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Mar Ebner, Hans-Georg Breunig and J�urgen AlbertUniversit�at W�urzburg, Lehrstuhl f�ur Informatik II,Am Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.de, Tel. (+49)931/888-6612http://www2.informatik.uni-wuerzburg.de/staff/ebner/welome.htmlAbstratThe natural immune system is very e�etiveat proteting the body from diseases. Severalresearhers have analyzed the natural sys-tem and reated arti�ial systems whih opymehanisms of the natural system in order toimprove omputer seurity. We suggest thatthe negative seletion algorithm, whih is atwork in the natural system, might have beenopied too losely. We argue against the useof negative seletion if spae is �nite and selfomprises only a small fration of the avail-able spae or if spae is in�nite. We illustratethis on the problem of user authentiation us-ing keystroke analysis.

1 MOTIVATIONThe natural immune systems' task is to detetmoleules whih don't belong to the organism. Thisability led several researhers to look losely at theworkings of the natural immune system. Inspired bythe natural system they have tried to opy meha-nisms whih are at work in the natural system moreor less losely for use in the area of omputer seurity(D'haeseleer et al. 1996; Forrest et al. 1997; Forrestet al. 1996; Forrest et al. 1994; Hofmeyr and For-rest 1999a; Hofmeyr and Forrest 1999b; Kephart 1994;Kim and Bentley 2001a; Kim and Bentley 2001b; So-mayaji et al. 1998). After having a loser look on howthe natural immune system works, we briey reviewsome of the arti�ial immune systems and analyze theadvantages and disadvantages of using the mehanismof negative seletion in an arti�ial immune system.

2 THE NATURAL IMMUNESYSTEMOur disussion of the natural immune system is basedon Alberts et al. (1994). A substane ausing an im-mune reation is alled an antigen. The immune sys-tem is apable of distinguishing between highly similarantigens. Even proteins whih di�er by only a singleamino aid an be distinguished. The ells whih areresponsible for the immune spei�ity are alled lym-phoytes. They belong to the lass of white bloodells. The human body has approximately 2 � 1012lymphoytes. Two lasses of lymphoytes exist: B-ells and T-ells. B-ells develop in the adult bonemarrow or the fetal liver. They produe antibodies.T-ells develop in the thymus and are responsible forthe so alled ell-mediated immune response.The immune system is based on a mehanism whih isalled lonal seletion. Eah lymphoyte is equippedwith a reeptor whih an be used to bind an antigen.The term lonal seletion omes form the fat that alarge variety of reeptors exist whih an be groupedinto families, or lones, of ell. Eah reeptor has aspei� shape and an only reat with a ertain anti-gen. The reeptors are generated at random and arethought to over the whole spae of possible antigens.If a lymphoyte binds an antigen, then the ell be-omes ativated. The ell proliferates, matures, and�nally seretes antibodies. The antibodies have thesame shape as the reeptor of the ell whih seretedit.The antibody response inludes the prodution of an-tibodies whih irulate through the blood and otherbody uids. The antibodies onsist of a Y-shapedmoleule whih an bind an antigen at two loations.An abstrat representation of this Y-shaped moleuleand a lose-up of the antigen-binding site of an anti-body moleule is shown in Figure 1. The antibodies
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Figure 2: Binding of an antigen. Redrawn from Al-berts et al. (1994).bind antigens whih �t into the reeptors. Throughthis binding proess a virus may be inativated. Anti-gens oated with antibodies may also be digested orkilled by speial ells.In the ourse of an immune response B-ells inreasethe aÆnity of the antibodies they produe. This pro-ess is alled aÆnity maturation. Changes to the shapeof the reeptors are aused by mutations. This proessis referred to as somati hypermutation. The muta-tions happen with a frequeny whih is approximatelyone million times higher than the mutations whihhappen to the other genes. Cells whih have a highaÆnity binding reprodue better beause they anmore easily dok on an antigen (Figure 2). This resultsin a seletion of those ells whih losely math thegiven antigen. Thus, an evolutionary proess is em-bedded in the immune system whih produes highlyspei� antibodies to any possible antigen.The ell-mediated immune response onsists of theprodution of speialized ells, alled T-ells. Theseells are used to detet ells whih have been infetedby a virus. Peptide fragments of a foreign moleule arebrought to the ells surfae by speialized moleules.Inside the ell those moleules are invisible to the im-mune system. One these fragments show up on theells surfae they an be deteted by the T-ells. Wehave two kinds of T-ells: ytotoxi T-ells and helperT-ells. Cytotoxi T-ells kill infeted ell diretlywhile helper T-ells ativate other ells who then kill
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second injection of antigen AFigure 3: Response to antibodies. The response tothe seond exposure to antigen A happens muh fasterthan the response to the �rst exposure. In addition theresponse is also stronger. Redrawn from Alberts et al.(1994).the infeted ells. In addition, the helper T-ells areneessary for the ativation of B-ells. Helper T-ellsstimulate themselves as well as other helper T-ells toreprodue one they are ativated. Only those helperT-ells beome ativated whih have deteted an anti-gen.In addition to the immune responses the immune sys-tem also has a memory. If an antigen is deteted forthe �rst time then the immune response only happensafter a ertain delay. This is alled the primary im-mune response. The immune response on a knownantigen, alled the seondary immune response, hap-pens quiker and more strongly in omparison to theprimary immune response. The di�erene between theprimary and the seondary immune response is shownin Figure 3. This behavior of the immune system isrealized through di�erent stages of the T- and B-ells.There are at least three di�erent stages: virgin ells,ativated ells and memory ells. Ativated ells dieafter a few days. However, memory ells an live forseveral months or even years.The main task of the natural immune system is to dis-tinguish between own moleules and moleules belong-ing to a foreign organism. Deteting foreign moleulesis mainly the task of the T-ells. The T-ells developin the thymus. Cells whih bind to own peptide areeliminated during development. This proess is allednegative seletion. Only T-ells whih have a low aÆn-ity to the organisms own moleules remain. B-ellsneed helper T-ells to reat to foreign antigen. There-fore, helper T-ells also ensure that self-ative B-ellsare harmless.



Following this disussion of the human immune systemwe now have a look at how the workings of the natu-ral system have been mapped to an arti�ial immunesystem.3 PROPOSALS FOR ANARTIFICIAL IMMUNE SYSTEMIn the area of omputer seurity one needs to distin-guish original data from manipulated data, authorizedusers from intruders and normal behavior from abnor-mal behavior. This is exatly the problem the naturalsystem solves, namely to detet self from non-self. Anumber of properties of the natural system would alsobe useful for an arti�ial system: (a) distributed de-tetion, (b) multi-layered, () diversity, i.e. every in-dividual has its own immune system, (d) disposability,no single omponent is essential (e) the immune sys-tem an work autonomously, (f) is adaptive and (g)does not depend on serets (Somayaji et al. 1998).Kephart (1994) developed a biologially inspired im-mune system to protet a omputer system from pre-viously unenountered viruses or worms. The analo-gies between the natural system and the arti�ial sys-tem are rather loose. Integrity monitors in onjuntionwith ativity monitors are used to determine if a virusor worm has entered the system. The integrity moni-tors hek if �les have been hanged or added. Ativitymonitors hek for dynami behavior whih is typialof viruses. They also look at the type of hange to seeif the hange may have been aused by a virus. If itis determined that a virus has entered the system asan is made to �nd any known viruses. In ase thevirus is known, it is removed. Otherwise, deoy pro-grams are used in order to get a sample of the virus.This has been likened to the ingestion of antigen bymarophages or B ells in the natural immune system.Forrest et al. (1994) developed an arti�ial immunesystem for hange detetion in exeutables. The sys-tem learns to distinguish the original version of a pro-gram from a program whih has possibly been infetedby a virus. Forrest et al. generate a set of ran-dom detetors (bit strings) in analogy to the workingsof the thymus of the natural immune system. Thenegative seletion algorithm is used to remove thosedetetors whih would detet the original programs.The feasibility of generating detetors was analyzedby D'haeseleer et al. (1996) who also proposed a moreeÆient algorithm for generating detetors.Hofmeyr and Forrest (1999a, 1999b) developed an ar-ti�ial immune system for intrusion detetion. Thissystem has a loser analogy to the workings of the

natural immune system. The system's task is to dis-tinguish normal from abnormal onnetions betweentwo omputers in a loal area network. The systembasially onsists of a set of detetors whih are usedto detet non-self, i.e. abnormal behavior. Initially thedetetors are generated at random. During an initialmaturation period, it is heked if a detetor mathesany part of the system whih is to be proteted. If amath ours then the detetor is deleted. If a dete-tor has survived this proess for a spei�ed number ofsteps then the detetor matures and is now ready to de-tet non-self. The set of mature detetors ontinuallymonitor the data stream for non-self. If a detetor isnot ativated for some time then the detetor is deletedand replaed with a new mature detetor leaving thenegative seletion algorithm. Detetors are memorizedif a detetor reeives a speial type of o-stimulation.Detetors whih have been memorized previously animmediately detet non-self.Forrest et al. (1996) have developed an arti�ial im-mune system whih monitors dynami behavior of pro-esses. Sequenes of system alls are used to de�nenormal behavior for standard unix programs. Devia-tions from this normal behavior are deteted by om-paring short sequenes of system alls with normal se-quenes stored in a database. Plans to extend thiswork inlude the addition of the negative seletion al-gorithm and using on-line learning.Kim and Bentley (2001b) modeled lonal seletion foruse in an arti�ial immune system for network intru-sion detetion. Basially, Kim and Bentley evolve de-tetors whih detet non-self antigens. A negative se-letion operator is embedded in this proess. Detetorswhih math self antigens are deleted. Other authorshave used priniples from arti�ial immune systems fordiversity maintenane in multi objetive optimization(Cui et al. 2001), to improve adaptability in the on-text of time dependent optimization (Gaspar and Col-lard 1999) or to reognize spetra for hemial analysis(Dasgupta et al. 1999).Many of the arti�ial systems stay very lose to theworkings of the natural system, with all its advantagesand disadvantages. We now have a loser look at theeÆieny of the negative seletion algorithm.4 ON THE EFFICIENCY OF THENEGATIVE SELECTIONALGORITHMReently, Kim and Bentley (2001a) analyzed negativeseletion in an arti�ial immune system for intrusiondetetion. Their main result is that as the task be-



Self
Self(a) (b)Figure 4: (a) Covering non-self with detetors worksbest if self is large and non-self oupies only a smallfration of spae. (b) On the other hand, overing selfwith detetors works best if self is small and non-selfoupies a large fration of total spae.omes more omplex, the number of detetors has tobe unaeptably large and the time needed to gener-ate a suÆient number of detetors is impratial. Inomparison to this ritique of the negative seletionalgorithm our ritique is muh more general.For this analysis we assume that we have n-dimensional real valued vetors whih represent anti-gens and detetors. We also assume, that we havesome mehanism whih is able to detet if a math o-urred between a detetor and an antigen. This an besome arbitrary measure suh as orrelation oeÆientor distane between the two vetors. Now we need ade�nition of self. We de�ne self as a subset of pointsin the n-dimensional spae. The set of points desrib-ing self does not have to be stati but an vary overtime. A threshold is usually used to determine if adetetor mathes either an antigen or any point of theself. This fat is modeled by plaing a hyper-spherearound eah point whih belong to the self. The ra-dius of the hyper-sphere determines the sensitivity ofthe detetor. An antigen is deteted if it lies inside thehyper-sphere of a detetor.The negative seletion algorithm distributes detetorsrandomly over this spae. Detetors overlapping anypoints of self are removed (Figure 4a). This algorithmworks �ne if spae is �nite and self oupies a largefration of the total spae. But what if spae is �niteand self omprises only a small fration of the availablespae or what if spae is in�nite? In this ase it makesmore sense to desribe only the self and then hek ifan antigen falls outside of this area (Figure 4b).Note that if the number of detetors is �nite thenlearning a onept or learning its negation are notequivalent. If self an be overed using a smallernumber of detetors in omparison to non-self thenit makes more sense to detet self instead of non-self.If spae is in�nite and one tries to over all points be-longing to non-self, only a �nite number of points will
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Figure 5: Somati hypermutation and lonal seletioninreases the aÆnity between detetor and antigen.This orresponds to a movement in shape spae.be overed. The sensitivity of the detetors need to beredued if one wants to be able to detet all possibleantigens. Reduing the sensitivity means enlarging theradius of the hyper-spheres. However this also meansthat during random generation of a detetor it is verylikely that this detetor will over some part of self andtherefore will be removed from the set of detetors. Ifthe size of self is small and the number of detetors islimited then self an be muh better approximated byplaing the detetors inside of self.Suppose we want to determine if a point is loatedoutside of a square. All we need is to hek if thepoint is not loated inside the square. This negationof a test an be done in a omputer system quite easilybut is very diÆult to realize in a natural system. Forthe natural immune system it is simply not possibly tohek if a given moleule is equivalent to one of its ownmoleules. The natural system would have to storesamples of the moleules whih our in the humanbody in some part of the body and then hek if theintruder falls outside this lass of moleules. That is,the natural system would have to hek that the givenmoleule is unlike any of the stored moleules. Beausethis is infeasible, the natural system is dependent onthe use of negative seletion to detet moleules whihdon't belong to its own organism. This works beauseloal shape spae is only �nite (Kau�man 1993).The natural system generates detetors whih mathother moleules rather rudely. The math is then re-�ned using somati hypermutation. Detetors whihhave a better math produe more o�spring. Whatanalog would there be in an arti�ial immune sys-tem for the proess of somati hypermutation? In ourmodel, this would orrespond to moving the detetorin the diretion of the position of the antigen (Figure5). But is this really neessary? If it is established thatsome antigen is present in the system then it would be



character duration delay character duration delay characterFigure 6: Moleule generated from the user'skeystrokes. Eah moleule is omposed of 7 �elds.the best to store the position of the antigen as a sampleof an unknown intruder. The more samples are gainedthe better our knowledge of the intruder beomes.So far, our disussion was rather general with no par-tiular problem in mind. We now have a look at solv-ing the problem of user authentiation with an arti�-ial immune system.5 A PRACTICAL EXAMPLEBiometris suh as a �ngerprint or iris pattern maybe used to determine who is atually using a om-puter system. For instane, Klosterman and Ganger(2000) have developed a system for ontinuous userauthentiation using a fae reognition system. Otherexamples for user authentiation inlude the analysisof keystroke patterns (Bleha et al. 1990; Brown andRogers 1993; Furnell et al. 1996; Furnell et al. 1995;Joye and Gupta 1990; Leggett and Williams 1988;Monrose et al. 1999; Monrose and Rubin 1997; Obai-dat and Sadoun 1997; Robinson et al. 1998; Shepherd1995; Song et al. 1997; Umphress and Williams 1985).As a pratial example, we have hosen to analyze typ-ing patterns. We want to make sure that the same useris ontinually sitting in front of the keyboard. For in-stane, if a person goes to lunh and forgets to lokthe sreen, then somebody not authorized ould usethe terminal. Keystroke analysis ould also be used tomake sure that even if the password is known to an in-truder it an only be used to gain aess to the systemif the speed of typing orresponds to the authorizeduser. That is, we want to develop an arti�ial immunesystem for user authentiation.The system tries to determine if the same or a di�erentuser is using the system. This information is derivedby analyzing the user's keystrokes. The duration ofthe key presses and the delay between key presses isused to determine who is typing on the keyboard. Astream of moleules is generated from the timestampswhih are reorded whenever a key is either pressed orreleased. Eah moleule ontains data from three su-essive key release events. The data is stored in seven�elds as shown in Figure 6. The �rst �eld ontains the�rst harater whih was released. The seond �eldontains the duration of the key press. The third �eldontains the delay between the release time and the

time of the next key press. The fourth �eld ontainsthe seond harater. The �fth �eld ontains the du-ration of the seond key press. The sixth �eld ontainsthe delay between the release time and the time of thethird key press and �nally the last �eld ontains thethird harater pressed.First we need a notion of self. Self is de�ned as thenormal typing behavior of a user. That is, all pointsin our 7 dimensional spae whih desribe the typingbehavior of the user belong to the set of self. All othersbelong to the set of non-self. In order to detet a dif-ferent user we ould randomly generate detetors andthen hek if the detetors math any of the moleules.If a detetor mathes any part of self then we deletethis detetor. The problem with this approah is howan we over an in�nite spae? To solve this problemwe have hosen to store samples of the normal typ-ing behavior of the user and to hek the stream ofmoleules against this sample. Thus, we do not usethe negative seletion algorithm.For our experiments we have used a pool of 2000 dete-tors. Eah moleule is stored in the pool of detetorsafter a delay of 2000 iterations of our algorithm. Anativity level models the lonal reprodution of the ar-ti�ial immune system. The stream of moleules isheked against this pool of detetors. If a mathis made between a moleule and a detetor, i.e. themoleule is suÆiently similar to one of the detetors,we derease the ativity level by 1% otherwise we in-rease the ativity level by 1%. The ativity level is setto 1.0 at the start of our algorithm. The ativity anreah a maximum of 2.0. If the ativity level reahes1.5 (half-way between maximum and minimum values)then we assume that a di�erent user has gained unau-thorized aess to the keyboard.For a math between a moleule and a detetor to bemade we require that �elds one, four and seven areequivalent. If these three �elds are equivalent, thenwe look at �elds two, three, �ve and six to determinehow similar these �elds are. For eah of these four�elds we alulate the following similarity measuresimilarity = Xi2f2;3;5;6g e� (ai�di)2�2iwhere ai and di refer to the i-th element of themoleule (a possible antigen) respetively detetor and�i = di=2:1. A math is made if the similarity measurereahes a value of 3.2 or higher.We obtained typing harateristis for 5 di�erent users.Eah user had to type the �rst two setions of the sem-inal paper \Computing mahinery and intelligene" by



Table 2: Number of keystrokes until hange is de-teted. User 1 2 3 4 51 - 141 100 139 2672 39 - 67 459 463 53 52 - 71 544 123 322 209 - 1135 120 101 131 119 -Turing (1950). The data obtained from the keystroketimestamps was saved and onverted into a streamof moleules. The stream of moleules was then an-alyzed o�ine. Eah stream onsisted of between 5168and 5741 moleules. For eah user we randomly se-leted a reading position from whih we start read-ing moleules. After 2000 moleules we start readingmoleules from the seond users stream. Eah user'sstream of moleules was ompared against the streamsof all other users resulting in a 5� 5 matrix of ativ-ity graphs. If a user's stream was ompared againstits own stream then we simply skipped 100 moleulesafter 2000 moleules have been proessed. The resultsof all experiments are shown in Table 1. Table 2 liststhe number of moleules (or keystrokes) until non-selfwas deteted.6 DISCUSSIONThe results show that non-self is deteted after a rel-atively small number of keystrokes. Simply storingsamples of the user's typing behavior works well forthe task of user authentiation. However, this is notthe only way to address this problem. Another pos-sibility would be to average data and thereby to es-tablish a model of the person sitting in front of thekeyboard. In this ase, the task is to obtain a om-pressed form of the data. For the task desribed here,this an be ahieved by alulating the mean and thevariane of the duration of keystrokes and the delaybetween keystrokes.In fat, deriving a model from keystroke harateris-tis for user authentiation was proposed by several re-searhers (Bleha et al. 1990; Brown and Rogers 1993;Furnell et al. 1996; Furnell et al. 1995; Joye andGupta 1990; Leggett and Williams 1988; Monrose andRubin 1997; Obaidat and Sadoun 1997; Robinson et al.1998; Shepherd 1995; Song et al. 1997; Umphress andWilliams 1985). Song et al. (1997) use the same rep-resentation as we do for ontinuously monitoring theuser's keystrokes. In partiular, the mean and stan-dard deviation of the duration of a key press and the

delay between a key release and another key press arealulated over two or more onseutive press and re-lease events. Next, the probability that the urrent du-ration of key presses and the delay between keystrokesbelong to the urrent user is alulated. If the sum ofprobabilities is very low for a number of time stepsthen a di�erent user is likely to be sitting in front ofthe terminal.The main problem with model based approahes ishow to treat outliers. Some researhers e.g. Joyeand Gupta (1990), Leggett and Williams (1988), andUmphress and Williams (1985) remove outliers. How-ever the diÆult task is to de�ne what is an outlier.With our approah all user patters are stored. The au-thorized user will oasionally produe outliers but thelarge majority of typing patters will be onsistent, i.e.not raise the ativation value. In ontrast, an unau-thorized user will almost always produe outliers whihkeep raising the ativation value of the system. Adap-tation is ahieved by storing moleules in the pool ofdetetors after a delay of several iterations. Thus ourpool of detetors represents an undistorted view of theuser's typing pattern. Furnell et al. (1995) and Fur-nell et al. (1996) ahieve a detetion rate of 85% within160 keystrokes or less with a system based on statisti-al methods. Our system is simpler yet we detet 80%of the intrusion attempts within 160 keystrokes or less.7 CONCLUSIONSThe natural immune system does a very good job ofproteting the body from diseases. Analysis of thenatural system an provide many paths to inreasedomputer seurity. Several suessful systems have al-ready been proposed. In our researh we foused onthe role of negative seletion in the immune system.The negative seletion operator does a beautiful job inthe natural system but is not neessarily useful in anarti�ial system. The natural system basially has noother way to detet foreign antigens than to removethose ells whih produe antibodies whih detet itsown moleules. However, in a omputer system we areable to determine easily if an element is not a memberof a given set. Thus we don't need to invoke the neg-ative seletion algorithm here. As a pratial problemto illustrate this ase we have hosen user authenti-ation using keystroke analysis. Samples of the user'styping harateristis were stored in a pool of dete-tors and ompared with the urrent typing behavior.If the typing behavior deviates too muh from the nor-mal typing behavior then a di�erent user is likely tobe using the keyboard. Experimental results were pro-vided for 5 di�erent users. In eah ase non-self was



Table 1: Self and non-self detetion for 5 users. Eah graph shows the ativity level over time. The graphs inthe diagonal show how the system behaves for a single user when 100 moleules are skipped after 2000 moleuleshave been proessed. Beause the typing behavior is still the same, no hange is deteted. In ontrast, theativity level rises sharply whenever a di�erent user's stream is proessed. The vertial line denotes the timewhen 2000 moleules have been proessed.USER 1 2 3 4 51
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