromaticities. Let L̂E =

1
LE,r+LE,g+LE,b

[LE,r, LE,g, LE,b] be the chro-

maticity of the estimated illuminant. Let
L̂T = 1

LT,r+LT,g+LT,b
[LT,r, LT,g, LT,b] be the

chromaticity of the actual illuminant. Then the
distance Ed between the estimated and the
actual illuminant is given by

Ed =

√

(L̂E,r − L̂T,r)2 + (L̂E,g − L̂T,g)2. (68)

Barnard et al. (2002b) suggest to exclude pixels
less than two because results for those pixels
may be very noisy.

We computed the same error for the algo-
rithms which are described above. The results
are shown in Table 5. Only algorithms which es-
timate the color of the illuminant are included
in the table. Computation of local space aver-
age color estimates the color of the illuminant
locally for each image pixel. In order to com-
pare the performance of this algorithm with the
ground truth data, the average of the local esti-
mates was computed and then compared to the
ground truth data. None of the algorithms is
able to estimate the color of the illuminant with
an angular error less than 8 degrees. Since the
data set of Barnard et al. do not contain any
clipped pixels, simply transforming the given
range of each band to the range [0, 1] works quite
well. Barnard et al. (2002b) report very good
results for the 3D gamut constraint algorithm
developed by Forsyth (1988, 1990). However,
neither the gamut constraint algorithm nor the
algorithm which transforms each band to the
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Fig. 11 The top two graphs show the correlation between the color constancy measure and image match-
ing performance for sets 1 through 5 and sets 6 through 9. A very good correlation (0.895) is observed
for sets 1 through 5. The correlation for sets 6 through 9 is not as good (0.539) which is not surprising
given that the images from sets 6 through 9 are from a variety of sources. The correlation between the
ability to accurately estimate the illuminant and the performance at the image matching task is rather
low, it is 0.423 and 0.509 respectively. The correlation plot between the measure Ed and image matching
performance is shown in the bottom left. The correlation plot for the measure Eα is shown on the bottom
right.

Table 5 Comparison to ground truth data for image sets 1 through 5.

Algorithm 1 2 3 4 5

Eα Ed Eα Ed Eα Ed Eα Ed Eα Ed

Full Range Per Band 8.68.68.6 0.0570.0570.057 13.113.113.1 0.0940.0940.094 12.5 0.088 10.310.310.3 0.0870.0870.087 10.210.210.2 0.0680.0680.068
White Patch Retinex 9.1 0.064 18.7 0.137 13.8 0.106 15.5 0.136 15.4 0.120
Gray World Assumption 10.4 0.073 13.8 0.103 13.1 0.090 15.8 0.149 13.1 0.092
Gray Edge Hypothesis 8.8 0.064 14.7 0.108 10.710.710.7 0.0740.0740.074 13.1 0.098 11.8 0.082
Gamut Constraint 3D 8.68.68.6 0.0570.0570.057 13.113.113.1 0.0940.0940.094 12.3 0.086 13.7 0.119 10.6 0.073
Local Space Average Color 10.7 0.084 18.3 0.134 19.4 0.158 19.0 0.168 10.8 0.079

range [0, 1] performed very well on the image
matching task. Even if an algorithm performs
well on the image matching task it may not
necessarily be the case that this algorithm also
accurately estimates the illuminant. The good
performance is also in part due to the use of the
entire available color space.

9 Conclusion

Natural scenes frequently have multiple illumi-
nants. A room may be illuminated by artificial

light as well as reflected sunlight. Even if there
is only a single illuminant, the intensity of the
illuminant usually varies across the image. In or-
der to compute color constant descriptors from
the measured data, one has to estimate the il-
luminant locally for each image pixel. We have
looked at several different methods on how to es-
timate the illuminant locally. A simple yet very
effective method is the use of local space average
color. We also described how such an algorithm
can be integrated directly into the imaging de-
vice. Algorithms using local space average color
were evaluated on several different image sets.
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It was found that algorithms using local space
average color are particularly suited for object
recognition tasks.
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