
This is a preprint of an artile published in Complexity, Vol. 7, Issue 2, pp. 19-33, Wiley Periodials, 2001How neutral networks inuene evolvabilityMar Ebner1, Mark Shakleton2 and Rob Shipman21 Universit�at W�urzburg, Lehrstuhl f�ur Informatik II, Am Hubland, 97074 W�urzburg, Germanyebner�informatik.uni-wuerzburg.de2 BT Labs at Adastral Park, Admin 2-5, Martlesham Heath, Ipswih IP5 3RE, UKfmark.shakleton,rob.shipmang�bt.omAbstratEvolutionary algorithms apply the proess of variation, reprodution and seletion to lookfor an individual apable of solving the task at hand. In order to improve the evolvability ofa population we propose to opy important harateristis of nature's searh spae. Desiredharateristis for a genotype-phenotype mapping are desribed and several highly redundantgenotype-phenotype mappings are analyzed in the ontext of a population based searh. Weshow that evolvability, de�ned as the ability of random variations to sometimes produeimprovement, is inuened by the existene of neutral networks in genotype spae. Redundantmappings allow the population to spread along the network of neutral mutations and thepopulation is quikly able to reover after a hange has ourred. The extent of the neutralnetworks a�ets the interonnetivity of the searh spae and thereby a�ets evolvability.Neutral evolution, neutral networks, �tness landsapes, redundant mappings, hangingenvironment, adaptation.1 IntrodutionNatural evolution di�ers in many respets from the way evolutionary algorithms are usually usedin omputer siene. Aording to the neutral theory of evolution, a onsiderable fration of allmutations are neutral and only a small fration of non-neutral mutations are atually bene�ial[22℄. Some neutral mutations result from a redundany in the geneti ode but most redundanyarises in the development of the phenotype from the genotype. However, most evolutionary al-gorithms use a �xed one-to-one mapping between genotype and phenotype spae. Eah genotypeorresponds to exatly one phenotype. In this artile we desribe the impat of redundant map-pings on the searh spae. If an appropriate redundant mapping is used, more phenotypes beomeaessible whih an help to make the searh easier. A redundant mapping indues neutral net-works, whih are sets of genotypes that represent the same phenotype and are onneted by singlepoint mutations [17, 16, 43℄.1.1 The impat of neutral nets on evolutionSuppose we are using a one-to-one mapping between genotype and phenotype spae and that pointmutations are the only way that variations an be introdued into the population. In this ase thenumber of phenotypes reahable from any given genotype is exatly (A� 1)L [20℄ where A is thenumber of alleles per loi and L is the length of the genotype. If this genotype happens to be aloal optimum, i.e. none of the neighbors are better than the urrent one, then we are stuk and1



1 2 3 4 5
6 7 8 9 10Figure 1: Initially all individuals are loated in a small area of genotype spae. Individuals arerepresented as dots. Lines in this spae denote borders between di�erent phenotypes. It is assumedthat only a small neighborhood an be reahed by using a point mutation and that the light grayarea orresponds to the �ttest phenotype. Individuals whih fall outside the light gray area quiklydie out. The dark gray areas orrespond to phenotypes whih an be reahed by a single pointmutation from at least one member of the urrent population. Over time the population spreadsalong the neutral network and more and more adjaent phenotypes beome reahable via pointmutations. If the �tness landsape hanges, only the one mutant neighbors of the genotype losestto the now �ttest phenotype survive, and the proess starts anew. This happens at the 8th timestep of the above sequene, where the area enlosed by the thik line is to beome the �ttestphenotype due to a hange of the �tness landsape. In the absene of neural nets no individualwould have been within one (or a few) mutations to the new environment. Adaptation to the newenvironment, onsequently, would be muh slower or even nonexistent.no further improvement is possible. However, if a redundant mapping is used, more phenotypesmay beome aessible via neutral networks beause it is possible to drift along neutral mutationsto new regions in the searh spae. The number of phenotypes reahable from this neutral networkmay be muh greater than the number of neighbors given a non-redundant mapping.The bene�t of this inrease in reahable phenotypes is that a searh algorithm is more likely tobe able to reah a superior phenotype (without having to traverse through inferior phenotypes) andthus it has an inreased hane of avoiding beoming trapped in a loal optima. The operation ofa population based algorithm on a landsape with neutrality has additional interesting properties.For example, onsider the ase where the algorithm has found an optimal solution and suppose thatthe population is spread out through the neutral network of genotypes that map to this phenotype.If then the �tness landsape should hange, and some new phenotype beomes optimal, there is ahane that some member of the population will already be quite lose to a genotype that maps tothis new best phenotype. The important thing to notie is that an evolutionary algorithm does notonly operate on a single individual. If a population of individuals is used, the individuals are ableto spread along paths of neutral mutations. How this works is illustrated in Figure 1. Thereforethe number of phenotypes reahable via point mutations an be muh larger if an appropriateredundant mapping is used and the population is suÆiently spread out along a neutral network.But what type of redundant mapping should be used? To answer this question one an drawinspiration from nature's searh spae.1.2 Desired harateristis of the searh spaeShuster [34℄ has analyzed the shape spae of RNA seondary strutures. Aording to Shusterthere are few shapes that are ommon and many shapes are rare. Sequenes that ode for all2



ommon shapes are loated in the viinity of any randomly seleted sequene. In addition, dif-ferent sequenes that ode for a spei� shape are randomly distributed in sequene spae. Longpaths of neutral mutations lead to sequenes whih ode for idential shapes. Huynen [16℄ andHuynen et al. [17℄ showed that neutral evolution plays a role in adaptation in the ontext of �tnesslandsapes based on the mapping between RNA sequene and RNA seondary struture. Ebner[6℄ and Shipman [36℄ have argued that similar harateristis might also be useful for an arti�ialsearh algorithm. A number of studies were arried out to analyze the bene�ts of a highly redun-dant genotype-phenotype mappings whih show similar harateristis to nature's searh spae.Shipman et al. [37℄ analyzed the searh spae reated by several redundant genotype-phenotypemappings with di�erent amounts of redundany. Shakleton et al. [35℄ introdued the onept of�tness to the redundant mappings and performed �tness adaptive walks for a single point movingthrough genotype spae. Ebner et al. [7℄ have shown that highly redundant mappings inreaseevolvability, de�ned as the ability of random variations to sometimes produe improvement, in apopulation of o-evolving speies. Bullok [5℄ analyzed mutation bias of redundant mappings.Other researh exploring the e�ets of redundany inlude the work of Barnett [4℄, who intro-dued redundany into Kau�man's NK �tness landsape [20℄ and analyzed population dynamison this stati �tness landsapes. Newman and Engelhardt [33℄ also presented a variant of the NKlandsape with neutrality. In both ases, the amount of redundany inherent in the landsape maybe tuned by varying a parameter. Levenik [29℄ has looked at the advantages of having introns fora dynami environment. Julstrom [18℄ established that redundany is bene�ial in looking for asolution to the problem of partitioning 3n points into 3-yles of minimum total length. Reently,Yu and Miller [56℄ investigated the bene�ts of neutral evolution for the synthesis of digital iruits.Banzhaf [2℄ studied a simple redundant map in the ontext of linear omputer programs andKeller and Banzhaf [21℄ evolved a genotype-phenotype map for omputer programs. The e�ets ofa simple redundant mapping on the searh spae were analyzed theoretially by Kargupta [19℄. Therole of development in geneti algorithms has been analyzed by Hart et al. [14℄. Other researhershave experimented with developmental mappings where the genotype spei�es a grammar fromwhih the phenotype develops [12, 13, 25℄. In the geneti programming paradigm [23, 24℄ intronsusually our at the end of an experiment after a loal optimum has been reahed [3℄. Individualsan inrease the probability that their o�spring will have the same �tness as their parent byinreasing the number of introns. This proess is usually referred to as bloat in the ontext ofgeneti programming [27, 28℄. Code growth is studied in detail by Smith and Harries [40℄. Thatintrons may atually be useful to the evolution of omputer programs was �rst suggested byAngeline [1℄. The bene�ts of introns for program indution was investigated by Wineberg andOppaher [51℄.In this artile, we perform a detailed analysis of the struture and extent of neutral networksinherent in ertain types of genotype-phenotype mappings. Not all mappings have the right typeof redundany. Simple types of redundany without extensive and highly intertwined neutral net-works simply slow the rate of �nding adaptive mutations. An example of this type of redundanyinludes a genotype with non-oding bits. A hange only ours if one of the expressed bits ismutated. The mappings presented here have a di�erent type of redundany. They ontain highlyintertwined neutral networks whih provide some of the bene�ts of nature's searh spae for anevolutionary algorithm. The artile onsists of four separate setions. First we desribe the redun-dant mappings. After we have desribed the mappings, we perform a detailed statistial analysison the struture of the neutral networks. Next, we perform a population based searh on a stati�tness landsape. And �nally, we investigate the impat of neutral networks on a dynami �tnesslandsape.2 MappingsWe looked at several di�erent genotype-phenotype mappings. Two of the mappings whih weinvestigated, produed partiularly interesting results: a mapping based on a ellular automaton,and a mapping based on a random boolean network. These mappings possess extensive and3
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Figure 2: A linear non-uniform ellular au-tomaton. The next state of the ell i is deter-mined by the state of ell i as well as the stateof its neighboring ells i�1 and i+1 (with ir-ular boundary onditions). The state of thesethree ells speify an address in the rule tableof ell i whih determines the state of ell i atthe next time step.
Figure 3: A sample run of a ellular automatonwith 16 ells for 20 steps. The initial state ofthe automaton was a �xed random value.

Initial State
Rule Table

Description for Cell nDescription for Cell 1Figure 4: Genotype struture for the ellular automaton mapping.highly intertwined neutral networks . A standard binary mapping is used to provide a baseline.The ellular automaton mapping and the random boolean network mapping have been analyzedpreviously by Shipman et al. [37℄ and Shakleton et al. [35℄. The mappings di�er in the amount ofredundany used. In this ase, the measure of redundany is the ratio of the number of genotypes tothe number of phenotypes. The binary mapping is a one-to-one mapping. The ellular automatonmapping has a redundany of 264 : 1 (for a phenotype spae of 8 bits), and the random booleannetwork mapping has a redundany of 2136 : 1 (for a phenotype spae of 8 bits).2.1 Binary mappingFor the binary mapping, genotype spae and phenotype spae are equivalent. The same numberof bits are used for the genotype as well as for the phenotype. There exists a one-to-one orre-spondene between genotype and phenotype. The phenotype number is obtained by interpretingthe genotype as a binary number.2.2 Cellular automaton mappingA linear ellular automaton onsists of an array of ells where eah ell has two possible states: onor o�. The state of a ell at the next point in time is determined by the state of ell at the urrenttime step and by the state of its neighboring ells [52, 53℄. For a non-uniform ellular automaton,eah ell has its unique rule table [39℄. This rule table de�nes the next state of the ell given theurrent state value of the ell and its neighbors. We have used a neighborhood of 2. Thereforethe rule table of eah ell has 23 entries. How the ellular automaton works is desribed in Figure2. A sample run of a ellular automaton with 16 ells is shown in Figure 3.4
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Figure 5: A random boolean network. The next state of ell i is determined by the state of theells it is onneted to. The state of these ells speify an address in the rule table of ell i whihdetermines the state of ell i at the next time step. For our experiments all ells are onneted tothree other ells.
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Description for Cell nFigure 6: Genotype struture for the random boolean network mapping.A ellular automaton an be onsidered as a model of ontogeneti development [26℄. For theellular automaton mapping, the genotype spei�es the rule tables of the automaton and theinitial state of eah ell. A variant of this mapping was presented for the �rst time in Shakletonet al. [35℄. The phenotype is determined by running the ellular automaton for a �xed number ofiterations (20 in our experiments). Let np be the number phenotypes then we need an automatonwith n = log2np states. After the automaton is run for 20 iterations we interpret the resultingstate as a binary number. This number is our phenotype. Beause the rule table of the automatonand the initial state of eah ell is stored in the genotype we need n(8 + 1) bits for the genotype.The struture of the genotype for the ellular automaton mapping is shown in Figure 4. If we needto determine the phenotype for a given genotype we �rst read o� the initial states of the ells andinitialize the ellular automaton with these states. Next we deode the rule tables for the ellsof the automaton and run the automaton for 20 iterations. The resulting state interpreted as abinary number is the number of our phenotype.2.3 Random boolean network mappingA random boolean networks onsists of a �xed number of ells [20℄. Eah ell has two possiblestates: on or o�. The state of a ell at the next point in time is determined by the state of theells it is onneted to. Eah ell has its own rule table whih de�nes the next state of the ellgiven the urrent state values of the ells it is onneted to. For our experiments we have useda onnetivity of 3. Therefore the rule table of eah ell has 23 entries. How a random booleannetwork works is shown in Figure 5.For the mapping based on a random boolean network, the genotype spei�es the initial state,its wiring and all of the rule tables. The mapping was introdued by Shipman et al. [37℄. Thephenotype is determined by running the random boolean network for a �xed number of iterations(20 in our experiments). After that, the resulting state of the network is interpreted as the numberof the phenotype. Let n be the number of ells of the random boolean network. Eah ell has nells to whih it is onneted. Then we need n(1 + n log2(n) + 2n) bits to desribe the random5
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Figure 7: A Random neutral walk in genotype spae. Starting from a given genotype a numberof neutral mutations are performed whih lead us through genotype spae. During this randomneutral walk we enounter a number of genotypes whih are reahable using point mutations whihmap to di�erent phenotypes. As a result of the random neutral walk we obtain a list of reahablephenotypes and a list of equivalent genotypes all mapping to the same phenotype.boolean network. For eah ell we need one bit to speify the initial state, n log2(n) bits to speifyto whih ells it is onneted to, and 2n bits for the rule table. The struture of the genotype forthe random boolean network mapping is shown in Figure 6.3 Statistial analysisTo evaluate the di�erent mappings we performed a statistial analysis. After we have performedthis analysis we will be able to make some preditions on the harateristis of the mappings. Theanalysis will give us detailed information on the extent and the struture of the neutral networks.We will then look at the mappings in an evolutionary setting in the next setion. A set of statistishas been developed to evaluate the harateristis of the di�erent mappings. In order to be ableto ompletely analyze the genotype-phenotype mappings we limited the number of phenotypes to256 as this allows us to ompute statistis over all phenotypes. In this ase, the ellular automatonmappings has a redundany of 264 : 1, and the random boolean network mapping has a redundanyof 2136 : 1.3.1 A random neutral walk through genotype spaeIn order to analyze the neutral network we perform a random neutral walk through genotype spae(Figure 7). This is our main tool to investigate the onnetivity and extent of the neutral networks.A random neutral walk starts from a partiular genotype and determines all one mutant neighbors.The walk proeeds by randomly seleting one of these mutants whih maps to the same phenotype.In ase no neutral neighbor is found, as ould happen with a standard one-to-one mapping, thewalk remains at the urrent position in genotype spae. This proess ontinues for a spei�ednumber of steps. As a result we get a list of reahable phenotypes via point mutations and a listof genotypes that have equivalent phenotypes.
6
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Figure 8: Probability of loating any of the phenotypes in the solution spae using random searh.
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Figure 9: Number of phenotypes reahable aross all random neutral walks.3.2 Probability of loating a phenotype using random searhDepending on the type of mapping used, di�erent phenotypes may over di�erent amounts of geno-type spae. The �rst statisti determines the amount of genotype spae overed by the di�erentphenotypes. We randomly reated 100000 di�erent genotypes and determined the orrespondingphenotype. We then tabulate how many times eah phenotype was found during this randomsearh in genotype spae. The results are shown in Figure 8. For all mappings the probabilitydistribution of loating a given phenotype using random searh is almost at. Thus no phenotypeovers an exessive amount of genotype spae. If this were the ase, then any searh would behighly biased towards this phenotype.3.3 Reahability of phenotypesThe reahability of a given phenotype from a random phenotype is estimated as follows. Weperform a series of random neutral walks (100 for every phenotype) and tabulate how manyphenotypes were enountered for every walk. The histograms for this experiment are shown inFigure 9. For the binary mapping 8 phenotypes an be reahed. For the ellular automatonmapping approximately 100 other phenotypes are reahable during a random neutral walk. Forthe random boolean network mapping, most walks enounter about 150 reahable phenotypes andalmost none have less than 50 reahable phenotypes. If we look at the frequeny of enounteringspei� phenotypes shown in Figure 10 we again get a at distribution. No preferene is givento any phenotype. Eah phenotype is enountered 8 times for the binary mapping, on average100 times for the ellular automaton mapping and 150 times on average for the random booleannetwork mapping (assuming a walk length of 100).3.4 Innovation rateThe number of new phenotypes enountered as a funtion of walk length, is alulated as follows.For every phenotype we selet a random genotype whih maps to this phenotype. Next we performa random neutral walk and save the umulative number of phenotypes reahable along the walk.7
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Figure 10: Reahability distribution for individual phenotypes aross all random neutral walks.
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Figure 11: Number of new phenotypes enountered as a funtion of walk length.We performed 100 independent walks eah of length 100 for eah phenotype and averaged the resultover all walks. With a binary mapping no additional phenotypes an be reahed beause thereare no neutral mutations for the binary mapping. For the ellular automaton mapping as well asfor the random boolean network mapping a large number of other phenotypes are aessible rightfrom the start. As the random walk proeeds more phenotypes beome aessible. It is interestingto note that, in both ases, new phenotypes are ontinually disovered. The slope of the graph anbe onsidered to be the innovation rate [16℄. That is, the rate of disovering new phenotypes whentaking a step along the neutral network. Whereas for the binary mapping we get an innovationrate of zero, for the two redundant genotype-phenotype mappings we get an innovation rate of2.24 and 3.79 respetively at the beginning of the walk. The innovation rate should be a goodindiator of the evolvability of a population evolving in the ontext of a partiular mapping.3.5 Connetivity between phenotypesWe now look at the onnetivity between phenotypes. This onnetivity is alulated as follows.For every phenotype we selet 100 random genotypes whih map to this phenotype. Next weperform random neutral walks starting from eah of these genotypes and mark the phenotypesreahable for this phenotype. The onnetivity matrix for a walk length of 100 steps is shown inFigure 12. For the binary mapping, onnetivity is very low. Eah phenotype onnets to eightothers via a one-point mutation and one an learly see an underlying struture in the onnetivitymatrix. For the ellular automaton mapping and the random boolean network mapping one isable to reah any other phenotype due to the extensive neutral networks of this mapping. In orderto better visualize the struture we now ount the number of times a phenotype was aessed.Figure 13 shows the frequeny distribution of the onnetivity matrix with a logarithmi sale.This method was suggested by Bullok [5℄ in an e�ort to better visualize the struture of thematrix. That is, whereas Figure 12 shows that in priniple eah phenotype an reah any otherphenotype, Figure 13 shows the probability of enountering a partiular phenotype from a givenphenotype along the random walk. 8
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Phenotype0 255Figure 13: Probability of reahing another phenotype from a given phenotype (log saled).3.6 Extent of the neutral networksWe now look at the extent of the neutral networks. Again we perform a series of random neutralwalks (100 walks eah of length 100) and measure the maximum Hamming distane between theoriginal genotype and the phenotypially equivalent genotypes found during the random neutralwalk. Thus, we measure how far we moved through genotype spae. For the ellular automatonmapping 32 bits had hanged on average after 100 steps and for the random boolean networkmapping 49 bits had hanged. It is easier to move through genotype spae on the random booleannetwork mapping. In ase of the ellular automaton mapping 44% and for the random booleannetwork mapping 58% of all mutations are neutral. For the ellular automaton mapping eah geno-type has on average aess to 14 phenotypes and for the random boolean network mapping eahgenotype has aess to 21 phenotypes via one point mutations. Via neutral mutations eventuallyall phenotypes beome aessible as was shown in Figure 12.3.7 Predition from the statistial analysisWe would expet that for a partiularly good mapping the probability of reahing a given phe-notype from a random phenotype is high. In addition, we would like to have a high innovationrate, that is the graph showing the number of phenotypes reahable as a funtion of walk lengthshould have a high slope at the origin and maintain a high slope until eventually all phenotypeshave beome aessible. Results are summarized in Table 14. The statistis are espeially enour-aging for the random boolean network mapping. This mapping has a very high aessibility ofphenotypes reahable via random neutral walks and a high innovation rate. Whereas the binary9



Reahable Innovation % of neutral Connetivity Extent of theMapping Phenotypes Rate mutations Matrix networksBinary 8 0 0 almost empty no networksCA 100 2.24 44% high onnetivity large and intertwinedRBN 150 3.79 58% high onnetivity extensive and highly intertwinedFigure 14: Summary of the statistis for the di�erent types of genotype-phenotype mappings. Theresults are shown for a single individual moving through genotype spae with a walk length of 100.
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1Figure 16: Explanation of �tness assignment using the hierarhial if and only if funtion.The hierarhial if and only if funtion is de�ned as follows:f(b1; b2; :::; bn) =8><>:1 if n = 1n+ f(b1; :::; bn=2) + f(bn=2+1; :::; bn) if n > 1 and (8i : bi = 0 or 8i : bi = 1)f(b1; :::; bn=2) + f(bn=2+1; :::; bn) otherwiseThe funtion onsists of a hierarhy of building bloks. On the �rst level eah bit reeives 1towards �tness irrespetive if the bit is one or zero. On the next level, we reate groups of twoand award 2 towards �tness for every group whih onsists of bits with equal values. On the nexthigher level we reate groups of 4 bits and award 4 towards �tness for every group in whih all bitsare equivalent. This proess ontinues until we have one large group whih ontains all the bits(Figure 16). Maximum �tness is reahed if all bits are zero or if all bits are one. Thus, di�erentbuilding bloks need to be ombined to solve a sub-problem. The solutions to this sub-problemagain need to be ombined to solve the problem on the next step of the hierarhy. A genetialgorithm using mutation and rossover is espeially suited to solve this problem provided thatdiversity is maintained [46℄.To eah phenotype we assigned a �tness value using the hierarhial if and only if funtion. Aphenotype spae of 16 bits was used. Thus, the ellular automaton mapping has a redundany of2128 : 1. In this ase the genotype onsists of 144 bits. The random boolean network mappinghas a redundany of 2320 : 1 and the genotype onsists of 336 bits. For eah genotype-phenotypemapping we ran the following experiment. A population of 100 individuals is randomly distributedover genotype spae. Eah individual performs an adaptive walk through genotype spae. On eahstep we randomly mutate the individual. Next we determine the phenotype and the �tness valueof this phenotype. If the mutated genotype has a higher or equivalent �tness value we keepthis genotype as the urrent genotype for this individual. Thus, if no adaptive moves to a higher�tness value are possible, the individual nevertheless keeps moving through genotype spae possiblyenountering a point with higher �tness at a later point in time. The results of this experimentare shown in Figure 17. The graph on the left shows the maximum, average, and minimum �tnessvalues of all individuals during the run. The graph on the right shows the �tness values of all 100individuals. As an be seen from the graphs, the population on the binary mapping is unable toadapt to this landsape. It quikly beomes stuk in a loal optimum. Evolution has ome to ahalt. However, the population using the ellular automaton mapping reahes a muh higher �tnessvalue. The random boolean network mapping performed similarly but not quite as well as theellular automaton mapping. The hierarhial if and only if funtion was espeially onstruted toshow whih type of problems geneti algorithms are espeially suited for. The above results showthat the hierarhial if and only if problem with 16 bits an also be solved using a hill limberprovided that a genotype-phenotype mapping with extensive neutral networks is used.
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Figure 22: Performane of the population in a hanging environment. Note that the minimum isso lose to zero that it annot be seen in the graph.in the environment of the individuals. Eah run was stopped after 200 generations. Resultswere averaged over 100 independent runs with di�erent random seeds. For eah run we used apopulation size of 100 individuals. Crossover rate was set to 0.5 and the mutation rate was setto 0:01 per lous. To selet individuals we have used tournament seletion with a tournamentsize of 8.The results of this experiment are shown in Figure 22. The graphs show the maximum, averageand minimum �tness of the population. As an be seen from the graphs, individuals evolvingon the redundant mappings performed muh better than the individuals evolving on the binarymapping. The maximum �tness of the population evolving on the redundant mapping did notdrop as low ompared to the population evolving on the binary mapping. The population evolvingon the redundant mappings performed partiularly well after the environment hanged. Maximum�tness quikly reovered to the global optimum. The population on the binary mapping does notreah the original level during the allotted time. Again, the results are in aordane with thestatistial analysis whih was performed above. Use of redundant mappings have an additionaladvantage. If the mutation rate is high, the population is able to maintain the optimum one itis found. For high mutation rates, the population on a non-redundant mapping forms a loudaround the optimum [20, 55℄. The height of the loud is determined by the mutation rate whihpulls the population away from the optimum and by seletion whih pulls the population towardsthe optimum. If a large number of mutations are neutral then the population may remain on theoptimum even if the mutation rate is high.A measure from population genetis [38℄ was used to measure the diversity of the populationduring the run. Diversity is alulated as the average probability that two randomly seletedindividuals di�er at a randomly hosen lous. The results, again averaged over 100 runs, areshown in Figure 23. Seletion pressure quikly redues the diversity of the population for the15



0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

D
iv

er
si

ty

Generation

Binary Mapping

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

D
iv

er
si

ty

Generation

Cellular Automaton Mapping

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

D
iv

er
si

ty

Generation

Random Boolean Network Mapping

Figure 23: Diversity of the population.binary mapping. Thus the population is onverged in genotype spae and further searh beomesdiÆult. In omparison, the population evolving on the redundant mappings are able to maintaina muh higher level of diversity. In all three ases, diversity briey rises immediately after theenvironment has hanged and then drops dramatially. In ase of the redundant mapping onean learly see that diversity inreases and �nally reahes the original level as the populationspreads on the neutral networks. With an appropriate redundant mapping with extensive neutralnetworks, it is oneivable that the population an be spread out over the entire genotype spae.In this ase, the population still maintains the ability to quikly searh the spae for a new optimalphenotype.One of the anonymous reviewers suggested the interesting possibility to use the dynamis ofthe diversity of the population as an analytial tool to test for the existene of neutral networks.Beause with real organisms the introdution of single mutations is tehnially hard the statistialmethods desribed above annot be applied. However, the diversity may be measured with stan-dard tehniques from population genetis. Thus, by looking at the dynamis of the populationafter a hange has ourred one may be able to make inferenes about the extent of the neutralnetworks the organisms evolve on.6 ConlusionThe use of redundant mappings provides a number of bene�ts to the population. If the mappingbetween phenotype and �tness is unknown it pays to use an appropriate redundant mappingbeause it inreases the aessibility between phenotypes. The smoother the landsape the easierit is to limb to the top of the landsape. For smooth unimodal landsapes one an simply usea hill limber to solve the problem. However, if the mapping from phenotype spae to �tness isunknown then one gets a very rugged landsape in whih it is very diÆult to loate the optimum.With a redundant mapping whih possesses highly intertwined networks the limb to the top maybeome possible due to the added onnetivity between phenotypes.Another bene�t is that individuals are able to maintain higher �tness values in the preseneof high mutation rates beause a large fration of all mutations are neutral. In addition, thepopulation is quikly able to loate a new optimum should the environment hange as redundanyin the genotype-phenotype mapping is a natural form of diversity maintenane. Convergene to asingle genotype is avoided and the population is still able to perform a random searh should thisbe neessary. Therefore, the use of redundant mappings generally inrease the evolvability of thepopulation employing suh a mapping.AknowledgmentPart of this work was supported by the Santa Fe Institute, Santa Fe, NM. We thank RihardWatson, Brandeis University, Volen Center for Complex Systems, and Susan Ptak from StanfordUniversity, Department of Biologial Sienes, Stanford, for disussions and helpful omments.16
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