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omAbstra
tEvolutionary algorithms apply the pro
ess of variation, reprodu
tion and sele
tion to lookfor an individual 
apable of solving the task at hand. In order to improve the evolvability ofa population we propose to 
opy important 
hara
teristi
s of nature's sear
h spa
e. Desired
hara
teristi
s for a genotype-phenotype mapping are des
ribed and several highly redundantgenotype-phenotype mappings are analyzed in the 
ontext of a population based sear
h. Weshow that evolvability, de�ned as the ability of random variations to sometimes produ
eimprovement, is in
uen
ed by the existen
e of neutral networks in genotype spa
e. Redundantmappings allow the population to spread along the network of neutral mutations and thepopulation is qui
kly able to re
over after a 
hange has o

urred. The extent of the neutralnetworks a�e
ts the inter
onne
tivity of the sear
h spa
e and thereby a�e
ts evolvability.Neutral evolution, neutral networks, �tness lands
apes, redundant mappings, 
hangingenvironment, adaptation.1 Introdu
tionNatural evolution di�ers in many respe
ts from the way evolutionary algorithms are usually usedin 
omputer s
ien
e. A

ording to the neutral theory of evolution, a 
onsiderable fra
tion of allmutations are neutral and only a small fra
tion of non-neutral mutations are a
tually bene�
ial[22℄. Some neutral mutations result from a redundan
y in the geneti
 
ode but most redundan
yarises in the development of the phenotype from the genotype. However, most evolutionary al-gorithms use a �xed one-to-one mapping between genotype and phenotype spa
e. Ea
h genotype
orresponds to exa
tly one phenotype. In this arti
le we des
ribe the impa
t of redundant map-pings on the sear
h spa
e. If an appropriate redundant mapping is used, more phenotypes be
omea

essible whi
h 
an help to make the sear
h easier. A redundant mapping indu
es neutral net-works, whi
h are sets of genotypes that represent the same phenotype and are 
onne
ted by singlepoint mutations [17, 16, 43℄.1.1 The impa
t of neutral nets on evolutionSuppose we are using a one-to-one mapping between genotype and phenotype spa
e and that pointmutations are the only way that variations 
an be introdu
ed into the population. In this 
ase thenumber of phenotypes rea
hable from any given genotype is exa
tly (A� 1)L [20℄ where A is thenumber of alleles per lo
i and L is the length of the genotype. If this genotype happens to be alo
al optimum, i.e. none of the neighbors are better than the 
urrent one, then we are stu
k and1
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6 7 8 9 10Figure 1: Initially all individuals are lo
ated in a small area of genotype spa
e. Individuals arerepresented as dots. Lines in this spa
e denote borders between di�erent phenotypes. It is assumedthat only a small neighborhood 
an be rea
hed by using a point mutation and that the light grayarea 
orresponds to the �ttest phenotype. Individuals whi
h fall outside the light gray area qui
klydie out. The dark gray areas 
orrespond to phenotypes whi
h 
an be rea
hed by a single pointmutation from at least one member of the 
urrent population. Over time the population spreadsalong the neutral network and more and more adja
ent phenotypes be
ome rea
hable via pointmutations. If the �tness lands
ape 
hanges, only the one mutant neighbors of the genotype 
losestto the now �ttest phenotype survive, and the pro
ess starts anew. This happens at the 8th timestep of the above sequen
e, where the area en
losed by the thi
k line is to be
ome the �ttestphenotype due to a 
hange of the �tness lands
ape. In the absen
e of neural nets no individualwould have been within one (or a few) mutations to the new environment. Adaptation to the newenvironment, 
onsequently, would be mu
h slower or even nonexistent.no further improvement is possible. However, if a redundant mapping is used, more phenotypesmay be
ome a

essible via neutral networks be
ause it is possible to drift along neutral mutationsto new regions in the sear
h spa
e. The number of phenotypes rea
hable from this neutral networkmay be mu
h greater than the number of neighbors given a non-redundant mapping.The bene�t of this in
rease in rea
hable phenotypes is that a sear
h algorithm is more likely tobe able to rea
h a superior phenotype (without having to traverse through inferior phenotypes) andthus it has an in
reased 
han
e of avoiding be
oming trapped in a lo
al optima. The operation ofa population based algorithm on a lands
ape with neutrality has additional interesting properties.For example, 
onsider the 
ase where the algorithm has found an optimal solution and suppose thatthe population is spread out through the neutral network of genotypes that map to this phenotype.If then the �tness lands
ape should 
hange, and some new phenotype be
omes optimal, there is a
han
e that some member of the population will already be quite 
lose to a genotype that maps tothis new best phenotype. The important thing to noti
e is that an evolutionary algorithm does notonly operate on a single individual. If a population of individuals is used, the individuals are ableto spread along paths of neutral mutations. How this works is illustrated in Figure 1. Thereforethe number of phenotypes rea
hable via point mutations 
an be mu
h larger if an appropriateredundant mapping is used and the population is suÆ
iently spread out along a neutral network.But what type of redundant mapping should be used? To answer this question one 
an drawinspiration from nature's sear
h spa
e.1.2 Desired 
hara
teristi
s of the sear
h spa
eS
huster [34℄ has analyzed the shape spa
e of RNA se
ondary stru
tures. A

ording to S
husterthere are few shapes that are 
ommon and many shapes are rare. Sequen
es that 
ode for all2




ommon shapes are lo
ated in the vi
inity of any randomly sele
ted sequen
e. In addition, dif-ferent sequen
es that 
ode for a spe
i�
 shape are randomly distributed in sequen
e spa
e. Longpaths of neutral mutations lead to sequen
es whi
h 
ode for identi
al shapes. Huynen [16℄ andHuynen et al. [17℄ showed that neutral evolution plays a role in adaptation in the 
ontext of �tnesslands
apes based on the mapping between RNA sequen
e and RNA se
ondary stru
ture. Ebner[6℄ and Shipman [36℄ have argued that similar 
hara
teristi
s might also be useful for an arti�
ialsear
h algorithm. A number of studies were 
arried out to analyze the bene�ts of a highly redun-dant genotype-phenotype mappings whi
h show similar 
hara
teristi
s to nature's sear
h spa
e.Shipman et al. [37℄ analyzed the sear
h spa
e 
reated by several redundant genotype-phenotypemappings with di�erent amounts of redundan
y. Sha
kleton et al. [35℄ introdu
ed the 
on
ept of�tness to the redundant mappings and performed �tness adaptive walks for a single point movingthrough genotype spa
e. Ebner et al. [7℄ have shown that highly redundant mappings in
reaseevolvability, de�ned as the ability of random variations to sometimes produ
e improvement, in apopulation of 
o-evolving spe
ies. Bullo
k [5℄ analyzed mutation bias of redundant mappings.Other resear
h exploring the e�e
ts of redundan
y in
lude the work of Barnett [4℄, who intro-du
ed redundan
y into Kau�man's NK �tness lands
ape [20℄ and analyzed population dynami
son this stati
 �tness lands
apes. Newman and Engelhardt [33℄ also presented a variant of the NKlands
ape with neutrality. In both 
ases, the amount of redundan
y inherent in the lands
ape maybe tuned by varying a parameter. Leveni
k [29℄ has looked at the advantages of having introns fora dynami
 environment. Julstrom [18℄ established that redundan
y is bene�
ial in looking for asolution to the problem of partitioning 3n points into 3-
y
les of minimum total length. Re
ently,Yu and Miller [56℄ investigated the bene�ts of neutral evolution for the synthesis of digital 
ir
uits.Banzhaf [2℄ studied a simple redundant map in the 
ontext of linear 
omputer programs andKeller and Banzhaf [21℄ evolved a genotype-phenotype map for 
omputer programs. The e�e
ts ofa simple redundant mapping on the sear
h spa
e were analyzed theoreti
ally by Kargupta [19℄. Therole of development in geneti
 algorithms has been analyzed by Hart et al. [14℄. Other resear
hershave experimented with developmental mappings where the genotype spe
i�es a grammar fromwhi
h the phenotype develops [12, 13, 25℄. In the geneti
 programming paradigm [23, 24℄ intronsusually o

ur at the end of an experiment after a lo
al optimum has been rea
hed [3℄. Individuals
an in
rease the probability that their o�spring will have the same �tness as their parent byin
reasing the number of introns. This pro
ess is usually referred to as bloat in the 
ontext ofgeneti
 programming [27, 28℄. Code growth is studied in detail by Smith and Harries [40℄. Thatintrons may a
tually be useful to the evolution of 
omputer programs was �rst suggested byAngeline [1℄. The bene�ts of introns for program indu
tion was investigated by Wineberg andOppa
her [51℄.In this arti
le, we perform a detailed analysis of the stru
ture and extent of neutral networksinherent in 
ertain types of genotype-phenotype mappings. Not all mappings have the right typeof redundan
y. Simple types of redundan
y without extensive and highly intertwined neutral net-works simply slow the rate of �nding adaptive mutations. An example of this type of redundan
yin
ludes a genotype with non-
oding bits. A 
hange only o

urs if one of the expressed bits ismutated. The mappings presented here have a di�erent type of redundan
y. They 
ontain highlyintertwined neutral networks whi
h provide some of the bene�ts of nature's sear
h spa
e for anevolutionary algorithm. The arti
le 
onsists of four separate se
tions. First we des
ribe the redun-dant mappings. After we have des
ribed the mappings, we perform a detailed statisti
al analysison the stru
ture of the neutral networks. Next, we perform a population based sear
h on a stati
�tness lands
ape. And �nally, we investigate the impa
t of neutral networks on a dynami
 �tnesslands
ape.2 MappingsWe looked at several di�erent genotype-phenotype mappings. Two of the mappings whi
h weinvestigated, produ
ed parti
ularly interesting results: a mapping based on a 
ellular automaton,and a mapping based on a random boolean network. These mappings possess extensive and3
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Figure 2: A linear non-uniform 
ellular au-tomaton. The next state of the 
ell i is deter-mined by the state of 
ell i as well as the stateof its neighboring 
ells i�1 and i+1 (with 
ir-
ular boundary 
onditions). The state of thesethree 
ells spe
ify an address in the rule tableof 
ell i whi
h determines the state of 
ell i atthe next time step.
Figure 3: A sample run of a 
ellular automatonwith 16 
ells for 20 steps. The initial state ofthe automaton was a �xed random value.

Initial State
Rule Table

Description for Cell nDescription for Cell 1Figure 4: Genotype stru
ture for the 
ellular automaton mapping.highly intertwined neutral networks . A standard binary mapping is used to provide a baseline.The 
ellular automaton mapping and the random boolean network mapping have been analyzedpreviously by Shipman et al. [37℄ and Sha
kleton et al. [35℄. The mappings di�er in the amount ofredundan
y used. In this 
ase, the measure of redundan
y is the ratio of the number of genotypes tothe number of phenotypes. The binary mapping is a one-to-one mapping. The 
ellular automatonmapping has a redundan
y of 264 : 1 (for a phenotype spa
e of 8 bits), and the random booleannetwork mapping has a redundan
y of 2136 : 1 (for a phenotype spa
e of 8 bits).2.1 Binary mappingFor the binary mapping, genotype spa
e and phenotype spa
e are equivalent. The same numberof bits are used for the genotype as well as for the phenotype. There exists a one-to-one 
orre-sponden
e between genotype and phenotype. The phenotype number is obtained by interpretingthe genotype as a binary number.2.2 Cellular automaton mappingA linear 
ellular automaton 
onsists of an array of 
ells where ea
h 
ell has two possible states: onor o�. The state of a 
ell at the next point in time is determined by the state of 
ell at the 
urrenttime step and by the state of its neighboring 
ells [52, 53℄. For a non-uniform 
ellular automaton,ea
h 
ell has its unique rule table [39℄. This rule table de�nes the next state of the 
ell given the
urrent state value of the 
ell and its neighbors. We have used a neighborhood of 2. Thereforethe rule table of ea
h 
ell has 23 entries. How the 
ellular automaton works is des
ribed in Figure2. A sample run of a 
ellular automaton with 16 
ells is shown in Figure 3.4
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Figure 5: A random boolean network. The next state of 
ell i is determined by the state of the
ells it is 
onne
ted to. The state of these 
ells spe
ify an address in the rule table of 
ell i whi
hdetermines the state of 
ell i at the next time step. For our experiments all 
ells are 
onne
ted tothree other 
ells.
Initial State

Rule Table

Description for Cell 1

3. Neighbor
2. Neighbor

1. Neighbor

Description for Cell nFigure 6: Genotype stru
ture for the random boolean network mapping.A 
ellular automaton 
an be 
onsidered as a model of ontogeneti
 development [26℄. For the
ellular automaton mapping, the genotype spe
i�es the rule tables of the automaton and theinitial state of ea
h 
ell. A variant of this mapping was presented for the �rst time in Sha
kletonet al. [35℄. The phenotype is determined by running the 
ellular automaton for a �xed number ofiterations (20 in our experiments). Let np be the number phenotypes then we need an automatonwith n = log2np states. After the automaton is run for 20 iterations we interpret the resultingstate as a binary number. This number is our phenotype. Be
ause the rule table of the automatonand the initial state of ea
h 
ell is stored in the genotype we need n(8 + 1) bits for the genotype.The stru
ture of the genotype for the 
ellular automaton mapping is shown in Figure 4. If we needto determine the phenotype for a given genotype we �rst read o� the initial states of the 
ells andinitialize the 
ellular automaton with these states. Next we de
ode the rule tables for the 
ellsof the automaton and run the automaton for 20 iterations. The resulting state interpreted as abinary number is the number of our phenotype.2.3 Random boolean network mappingA random boolean networks 
onsists of a �xed number of 
ells [20℄. Ea
h 
ell has two possiblestates: on or o�. The state of a 
ell at the next point in time is determined by the state of the
ells it is 
onne
ted to. Ea
h 
ell has its own rule table whi
h de�nes the next state of the 
ellgiven the 
urrent state values of the 
ells it is 
onne
ted to. For our experiments we have useda 
onne
tivity of 3. Therefore the rule table of ea
h 
ell has 23 entries. How a random booleannetwork works is shown in Figure 5.For the mapping based on a random boolean network, the genotype spe
i�es the initial state,its wiring and all of the rule tables. The mapping was introdu
ed by Shipman et al. [37℄. Thephenotype is determined by running the random boolean network for a �xed number of iterations(20 in our experiments). After that, the resulting state of the network is interpreted as the numberof the phenotype. Let n be the number of 
ells of the random boolean network. Ea
h 
ell has n

ells to whi
h it is 
onne
ted. Then we need n(1 + n
 log2(n) + 2n
) bits to des
ribe the random5
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Figure 7: A Random neutral walk in genotype spa
e. Starting from a given genotype a numberof neutral mutations are performed whi
h lead us through genotype spa
e. During this randomneutral walk we en
ounter a number of genotypes whi
h are rea
hable using point mutations whi
hmap to di�erent phenotypes. As a result of the random neutral walk we obtain a list of rea
hablephenotypes and a list of equivalent genotypes all mapping to the same phenotype.boolean network. For ea
h 
ell we need one bit to spe
ify the initial state, n
 log2(n) bits to spe
ifyto whi
h 
ells it is 
onne
ted to, and 2n
 bits for the rule table. The stru
ture of the genotype forthe random boolean network mapping is shown in Figure 6.3 Statisti
al analysisTo evaluate the di�erent mappings we performed a statisti
al analysis. After we have performedthis analysis we will be able to make some predi
tions on the 
hara
teristi
s of the mappings. Theanalysis will give us detailed information on the extent and the stru
ture of the neutral networks.We will then look at the mappings in an evolutionary setting in the next se
tion. A set of statisti
shas been developed to evaluate the 
hara
teristi
s of the di�erent mappings. In order to be ableto 
ompletely analyze the genotype-phenotype mappings we limited the number of phenotypes to256 as this allows us to 
ompute statisti
s over all phenotypes. In this 
ase, the 
ellular automatonmappings has a redundan
y of 264 : 1, and the random boolean network mapping has a redundan
yof 2136 : 1.3.1 A random neutral walk through genotype spa
eIn order to analyze the neutral network we perform a random neutral walk through genotype spa
e(Figure 7). This is our main tool to investigate the 
onne
tivity and extent of the neutral networks.A random neutral walk starts from a parti
ular genotype and determines all one mutant neighbors.The walk pro
eeds by randomly sele
ting one of these mutants whi
h maps to the same phenotype.In 
ase no neutral neighbor is found, as 
ould happen with a standard one-to-one mapping, thewalk remains at the 
urrent position in genotype spa
e. This pro
ess 
ontinues for a spe
i�ednumber of steps. As a result we get a list of rea
hable phenotypes via point mutations and a listof genotypes that have equivalent phenotypes.
6
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Figure 8: Probability of lo
ating any of the phenotypes in the solution spa
e using random sear
h.
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Figure 9: Number of phenotypes rea
hable a
ross all random neutral walks.3.2 Probability of lo
ating a phenotype using random sear
hDepending on the type of mapping used, di�erent phenotypes may 
over di�erent amounts of geno-type spa
e. The �rst statisti
 determines the amount of genotype spa
e 
overed by the di�erentphenotypes. We randomly 
reated 100000 di�erent genotypes and determined the 
orrespondingphenotype. We then tabulate how many times ea
h phenotype was found during this randomsear
h in genotype spa
e. The results are shown in Figure 8. For all mappings the probabilitydistribution of lo
ating a given phenotype using random sear
h is almost 
at. Thus no phenotype
overs an ex
essive amount of genotype spa
e. If this were the 
ase, then any sear
h would behighly biased towards this phenotype.3.3 Rea
hability of phenotypesThe rea
hability of a given phenotype from a random phenotype is estimated as follows. Weperform a series of random neutral walks (100 for every phenotype) and tabulate how manyphenotypes were en
ountered for every walk. The histograms for this experiment are shown inFigure 9. For the binary mapping 8 phenotypes 
an be rea
hed. For the 
ellular automatonmapping approximately 100 other phenotypes are rea
hable during a random neutral walk. Forthe random boolean network mapping, most walks en
ounter about 150 rea
hable phenotypes andalmost none have less than 50 rea
hable phenotypes. If we look at the frequen
y of en
ounteringspe
i�
 phenotypes shown in Figure 10 we again get a 
at distribution. No preferen
e is givento any phenotype. Ea
h phenotype is en
ountered 8 times for the binary mapping, on average100 times for the 
ellular automaton mapping and 150 times on average for the random booleannetwork mapping (assuming a walk length of 100).3.4 Innovation rateThe number of new phenotypes en
ountered as a fun
tion of walk length, is 
al
ulated as follows.For every phenotype we sele
t a random genotype whi
h maps to this phenotype. Next we performa random neutral walk and save the 
umulative number of phenotypes rea
hable along the walk.7
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Figure 10: Rea
hability distribution for individual phenotypes a
ross all random neutral walks.
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Figure 11: Number of new phenotypes en
ountered as a fun
tion of walk length.We performed 100 independent walks ea
h of length 100 for ea
h phenotype and averaged the resultover all walks. With a binary mapping no additional phenotypes 
an be rea
hed be
ause thereare no neutral mutations for the binary mapping. For the 
ellular automaton mapping as well asfor the random boolean network mapping a large number of other phenotypes are a

essible rightfrom the start. As the random walk pro
eeds more phenotypes be
ome a

essible. It is interestingto note that, in both 
ases, new phenotypes are 
ontinually dis
overed. The slope of the graph 
anbe 
onsidered to be the innovation rate [16℄. That is, the rate of dis
overing new phenotypes whentaking a step along the neutral network. Whereas for the binary mapping we get an innovationrate of zero, for the two redundant genotype-phenotype mappings we get an innovation rate of2.24 and 3.79 respe
tively at the beginning of the walk. The innovation rate should be a goodindi
ator of the evolvability of a population evolving in the 
ontext of a parti
ular mapping.3.5 Conne
tivity between phenotypesWe now look at the 
onne
tivity between phenotypes. This 
onne
tivity is 
al
ulated as follows.For every phenotype we sele
t 100 random genotypes whi
h map to this phenotype. Next weperform random neutral walks starting from ea
h of these genotypes and mark the phenotypesrea
hable for this phenotype. The 
onne
tivity matrix for a walk length of 100 steps is shown inFigure 12. For the binary mapping, 
onne
tivity is very low. Ea
h phenotype 
onne
ts to eightothers via a one-point mutation and one 
an 
learly see an underlying stru
ture in the 
onne
tivitymatrix. For the 
ellular automaton mapping and the random boolean network mapping one isable to rea
h any other phenotype due to the extensive neutral networks of this mapping. In orderto better visualize the stru
ture we now 
ount the number of times a phenotype was a

essed.Figure 13 shows the frequen
y distribution of the 
onne
tivity matrix with a logarithmi
 s
ale.This method was suggested by Bullo
k [5℄ in an e�ort to better visualize the stru
ture of thematrix. That is, whereas Figure 12 shows that in prin
iple ea
h phenotype 
an rea
h any otherphenotype, Figure 13 shows the probability of en
ountering a parti
ular phenotype from a givenphenotype along the random walk. 8
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hing another phenotype from a given phenotype (log s
aled).3.6 Extent of the neutral networksWe now look at the extent of the neutral networks. Again we perform a series of random neutralwalks (100 walks ea
h of length 100) and measure the maximum Hamming distan
e between theoriginal genotype and the phenotypi
ally equivalent genotypes found during the random neutralwalk. Thus, we measure how far we moved through genotype spa
e. For the 
ellular automatonmapping 32 bits had 
hanged on average after 100 steps and for the random boolean networkmapping 49 bits had 
hanged. It is easier to move through genotype spa
e on the random booleannetwork mapping. In 
ase of the 
ellular automaton mapping 44% and for the random booleannetwork mapping 58% of all mutations are neutral. For the 
ellular automaton mapping ea
h geno-type has on average a

ess to 14 phenotypes and for the random boolean network mapping ea
hgenotype has a

ess to 21 phenotypes via one point mutations. Via neutral mutations eventuallyall phenotypes be
ome a

essible as was shown in Figure 12.3.7 Predi
tion from the statisti
al analysisWe would expe
t that for a parti
ularly good mapping the probability of rea
hing a given phe-notype from a random phenotype is high. In addition, we would like to have a high innovationrate, that is the graph showing the number of phenotypes rea
hable as a fun
tion of walk lengthshould have a high slope at the origin and maintain a high slope until eventually all phenotypeshave be
ome a

essible. Results are summarized in Table 14. The statisti
s are espe
ially en
our-aging for the random boolean network mapping. This mapping has a very high a

essibility ofphenotypes rea
hable via random neutral walks and a high innovation rate. Whereas the binary9



Rea
hable Innovation % of neutral Conne
tivity Extent of theMapping Phenotypes Rate mutations Matrix networksBinary 8 0 0 almost empty no networksCA 100 2.24 44% high 
onne
tivity large and intertwinedRBN 150 3.79 58% high 
onne
tivity extensive and highly intertwinedFigure 14: Summary of the statisti
s for the di�erent types of genotype-phenotype mappings. Theresults are shown for a single individual moving through genotype spa
e with a walk length of 100.
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Number of leading zerosFigure 15: Cut through the \hierar
hi
al if and only if" lands
ape.mapping exhibits no neutrality at all, the random boolean network mapping 
ontains extensiveneutral networks whi
h are highly intertwined. Thus, from the statisti
al analysis we assume thatthe 
ellular automaton mapping would perform better than the binary mapping and that therandom boolean network mapping would perform best.4 Experiments on a stati
 lands
apeThe above statisti
al analysis suggests that the mapping based on the random boolean network isa parti
ularly good mapping. We now experiment with a population of individuals adapting to astati
 �tness lands
ape. We will see that evolvability (de�ned as the ability of random variationsto sometimes produ
e improvement [44℄) of a population is dependent on the genotype-phenotypemapping used. If our sear
h spa
e has similar 
hara
teristi
s as nature's sear
h spa
e as des
ribedabove, the individuals should have little problem dis
overing phenotypes with better �tness values.We will see that this is indeed the 
ase.4.1 A hierar
hi
al �tness fun
tionFor our experiments on a stati
 lands
ape we have sele
ted the \hierar
hi
al if and only if" �tnessfun
tion. The hierar
hi
al if and only if fun
tion was introdu
ed by Watson et al. [46, 47, 48, 49℄.It was espe
ially 
onstru
ted to show what kind of problems a geneti
 algorithm with 
rossover issuitable for. This fun
tion has a very large number of lo
al optima and a mutation-only algorithm
annot be guaranteed to su

eed in time less than exponential in the number of bits used for theproblem [45℄. A 
ut though the hierar
hi
al if and only if �tness lands
ape is shown in Figure 15.
10
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1Figure 16: Explanation of �tness assignment using the hierar
hi
al if and only if fun
tion.The hierar
hi
al if and only if fun
tion is de�ned as follows:f(b1; b2; :::; bn) =8><>:1 if n = 1n+ f(b1; :::; bn=2) + f(bn=2+1; :::; bn) if n > 1 and (8i : bi = 0 or 8i : bi = 1)f(b1; :::; bn=2) + f(bn=2+1; :::; bn) otherwiseThe fun
tion 
onsists of a hierar
hy of building blo
ks. On the �rst level ea
h bit re
eives 1towards �tness irrespe
tive if the bit is one or zero. On the next level, we 
reate groups of twoand award 2 towards �tness for every group whi
h 
onsists of bits with equal values. On the nexthigher level we 
reate groups of 4 bits and award 4 towards �tness for every group in whi
h all bitsare equivalent. This pro
ess 
ontinues until we have one large group whi
h 
ontains all the bits(Figure 16). Maximum �tness is rea
hed if all bits are zero or if all bits are one. Thus, di�erentbuilding blo
ks need to be 
ombined to solve a sub-problem. The solutions to this sub-problemagain need to be 
ombined to solve the problem on the next step of the hierar
hy. A geneti
algorithm using mutation and 
rossover is espe
ially suited to solve this problem provided thatdiversity is maintained [46℄.To ea
h phenotype we assigned a �tness value using the hierar
hi
al if and only if fun
tion. Aphenotype spa
e of 16 bits was used. Thus, the 
ellular automaton mapping has a redundan
y of2128 : 1. In this 
ase the genotype 
onsists of 144 bits. The random boolean network mappinghas a redundan
y of 2320 : 1 and the genotype 
onsists of 336 bits. For ea
h genotype-phenotypemapping we ran the following experiment. A population of 100 individuals is randomly distributedover genotype spa
e. Ea
h individual performs an adaptive walk through genotype spa
e. On ea
hstep we randomly mutate the individual. Next we determine the phenotype and the �tness valueof this phenotype. If the mutated genotype has a higher or equivalent �tness value we keepthis genotype as the 
urrent genotype for this individual. Thus, if no adaptive moves to a higher�tness value are possible, the individual nevertheless keeps moving through genotype spa
e possiblyen
ountering a point with higher �tness at a later point in time. The results of this experimentare shown in Figure 17. The graph on the left shows the maximum, average, and minimum �tnessvalues of all individuals during the run. The graph on the right shows the �tness values of all 100individuals. As 
an be seen from the graphs, the population on the binary mapping is unable toadapt to this lands
ape. It qui
kly be
omes stu
k in a lo
al optimum. Evolution has 
ome to ahalt. However, the population using the 
ellular automaton mapping rea
hes a mu
h higher �tnessvalue. The random boolean network mapping performed similarly but not quite as well as the
ellular automaton mapping. The hierar
hi
al if and only if fun
tion was espe
ially 
onstru
ted toshow whi
h type of problems geneti
 algorithms are espe
ially suited for. The above results showthat the hierar
hi
al if and only if problem with 16 bits 
an also be solved using a hill 
limberprovided that a genotype-phenotype mapping with extensive neutral networks is used.
11
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StepFigure 17: Adaptation of a population of individuals on the hierar
hi
al if and only if fun
tion.Results are shown for three di�erent genotype-phenotype mappings: binary mapping, 
ellularautomaton mapping and random boolean network mapping. The graphs on the left show themaximum, average and minimum �tness of the population and the graphs on the right show theindividual �tness 
urves.4.2 What if the mapping between phenotype and �tness is not wellbehaved?The hierar
hi
al if and only if fun
tion is a parti
ularly diÆ
ult fun
tion to solve using a hill
limber. Let us now look at a mu
h simpler problem: a Lorentz fun
tion (Figure 18). Thisunimodal fun
tion 
an be solved easily by following the gradient to the top of the hill. However,12
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tion.this usually assumes that we have a well behaved 
oordinate system. What would happen if wehad the same �tness lands
ape but random assignments between phenotypes and �tness values?This amounts to shu�ing the �tness values of the lands
ape. Figure 19 shows what happens tothe Lorentz fun
tion if we randomly shu�e the �tness values. This �tness lands
ape, like thehierar
hi
al if and only if fun
tion, has many di�erent lo
al optima. Most phenotypes have a�tness value of zero and high �tness values are distributed all over the lands
ape. Note that inthis 
ase, we basi
ally have a random lands
ape.We now 
ondu
t the same experiment as for the hierar
hi
al if and only if fun
tion but on theshu�ed Lorentz fun
tion. The results of this experiment are shown in Figure 20. The randomboolean network mapping performed best, followed by the 
ellular automaton mapping. Thepopulation on the binary mapping soon be
omes stu
k in a lo
al optimum. Thus, we have seenthat if the mapping between phenotypes and �tness values is unknown it pays to have a mappingwith extensive neutral networks. The neutral networks 
reate ridges between the lo
al optimaalong whi
h a hill 
limber 
an �nd its way to the top. The neutral networks provide additionala

essibility between phenotypes and allows evolution to o

ur irrespe
tive of the ruggedness ofthe original lands
ape.5 Experiments on a dynami
 lands
apeThe above experiment has shown that neutral networks in
rease evolvability on a stati
 lands
ape.We now look at how the population behaves on a dynami
 lands
ape. Interest in dynami
 �tnesslands
apes and tra
king optima in a 
hanging environment has gained 
onsiderable interest re-
ently [8, 11, 29, 30, 32, 41, 42, 50℄. With a non-redundant mapping, the population 
onverges tothe lo
ally optimal genotype. If the environment 
hanges, only the immediate neighbors are a

es-sible using point mutations. The 
rossover operator is of no use for a 
onverged population. Thebehavior of a population evolving with a redundant mapping is 
ompletely di�erent. In prin
iple,the population is able to spread along the neutral networks and thereby maintain diversity in 
asethe environment should 
hange. A

ording to the no free lun
h theorem, no algorithm will performbetter than random sear
h if one 
onsiders the spa
e of all possible problems [54℄. A redundantmapping ensures that this sear
h is still possible even after the optimum has been found. Thus, apopulation evolving on a redundant mapping will always be able to perform this random sear
hwhereas a population on a non-redundant mapping will perform worse than random sear
h after
onvergen
e has o

urred.We now look at how a population of individuals adapts to a 
hanging environment. For thisexperiment we have used a standard geneti
 algorithm [15, 9, 31℄ and monitored maximum, averageand minimum �tness of the population during the run. The mapping from phenotype to �tnesswas 
hosen at random as for the stati
 
ase des
ribed above. Two di�erent �tness lands
apes were13
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StepFigure 20: Adaptation of a population of individuals on the shu�ed Lorentz �tness lands
ape.Results are shown for three di�erent genotype-phenotype mappings: binary mapping, 
ellularautomaton mapping and random boolean network mapping. The graphs on the left show themaximum, average and minimum �tness of the population and the graphs on the right show theindividual �tness 
urves.used to assign �tness values. Ea
h �tness lands
ape is a shifted version of the Lorentz fun
tion.When the environment 
hanges, the peak shifts from the left half to the right half of phenotypespa
e. Note that we only 
hange the �tness values. The stru
ture of the neutral networks remains
onstant. The �rst lands
ape was used for generations 0 through 99 and the se
ond lands
apewas used for generations 100 through 200 (Figure 21). This simulates the o

urren
e of a 
hange14
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Figure 22: Performan
e of the population in a 
hanging environment. Note that the minimum isso 
lose to zero that it 
annot be seen in the graph.in the environment of the individuals. Ea
h run was stopped after 200 generations. Resultswere averaged over 100 independent runs with di�erent random seeds. For ea
h run we used apopulation size of 100 individuals. Crossover rate was set to 0.5 and the mutation rate was setto 0:01 per lo
us. To sele
t individuals we have used tournament sele
tion with a tournamentsize of 8.The results of this experiment are shown in Figure 22. The graphs show the maximum, averageand minimum �tness of the population. As 
an be seen from the graphs, individuals evolvingon the redundant mappings performed mu
h better than the individuals evolving on the binarymapping. The maximum �tness of the population evolving on the redundant mapping did notdrop as low 
ompared to the population evolving on the binary mapping. The population evolvingon the redundant mappings performed parti
ularly well after the environment 
hanged. Maximum�tness qui
kly re
overed to the global optimum. The population on the binary mapping does notrea
h the original level during the allotted time. Again, the results are in a

ordan
e with thestatisti
al analysis whi
h was performed above. Use of redundant mappings have an additionaladvantage. If the mutation rate is high, the population is able to maintain the optimum on
e itis found. For high mutation rates, the population on a non-redundant mapping forms a 
loudaround the optimum [20, 55℄. The height of the 
loud is determined by the mutation rate whi
hpulls the population away from the optimum and by sele
tion whi
h pulls the population towardsthe optimum. If a large number of mutations are neutral then the population may remain on theoptimum even if the mutation rate is high.A measure from population geneti
s [38℄ was used to measure the diversity of the populationduring the run. Diversity is 
al
ulated as the average probability that two randomly sele
tedindividuals di�er at a randomly 
hosen lo
us. The results, again averaged over 100 runs, areshown in Figure 23. Sele
tion pressure qui
kly redu
es the diversity of the population for the15
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Figure 23: Diversity of the population.binary mapping. Thus the population is 
onverged in genotype spa
e and further sear
h be
omesdiÆ
ult. In 
omparison, the population evolving on the redundant mappings are able to maintaina mu
h higher level of diversity. In all three 
ases, diversity brie
y rises immediately after theenvironment has 
hanged and then drops dramati
ally. In 
ase of the redundant mapping one
an 
learly see that diversity in
reases and �nally rea
hes the original level as the populationspreads on the neutral networks. With an appropriate redundant mapping with extensive neutralnetworks, it is 
on
eivable that the population 
an be spread out over the entire genotype spa
e.In this 
ase, the population still maintains the ability to qui
kly sear
h the spa
e for a new optimalphenotype.One of the anonymous reviewers suggested the interesting possibility to use the dynami
s ofthe diversity of the population as an analyti
al tool to test for the existen
e of neutral networks.Be
ause with real organisms the introdu
tion of single mutations is te
hni
ally hard the statisti
almethods des
ribed above 
annot be applied. However, the diversity may be measured with stan-dard te
hniques from population geneti
s. Thus, by looking at the dynami
s of the populationafter a 
hange has o

urred one may be able to make inferen
es about the extent of the neutralnetworks the organisms evolve on.6 Con
lusionThe use of redundant mappings provides a number of bene�ts to the population. If the mappingbetween phenotype and �tness is unknown it pays to use an appropriate redundant mappingbe
ause it in
reases the a

essibility between phenotypes. The smoother the lands
ape the easierit is to 
limb to the top of the lands
ape. For smooth unimodal lands
apes one 
an simply usea hill 
limber to solve the problem. However, if the mapping from phenotype spa
e to �tness isunknown then one gets a very rugged lands
ape in whi
h it is very diÆ
ult to lo
ate the optimum.With a redundant mapping whi
h possesses highly intertwined networks the 
limb to the top maybe
ome possible due to the added 
onne
tivity between phenotypes.Another bene�t is that individuals are able to maintain higher �tness values in the presen
eof high mutation rates be
ause a large fra
tion of all mutations are neutral. In addition, thepopulation is qui
kly able to lo
ate a new optimum should the environment 
hange as redundan
yin the genotype-phenotype mapping is a natural form of diversity maintenan
e. Convergen
e to asingle genotype is avoided and the population is still able to perform a random sear
h should thisbe ne
essary. Therefore, the use of redundant mappings generally in
rease the evolvability of thepopulation employing su
h a mapping.A
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