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Abstract- Evolutionary algorithms apply the process of
variation, reproduction and selection to look for an indi-
vidual capable of solving the task at hand. In order to im-
prove the evolvability of a population we propose to copy
important characteristics of nature’s search space. De-
sired characteristics for a genotype-phenotype mapping
are described and several highly redundant genotype-
phenotype mappings are analyzed in the context of a pop-
ulation based search. We show that evolvability is influ-
enced by the existence of neutral networks in genotype
space. The extent of the neutral networks affects the in-
terconnectivity of the search space and thereby affects
evolvability. Species evolving on a non-redundant map-
ping reach a state of stasis after a few number of gen-
erations. In effect, evolution comes to a halt. However,
species evolving on a genotype-phenotype mapping with
extensive neutral networks are continuously able to find
adaptive mutations and are able to locate higher optima.
The existence of highly intertwined neutral networks in-
creases the evolvability of a population.

1 Introduction

Evolutionary algorithms apply the process of variation, re-
production and selection to look for a solution to a problem
[7, 6, 15]. Although this is a general method, which can be
used for a variety of different tasks, the method is usually
used without regard to the characteristics of nature’s search
space. Nature’s search space shows a high degree of re-
dundancy in that many different genotypes map to the same
phenotype [17] (Figure 1). Different genotypes that map to
the same phenotype are randomly distributed over the search
space. Some phenotypes occur more often than others. All
common phenotypes are located in the vicinity of a randomly
selected genotype and long paths of neutral mutations con-
nect genotypes which code for the same phenotype. The pres-
ence of neutral mutations induces so called neutral networks
[8, 9, 22]. A neutral network is a set of genotypes which map
to the same phenotype and which are connected via single
point mutations. According to the neutral theory of evolu-
tion, most mutations are neutral and only a small fraction of
all mutations are actually beneficial [14].

Ebner [3] and Shipman [19] have previously argued that
similar characteristics might also be useful for an artifi-
cial search algorithm. A number of studies were carried
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Figure 1: Nature’s genotype-phenotype mapping is highly re-
dundant in that many genotypes map to the same phenotype.

out to analyze the benefits of a highly redundant genotype-
phenotype mapping which shows similar characteristics to
nature’s search space. Shipman et al. [20] analyzed the search
space created by several redundant genotype-phenotypemap-
pings with different amounts of redundancy. Shackleton et al.
[18] introduced the concept of fitness and performed fitness
adaptive walks for a single point moving through genotype
space.

Other research exploring the effects of redundancy include
the work of Levenick [16] and Julstrom [10]. Levenick has
looked at the advantages of having introns for a dynamic en-
vironment. Julstrom established that redundancy is benefi-
cial in looking for a solution to the problem of partitioning3n points into 3-cycles of minimum total length. Banzhaf
[1] studied a simple redundant map in the context of linear
computer programs and Keller and Banzhaf [13] evolved a
genotype-phenotypemap for computer programs. The effects
of a simple redundant mapping on the search space were an-
alyzed theoretically by Kargupta [11].

In this paper, we investigate the characteristics of the
search space for a population based search. In particular,
we separate the search space into phenotypes which belong
to different species. In this context, the following ques-
tions are of particular interest. To what extent is the evolv-
ability (defined as the ability of random variations to some-
times produce improvement [23]) of a population dependent
on the genotype-phenotype mapping used and to what ex-
tent are neutral networks a cause of punctuated equilibria
(stasis punctuated by episodic events of speciation [4]). See
Dawkins [2] for an introduction to the theory of punctuated
equilibria. Does evolution eventually fall into a state of stasis
if a highly redundant mapping is used? It is suspected that, as
the individuals moveinsidethe neutral networks, they are no
longer able to discover beneficial mutations. However, this
does not seem to be the case for a highly intertwined neutral
network. Our results suggest that periods of stasis are mostly
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Figure 2: The genotype-phenotype mapping is used to deter-
mine the phenotype for each genotype. For highly redundant
mappings the genotype space is much larger than the phe-
notype space. In addition to the genotype-phenotype map-
ping we have used a phenotype-species mapping, which de-
termines the species of the phenotype and a phenotype-fitness
mapping, which determines the fitness of the phenotype.

due to the scarcity of better fitness values as the species adapts
to its environment and are not caused by the extent of the neu-
tral networks. It appears thus, that the mappings which are
analyzed in this paper possess neutral networks which are in-
tertwined with a high degree of connectivity. If our search
space has similar characteristics as nature’s search spaceas
described above, the individuals should have no problem dis-
covering other species and thereby filling all available niches
of the search space.

2 Mappings

In order to answer the above questions we looked at several
different genotype-phenotypemappings. Each mapping spec-
ifies a phenotype for each possible genotype. The mappings
differ in the amount of redundancy used. Two additional map-
pings separate the phenotypes into species and assign fitness
values to the phenotypes. The phenotype-species mapping
defines which phenotypes belong to a particular species. The
phenotype-fitness mapping defines the fitness values for each
phenotype. How the different mappings are used, is illus-
trated in Figure 2.

2.1 Genotype-phenotype mappings

We experimented with several different genotype-phenotype
mappings: a standard binary mapping, a mapping based on
a cellular automaton, and a mapping based on a random
boolean network. The cellular automaton mapping and the
random boolean network mapping are used here because we
have shown previously that these highly redundant mappings
also possess extensive neutral networks [20, 18].

Binary mapping

For the binary mapping, genotype space and phenotype space
are equivalent. In this case the same number of bits are used
for the genotype as well as for the phenotype. There exists
a one to one correspondence between genotype and pheno-
type. The phenotype number is obtained by interpreting the
genotype as a binary number.
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Figure 3: A linear non-uniform cellular automaton. The next
state of the celli is determined by the state of celli as well as
the state of its neighboring cellsi� 1 andi+1 (with circular
boundary conditions). The state of these three cells specify an
address in the rule table of celli which determines the state
of cell i at the next time step.

Figure 4: A sample run of a cellular automaton with 16 cells
for 20 steps. The initial state of the automaton was a fixed
random value.

Cellular automaton mapping

A linear cellular automaton consists of an array of cells. Each
cell has two possible states: on or off. The state of a cell
at the next point in time is determined by the state of cell
at the current time step and by the state of its neighboring
cells. See Wolfram [24, 25] for an introduction to cellular
automata. For a non-uniform cellular automaton, each cell
has its unique rule table which defines the new state of the
cell for all possible combinations of state values of the cell
and its neighbors [21]. We have used a neighborhood of 2.
Therefore the rule table of each cell has23 entries. How the
cellular automaton works is described in Figure 3. A sample
run of a cellular automaton with 16 cells is shown in Figure
4.

For the cellular automaton mapping, the genotype speci-
fies the rule tables of the automaton. This mapping has been
analyzed in detail by Shipman et al. [20] and Shackleton et al.
[18]. The phenotype is determined by running the cellular au-
tomaton for a fixed number of steps (20 in our experiments).
Initially, the automaton is placed into a fixed randomly cho-
sen state. The initial state is the same for all genotypes. At
the end of the run, the resulting state of the network is used
as the number of the phenotype. Letn be the number of cells
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Figure 5: A random boolean network. The next state of celli is determined by the state of the cells it is connected to.
The state of these three cells specify an address in the rule
table of celli which determines the state of celli at the next
time step. For our experiments all cells are connected to three
other cells.

of the cellular automaton. Then we need8n bits to define the
cellular automaton because 8 bits are needed for the rule table
of each cell.

Random boolean network mapping

A random boolean networks consists of a fixed number of
cells [12]. Each cell has two possible states: on or off. The
state of a cell at the next point in time is determined by the
state of the cells it is connected to. Each cell has a rule table
which lists the new state of the cell for all possible combina-
tions of state values of the cells it is connected to. For our
experiments we have used a connectivity of 3. Therefore the
rule table of each cell has23 entries. How a random boolean
network works is shown in Figure 5

For the mapping based on a random boolean network, the
genotype specifies the initial state, its wiring and all of the
rule tables. The mapping was introduced by Shipman et al.
[20]. The phenotype is determined by running the random
boolean network for a fixed number of steps (20 in our ex-
periments). After that, the resulting state of the network is
used as the number of the phenotype. Letn be the number of
cells of the random boolean network. Each cell hasn cells to
which it is connected. Then we needn(1+n log2(n)+2n)
bits to describe the random boolean network. For each cell
we need one bit to specify the initial state,n log2(n) bits to
specify to which cells it is connected to, and2n bits for the
rule table.

2.2 Phenotype-species mapping

The phenotype-species mapping determines the species to
which each phenotype belongs. Letns be the number of
species andnp be the number of phenotypes, then exactlynpns
phenotypes are associated with each species. The phenotype-
species mapping is created by randomly distributing the
species over the phenotypes.

2.3 Phenotype-fitness mapping

The phenotype-fitness mapping determines the fitness of each
phenotype. Letns be the number of species andnp be the
number of phenotypes, then we need to definenpns fitness val-
ues for each species. For each species we have used the fit-
ness values1 throughnpns . The phenotype-fitness mapping is
created by randomly distributing the fitness values for each
species over the phenotypes which belong to the species.
Thus, the redundancy is only in the genotype-phenotypemap-
ping and not in the phenotype-fitness mapping because fitness
values are separate for each species.

3 Experiments

For our experiments we have used a phenotype space ofnp = 216 phenotypes. Each phenotype belongs to one ofns = 64 species. Therefore, we have usednpns = 1024 fitness
values for each species. For the binary mapping the genotype
and phenotype spaces are equivalent. The genotype consists
of 16 bits and is interpreted directly as the number of the phe-
notype (no redundancy). For the cellular automaton mapping
we need128 bits for the genotype (redundancy of2112 : 1).
For the random boolean network mapping we need336 bits
for the genotype (redundancy of2320 : 1). In order to inves-
tigate the influence of the genotype-phenotype mapping on
evolvability we have made the following assumptions. The
association between phenotype and species as well as the as-
sociation between phenotype and fitness is fixed. That is, for
each phenotype we are able to tell to which species the phe-
notype belongs and how fit the phenotype is.

Three experiments were performed. For the first two ex-
periments we start with a single point moving though geno-
type space. The point represents a single species which later
spawns new species which then move through genotype space
in parallel. The first two experiments differ in how fitness is
handled. For the first experiment we allow a speciation event
to take place if the new species does not exist already. For the
second experiment we make speciation events dependent on
the environment. Finally, the third experiment uses multiple
species right from the start.

3.1 Experiment 1 – Speciation by niche filling

First, we choose a random species and look for a genotype
that belongs to this species which has the lowest possible fit-
ness. This is our starting point in genotype space. Lowest
possible fitness is chosen in order to better compare results
across mappings. At each time step we randomly mutate the
genotype. Next we determine the species to which the mu-
tated individual belongs. If the mutated individual belongs
to the same species we look at the fitness of the individual.
If the fitness value is higher than or equal to the fitness of
the original individual, then the mutated individual replaces
its ancestor. If the fitness of the mutated individual is lower
than the fitness of the original individual nothing happens.In
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Figure 6: Genotype space is separated into different species
by the genotype-phenotype mapping and the phenotype
species mapping. Initially only a single point moves through
genotype space. As new species are discovered, this point
splits into a new point moving inside the newly discovered
species and also continues inside the region belonging to the
old species. The filled circle marks the starting point. Open
circles mark points where new species are discovered.

case the mutated individual belongs to a new, currently not
existing species then a new point is created which now also
moves through genotype space. For this experiment we only
use fitness to determine if a new genotype replaces an existing
genotype after the species has been discovered.

Initially, only a single point moves through genotype
space. As new species are discovered, the trajectory splits
into a trajectory for the new species and a trajectory for the
existing species. This process is shown in Figure 6. After a
relatively short time all species have been discovered. This
is due to the parallel search done by all of the points moving
through genotype space. We are able to divide time into two
periods. A period of speciation followed by a period of adap-
tation. After all species have been discovered they increase
their fitness by adapting to their environment. The separation
of phenotypes into species can be regarded as evolutionary
niches that may be filled once they are discovered. After a
species has been discovered, it may not be discovered again.

The results of this experiment are shown in Figure 7. Re-
sults for the binary mapping, cellular automaton mapping,
random boolean network mapping are shown in the first, sec-
ond, and third rows respectively. The first graph for each
mapping shows how the species with which we started, spe-
ciates into the other species. Time is shown along the hori-
zontal axis. Each species has its unique slot on the vertical
axis. A point of speciation is marked by drawing a vertical
line from the original species to the new species. The end-
points of the line are drawn with open circles on the origi-
nal species and closed circles are used for the newly created

species. Unfilled diamonds mark position at which a new
phenotype with higher fitness is discovered. After all species
have been discovered we look at the fitness values. The sec-
ond graph shows minimum, average and maximum fitness
values over all species. The third graph shows the individual
fitness values of all species over time. It is interesting to no-
tice that the time taken to fully populate the ecological niches
is insignificant compared to the time taken for the species to
better adapt to those niches.

As can be seen from the second graph, the larger the
amount of redundancy, the better the species are able to adapt
to their environment. In case of a binary mapping, the species
don’t evolve at all after a few adaptive moves at the beginning
of the experiment. Instead, they become stuck in a local opti-
mum. Average fitness is halfway between the lowest possible
and the highest possible fitness value. For the cellular au-
tomaton mapping we get a slightly better ability to evolve.
Higher average fitness values are reached than for the binary
mapping. The mapping based on the random boolean net-
work performs even better than the cellular automaton map-
ping. Higher average fitness values are reached. As can be
seen from the fitness plots, there exists relatively long periods
of stasis in between adaptive steps. It may be that these long
periods of stasis are caused by movements along the neutral
networks.

Most of the time, the species moves along the neutral net-
works. This results in the period of stasis. After a while a
new adaptive mutation is discovered. As the species adapts
to its environment fewer and fewer adaptive mutations are
possible. That is, initially, at the lowest possible fitness, a
species may move to one of 1023 possible adaptations. One
expects that on average the next fitness value will be around
512. However, if a species has reached a fitness value of 512,
only half as many adaptive moves are possible. Therefore it
will take twice as long before the next adaptive mutation is
discovered. Elena et al. [5] showed that punctuated evolution
observed in bacteria is caused by selection of rare beneficial
mutations. Therefore, it may be that the periods of stasis are
actually caused by the decreasing number of available adap-
tive mutations. The next experiment was carried out to further
investigate this hypothesis.

3.2 Experiment 2 – Adaptive speciation

For experiment 2(a), we first make the speciation event de-
pendent on the fitness of the current species. A speciation
event is only allowed if the new species has a higher or equiv-
alent fitness as the current species. Other than that experi-
ment 2(a) is equivalent to experiment 1. The results of exper-
iment 2(a) are shown in Figure 8. We now see that speciation
happens at a slower rate. As the fitness of the species im-
proves, it takes longer and longer before a new species with
higher fitness is discovered. A period of stasis results if the
species move along the neutral network. After some time a
new species with a higher fitness or equivalent value is dis-
covered.
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Figure 7: Results of experiment 1 for the binary mapping, cellular automaton mapping, and the random boolean network
mapping. The first graph shows how the initial point in genotype space speciates. Time is shown along the horizontal axis.
Each species has its unique slot on the vertical axis. The beginning of each species is marked by a filled circle. Speciation
events are marked with filled circles and a line connecting the original and the new species. Diamonds mark adaptive mutations.
Speciation is shown for 50 time steps. The second graph showsthe minimum, average and maximum fitness values of the
different species for each generation. The third graph shows the fitness values of the individual species for each generation. It
can be seen clearly how fitness improves in sudden bursts withperiods of stasis in between adaptive mutations.

Next, we make speciation events dependent on the max-
imum fitness of all species (Experiment 2(b)). In this case,
a speciation event is only allowed if the new species has a
higher or equivalent fitness as the maximum fitness found so
far. The results of this experiment are shown in Figure 9. Now
we get an even slower rate of speciation. The behavior is sim-
ilar to the adaptive evolution of fitness described above. At
the same time, the advantage of the right kind of redundancy
also becomes apparent. As can be seen from the graphs, in-
stead of prolonging the search, neutral networks increase the
reachability of new phenotypes and thereby aid speciation.
Whereas the binary mapping becomes stuck right away, the

cellular automaton mapping and the random boolean network
mapping enable the population to discover additional species.

3.3 Experiment 3 – Population based search

The above two experiments are of interest if the mappings
are to be used for an evolutionary algorithm. In this contextit
is of particular importance to know if the use of a redundant
mapping is a possible cause of stasis. Since one is usually
interested in finding a solution quickly the use of a redun-
dant mapping would be a considerable drawback in this case.
However, the above results show that the right type of re-
dundancy actually improves evolvability and that periods of
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Figure 8: Results of experiment 2(a). Only adaptive specia-
tion events are allowed. It can be seen how the requirement
that the new species must have a fitness which is higher than
or equal to the fitness of the existing species delays speciation
events. Speciation is shown for 50 time steps.

Binary Mapping:

Cellular Automaton Mapping:

Random Boolean Network Mapping:

Figure 9: Results of experiment 2(b) if speciation events are
dependent on the maximum fitness found so far. The graphs
show results for the binary mapping, cellular automaton map-
ping, and the random boolean network mapping. This graph
clearly shows how neutral networks increase the reachability
of new species as opposed to prolonging the search. Specia-
tion events are shown for 1000 time steps.

stasis are mostly due to the scarcity of better fitness valuesas
the species adapts to its environment.

An evolutionary algorithm usually uses a population of in-
dividuals. Thus, for our third experiment we start with all
species moving through genotype space right from the start.
For each species we select a single genotype which is a mem-
ber of the species and has the lowest possible fitness. Since all
species exist right from the start, no new species are available
to be discovered. The species may only improve their fitness
as they move through genotype space. Thus only moves to a
neutral neighbor or to a neighbor with a higher fitness value

are allowed.
For the first two experiments we always started with a

single species (or search point) in genotype space. From
this point new species (or new solutions) were discovered.
It might seem that one should be at a serious disadvantage
if one only starts with a single point in the search space as
compared to multiple points all randomly distributed over the
search space. It could be that one becomes stuck in a local
optimum if the connectivity of neutral networks is low. That
is, it might be that it is not possible to reach some points of
the search space if we start in a particular region of the search
space. However, the results of experiment 3 show that this
is not the case. The results are shown in Figure 10. The av-
erage fitness value reached for the random boolean network
mapping at the end of the run is comparable to the average fit-
ness value reached in the first experiment which started from
a single point in the search space.

4 Conclusion

We proposed to use a genotype-phenotype mapping which
shows some characteristics as nature’s search space for an
artificial evolutionary algorithm. Three different genotype-
phenotype mappings were analyzed in the context of a popu-
lation based search. We have shown that evolvability, defined
as the ability of random variations to sometimes produce im-
provement, is influenced by the existence of neutral networks
created by the genotype-phenotype mapping. In order to in-
vestigate the mappings we have developed a model of specia-
tion and adaptation. We start with a single point in the search
spaces which moves through genotype space. Over time, new
search points are created by spawning new trajectories which
move through genotype space in parallel.

Depending on the genotype-phenotype mapping used, we
are either able to continue to find better points of the search
space or become stuck in a local optimum. The extent of the
neutral networks clearly affects the interconnectivity ofthe
search space as was observed in the case of adaptive evolution
described above. Highest average fitness values were reached
for the random boolean network mapping, followed by the
cellular automaton mapping. In case of a binary mapping the
individuals did not evolve at all. The search points quickly
became stuck in a local optimum.

The fitness of the species increased in jumps with inter-
mediate periods of stasis. The same behavior was observed
for speciation events if the speciation events were made de-
pendent on the fitness of the current species or the maximum
fitness found so far. It was suspected that the periods of sta-
sis were caused by species movinginsideneutral networks.
However, the current results suggest that the periods of stasis
are mostly due to the scarcity of better fitness values as the
species adapts to its environment. It appears thus, that the
neutral networks are intertwined with a high degree of con-
nectivity such that the species may movealong the neutral
networks to discover new adaptive mutations. This is an im-
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Figure 10: Results of experiment 3 for the binary mapping, cellular automaton mapping, and the random boolean network
mapping. Experiment 3 starts a parallel search with all species initialized to the lowest possible fitness. The first graph shows
the minimum, average and maximum fitness values of the different species for each generation. The second graph shows the
fitness values of the individual species for each generation.

portant property which distinguishes the mappings described
in this paper from other types of redundancy. Instead of pro-
longing the search, the neutral networks present in the map-
pings which were investigated in this paper, increase evolv-
ability.
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