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Abstract- The neutral theory of evolution suggests that
most mutations do not cause a phenotypic change. In
this case the mapping from genotype to phenotype con-
tains redundancy such that many mutations do not have
an appreciable effect on the phenotype. This can result
in neutral networks; sets of genotypes connected by single
point mutations that map to the same phenotype. A pop-
ulation is able to drift along these networks, eventually
encountering phenotypes of higher fitness, thus reducing
the chance of becoming trapped in sub-optimal regions of
genotype space. In this paper we explore the use and ben-
efit of redundant mappings for evolutionary search. We
investigate the properties of several genotype-phenotype
mappings by performing random walks along the neutral
networks in their genotype spaces. The properties are ex-
plored further by performing adaptive walks in which a
concept of fitness is introduced. A mapping based on a
random boolean network was found to have particularly
interesting properties in both cases.

1 Introduction

Natural evolution differs in many respects from the evalnti
ary algorithms typically employed today. One such diffeen
is highlighted by the neutral theory of evolution. Accorglin
to this theory a considerable fraction of all mutations dre-p
notypically neutral with only a minute fraction of non-nealt
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with every possible genotype, an individual genotype which
represents a local optimum (with respect to these neighbors
would by definition be “trapped”. That is, for the search to
reach better fitness values the individual genotype would ha

to forego its current fitness value for a lesser fitness, in the
hope of eventually locating a better fitness value. Thisés th
case when there is no redundancy in the genotype-phenotype
mapping. (Note that for the purposes of this discussion it is
assumed that every distinct phenotype has a unique asstciat
fitness.)

When the genotype-phenotype mapping exhibits redun-
dancy there is the potential to continue the search by drift-
ing alongneutral networksn genotype space. If none of
the point mutation neighbors is fitter than the current geno-
type, yet there exists a neighboring genotype that mapsto th
same phenotyp¢hen it is possible to adopt that neighbor as
the current search solutiomithout loss of fithessProvided
such phenotypically neutral neighbors exist and faxten-
sive networkghroughout genotype space, they may offer a
way of traversing genotype space without becoming “stuck”
at local optima. There would be no need to pass through re-
gions of lower fitness in order to reach regions of higher fit-
ness.

The possible role of “neutral evolution” is discussed by
Huynen [4] in the context of RNA sequence-structure map-
pings. This work showed that RNA folding algorithms pre-
dict the existence of extensive neutral networks in segeienc

mutations being beneficial [7]. However, most evolutionary(genotype) space for which the constituent sequences all ma
algorithms use a fixed one-to-one mapping between genotyge an identical structure (phenotype). Further work by Huy-
and phenotype with each genotype corresponding to exactlyen [5] considered aspects of a population searching such a
one phenotype. In this paper we explore the impact on evogenotype space. Fontana and Schuster [3] showed that the
lutionary search of redundant genotype-phenotype mappingstatistical topology organising the set of RNA shapes érpla

(in which each phenotype is represented by many genotypesyhy neutral drift in sequence space is important in evotutio
Such mappings offer the potential of increasing the efficacyary search. Other work which has indicated the importance
of evolutionary search by allowing continued search on neuef such properties of the search space includes that of Ebner

tral networks.

[1] and Shipman [8]. In this paper we consider redundant

If one considers an evolutionary search in which the onlygenotype-phenotype mappings which are far simpler than the

genetic operator available is single point mutation, tHen t

RNA sequence-structure mapping but which might neverthe-

number of genotypes directly reachable from a given genoless exhibit extensive neutral networks which are helgiul t
type is(A - 1)LwhereA is the number of alleles available and an evolutionary search process. For comparison we also ex-
L is the length of that genotype [6]. For binary string geno-amine mappings which exhibit redundancy of a type which is

types the number of neighbors is simplythe length of the

genotype. Assuming a unique static fitness value is assaciat

not helpful for evolutionary search.



2 Genotype-phenotype mappings Genotype

A | | 48bits

A number of genotype-phenotype mappings are discussec _ Mgjority vote (of 3)

low which exhibit varying degrees of redundancy, fromno ~ Fenotype bits: 16 bits

through to a high level of redundancy i.e. with many gen Binary|decode

types mapping to each possible phenotype. To allow the Phenotype ID in [0,216-1]

ferent aspects of each mapping to be explored, a single |

notypic representation is used consisting of 16 bits, tegul

in 216 = 65536 possible unique phenotypes. Other work (s

Ebner [2] and Shipman [9]) has investigated smaller phei Genotype: || [~ [\ ] [ __F| 32bits
type spaces exhaustively; here we investigate whetheulus Majority vote (of 21)
properties of redundancy extend to somewhat larger pne  Phenotype bits: |57 M 16 bits

type spaces.

Binary|decode

i 16-
2.1 Direct Binary Mapping Phenotype D in [0.2:%-1]

The Direct Binary one-to-one mapping maps a 16 bit get

type directly.onto the 16 bit ph_enotype repr_esentation. A Figure 1: Top: Trivial voting mapping - each phenotype bit

result there is no redundancy in this mapping - exactly ¢ s yniquely determined by 3 genotype bits; if the majority of

genotype maps to each possible phenotype. This map} hese bits are set then the corresponding phenotype bit will

provides a baseline for comparison with the other mappint - 515 pe set. There is no overlap between the consecutive sets
of 3 bits. Bottom: Standard voting mapping - each pheno-

2.2 Static Random Mapping type bit depends on a constant odd number of genotype bits

The Static Random mapping does exhibit redundancy. Th@hich vote either for or against the corresponding phertyp
genotype consists of a bit string of length 30, resulting in Zbit being set. For this mapping .there is considerable operla
genotype space & genomes, each mapping to a specific Pétween the sets of genotype bits.

(16 bit) phenotype. The mapping is randomly initialised and

_remains static,_ with the same genotype always mapping t_ﬂwe majority of connected bits in the genotype “vote” in favo
its corresponding phenotype. AS the number of genomes I§¢ this. Thus, depending on the values of the other relevant
too Iar_ge to convemgntl_y storg in a look-up table, this is ac bits, a point mutation may or may not have an effect on the
complished bi'] ha(\jshmg 'm]? agxe((jjrandqm nqmbr?r ?‘en?:]atoﬁhenotype. It is important to note that for the Standard Vot-
sequence. The degree of redundancy is quite high with of}, o \apning the set of genotype bits linked to a particular
averagez™ genomes mapping to each phenotype. phenotype bitvill typically overlapwith the sets correspond-

o ] ) ing to other phenotype bits. This is the key distinction be-
2.3 Trivial Voting Mapping tween this mapping and thivial Voting mapping. It is this

The Trivial Voting mapping is redundant, and is illustratled ~ @spect that permits multiple phenotype bits to potentiadly
Figure 1 (top). The genotype has a total length of 48 bits. Th&€hanged simultaneously by a single point mutation. Alterna
first 3 genotype bits determine the value of the first phermtyptively, the redundant “majority voting” aspect of the mapgpi

bit, and consecutive sets of 3 genotype bits determine conseCan sometimes result in the phenotype remaining unchanged,
utive individual bits of the phenotype. Each phenotypesit i while still setting the scene for future transitions to eiféint

thus uniquely determined by a set of 3 genotype bits, withPhenotypes.

each of these sets being distinct (i.e. no two sets share any The links between the genotype bits and the phenotype
bits). A phenotype bit is set to unity if theajority of the 3 bits are determined in the following way. For each bit of the
corresponding genotype bits are set, otherwise it is aitare  Phenotype we randomly select a constant number of bits of
zero. Thus the genotype bitstefor the setting of the corre-  the genotype which will vote for that phenotype bit. For each

sponding phenotype bit. This mapping exhibits a redundancgf the voting bits, we randomly choose whether a set bit will
of 2321, vote in favor of the corresponding phenotype bit being set, o

againstit being set. Thus there are positive and negatiesvo
(links). The number of genotype bits which vote for each
phenotype bit is fixed at a constant odd number. In the results
The Standard Voting mapping is again based on a voting apeported later, a genotype of 32 bits was used with sets of 21
proach where each bit of the phenotype is influenced by sewyenotype bits being chosen for each of the 16 phenotype bits.

eral bits from the genotype. (See Figure 1, bottom.) Eacltlearly there is significant overlap among the sets of voting
phenotype bit is determined by looking at all the bits of thepijts.

genotype to which it is linked. A bit of the phenotype is set if

2.4 Standard Voting Mapping



2.5 Cellular Automaton Mapping input bits, but these can kany 3 bits atdefined addresses

The Cellular Automaton maoping uses a developmental a within the 16 bit cellular array. Thus in addition to the rule
pping P ptable, these addresses must also be specified: each address

proach: _the genotype e_“c_‘?des a S‘?t of cellular aummatorréquires 4 bits to encode an address in the rd0gé5]. A
rules which map a fixed initial value into the resulting phe

notype value. (See Wolfram [10] for example, for more in_'further distinction from the cellular automaton definedabo
typ ' Pie, is that the initial state for each binary cell is directly eded

formation on cellular automata.) A one-dimensional, non- . ; .
. : in the genotype. To summarise, the details for each cell in-

uniform cellular automaton comprises an array of cellsheac ude:

with an associated rule table which specifies how the state o L .

that cell changes over time (see Figure 2). The cellular au- * initial state (1 bit);

tomaton consists of an array of 16 binary cells. For each cell ® addresses for each input cedl-(4 = 12 bits);

arule table specifies the subsequent state of that cellyalyiq e the rule table defining the cell’s next stafé & 8 bits).

determined by its own state together with the state of its lefThe above information is required for each of the 16 cells,

and right adjacent cells. (Left and right extremes of the arwhich results in a total genotype length of 336 bits. The map-

ray are wrapped around.) The 3 input states resultir- 8 pning from genotype to phenotype thus exhibits a high degree
possibilities, so each rule table has 8 entries, each oftwhicof redundancy.

specifies the new binary state resulting for that configomati
The genotype thus requires 8 bits to encode each rule table. Genotype Space
This results in a total genotype length of 128 bits.

To perform the mapping from genotype to phenotype, the
cellular automaton is first initialised with a fixed, arbitrdoit
string. The cellular automaton is then iterated for a caontsta
number of steps using the rule tables defined in the genotype.
(For the results reported later, 20 iterations were usetdgbu
periments suggested that increasing the number of iteiatio
further had little effect on overall behavior.)

for i’th cell: 000| 0
001| 1 _
. 010! 0 Different phenotypes encountered along random
011l 1 neutral walk:
R R R,

i ) ) Set of 10 equivalent genotypes found:
Figure 2: Cellular automata mapping: the phenotype cansist

of the final state of a cellular automaton whose state triansit
rules are encoded in the genotype. There is one cell for each
of the 16 phenotype bits, and every cell has an associated tra
sition table mapping the current bit state and neighboestat
to a new state for that cell.

2.6 Random Boolean Network Mapping Figure 3: Random neutral walk through genotype space: the
L walk starts at a given genotype (and associated phend®pe,

The Random Boolean_ Networlg mapping is similar to the Cel'in the figure above) and proceeds by randomly selecting suc-
lular Automata mapping, but is rather more complex. The qqgjy e point mutation neighbors which map to the same phe-

genotype again encodes rule tables describing how the Staﬁ%type. During this walk different phenotypes @m®ecoun-

of each cell (in an array of 16 cells) changes over time. Thes?eredwhich arereachable by single mutatioraf the geno-
rules are applied iteratively, as for the cellular automtda types along the walk

derive the final phenotype value. For the Random Boolean
Network used here the next state of each cell depends on 3



3 Evaluation of the mappings on a random neu- walk. In addition, this histogram indicates both the vacan
tral walk in number of phenotypes found over all walks and can also
illustrate other biases (such as bimodality) in the distign.
To evaluate various properties of the mappings we first per-
formed an analysis of each mapping in the context of a “ ran3 4 Results of neutral walks for each mapping

dom neutral walk” through genotype space, as we are partic- o )
ularly interested in the ability to continue to explore geype The above statistics were calculated for all of the mappings

space without changing the current phenotype. (Later,gn se described earlier. The statistics were calculated oveA 102
tion 4, we discuss a fitness-adaptive walk.) walks of length 500, each walk starting from a randomly se-

In this paper we report only those results which bear mosiected genot)_/pe. The .gener.ated statistics are shown for the
strongly on later discussions of fitness-adaptive walksafo Standard Voting mapping (Figure 4), the Cellular Automata
more detailed statistical examination of these (and otteer) (CA) mapping (Figure 5), and the Random Boolean Network
dundant mappings in the context of a random neutral walkRBN) mapping (Figure 6). Results from the other mappings
we refer the reader to Shipman et al. [9]. Ebner et al. [2]2"€ also discussed, but are not shown due to space lim#ation
considers the impact of redundant mappings on a populatiodnd because they can be simply described.
searching a space in the context of a changing environment. 1he Direct Binary mapping contains no redL.mdancy, and
Here we consider a single point search to avoid the addition£VE"Y 9enotype maps to exactly one phenotype; consequently

complications resulting from a population-based search, ~ the number of phenotypes encountered during all “neutral”
walks is equal to the number of single point mutation neigh-

bors, namely 16.

The Static Random mapping contains a degree of redun-
The following statistics were calculated in the context of adancy, with the set of (approximately*) genotypes which
random neutral walk (Figure 3). Each random neutral walkmap to a given phenotype being scattered widely through
starts from a given genotype and randomly selects one of thgenotype space. However, once again the number of pheno-
single mutation neighbors which maps to th@me pheno- types encountered is restricted to the number of singletpoin
type The process is repeated for a fixed number of stepsnutation neighbors; this is because the set of genotypes cor
each involving a transition in genotype space to a phenetypaesponding to a given phenotype are typicalbt connected
neutral, adjacent neighbor. (If no such neighbor exists théy a neutral networlof single point mutations i.e. they are
walk will remain at the current position in genotype space.)isolated in genotype space and cannot be reached one from
The statistics reported here were all calculated for asefie another without foregoing the current phenotype. At higher
1024 random neutral walks, each starting at a genotype whiclkevels of redundancy we might however expect neutral neigh-
was chosen randomly from the set of all possible genotypesbors to exist. A Static Random mapping with a genotype

length of 336 (equal to the largest genotype consideredsn th
3.2 Phenotypes reachable paper) was also investigated, but no neutral networks were

The “phenot hable” statisti the cuivailat °PSerVed:
€ phenotypesreachable” SIalistc measures e CUNRHIat g 1y iq) Voting mapping also exhibits redundancy, with
number of phenotypes encountered, averaged across a serjes 39 . .
X . of averag®’? genotypes corresponding to each unique phe-
of random neutral walks, and is plotted against walk length. .
. . . 2" hotype. The mapping produces results very close to those
A new phenotype isncountereavhen one of the single point . . . , .
. : of the Direct Binary mapping, encountering only 16 differ-
mutant neighbors of the current genotype is found to map tq " . . .
. ent phenotypes, with the only difference being that it takes
that phenotype. (See Figure 3.)

. _several more steps to find these. In this case the redundanc
The plotted value represents the mean over the entire se- P Y

. simply slows down the search process, without allowing ex-
ries of random neutral walks. The number of phenotype . L . )
. . : - ensive search of genotype space. (A Trivial Voting mapping
reachable via a neutral walk is an important statistic, as th_. . .
) o . s . with a genotype of length 336 was also investigated and found
slope gives an indication of the “innovation rate” i.e. tihd-a

) . . . . - to slow down the search even further.) Consideration of how
!ty to find potentially better phenotypes while stlll_malmtg the mapping is defined (Figure 1, top) indicates why this is
ing the current phenotype. When we later associate a fltne%e case: each genotype bit can only ever affect a single bit

value with each phenotype, the slope of this plot can ing!icat f the phenotype representation; thus the possible phpaoty
whether the search for fitter phenotypes should be Contlnue(gransitions resulting from a mutation are the same as those
of the Direct Binary mapping. The Trivial Voting mapping

illustrates thatedundancy alone is not enoughhelp evolu-
The histogram of the number of phenotypes encountered irfionary search.

dicates how many different phenotypes we can expect to en- The Standard Voting mapping (Figure 1, bottom) was de-
counter (as single point mutation neighbors) during a rando Signed such that a single point mutation in the genotypedcoul
neutral walk. The previous statistic, “phenotypes realiab  potentially affect multiple bits in the phenotypic reprete
captures the mean of this distribution at the end of the mkutr tion simultaneously, or in some cases (due to the voting mech

3.1 Random neutral walk through genotype space

3.3 Histogram of number of phenotypes encountered



anism) may affect none of these bits. The results of the ran-

dom neutral walks using this mapping are shown in Figure 4.

The mean number of unique phenotypes encountered is 669,

after a walk of 500 steps. This indicates that the mapping

permits extensive phenotype-neutral walks through gereoty

space. The histogram illustrates that the walk lengthidistr

bution is bimodal: the majority of walks encounter approx- Phenotypes reachable on walk
imately 750 phenotypes but some walks encounter very few 800
phenotypes. The latter observation indicates a weakness in

the properties of the mapping which could lead to fitness-
adaptive walks becoming “stuck” at locally fit phenotypes
which lack an associated extensive neutral network.

The results for the Cellular Automata mapping are shown
in Figure 5. The mean number of unique phenotypes encoun-
tered at the end of the neutral walk is 472. This is less than fo
the Standard Voting mapping but the gradient of the “pheno-
types encountered” graph indicates that new phenotypes con
tinue to be encountered and that extensive neutral networks 0 : : : :
exist in genotype space. In this case the histogram is uni- 0 100 200 300 400 500
modal, indicating that all walks sampled resulted in simila Walk length
numbers of phenotypes being encountered. This property is
more promising than that of the Standard Voting mapping as
it implies that a fitness-adaptive walk is less likely to baeo
trapped at a local optimum, in a restricted region of genetyp
space. 150 - .

Results for the Random Boolean Network (RBN) mapping &
are shown in Figure 6. These statistics are particularly en- o
couraging: the final mean count of phenotypes encounteredy
over the random neutral walk is 4614, an order of magnitude LT
greater than the maximum across the other mappings consid- 90
ered here. The gradient of the associated graph is also high,
with little sign of an asymptote at the end of the walk. In ad- 0 ! I I !
dition, the histogram of number of phenotypes encountered 0 300 600 900 1200 1500
is unimodal with no low values, suggesting the presence of Number of phenotypes found
many extensive neutral networks in genotype space.

600

found

400

otypes

200

Phen

Histogram of phenotypes encountered
200 T T T T

100 -

u

Figure 4: Standard voting mapping statistics: The graph
4 Evaluation of the mappings on a fitness- shows the number of phenotypes found, averaged across all
adaptive walk neutral walks. The redundancy in this mapping permits a
neutral walk which continues to discover new phenotypes in
In this section we present results of using the redundant majts neighborhood. The eventual mean number of phenotypes
pings in the context of a fitness-adaptive walk in genotypgound over the walks (669) is greater than for the cellular au
space. The statistics were calculated over 1024 walks dbmata mapping, but the gradient (innovation rate) is gradu
length 500 starting at randomly selected genotypes, as b@lly decreasing. The central portion of the histogram shows
fore. The walk conditions are as for the neutral walk, buhwit that most neutral walks encounter on average 750 different
the key difference that a fitness value is randomly assatiatephenotypes, corresponding to extensive neutral netwarks i
with each phenotype. The walk then proceeds by adaptivgenotype space. The histogram also shows that some walks
moves to the single-point mutation neighbor with the highesencounter very few phenotypes; this indicates a potential
fitness, provided this fitness is higher than the currentditne problem, as a fitness-adaptive walk could become “stuck” on
If such a neighbor does not exist, then the walk proceeds bg neutral network which is limited to a restricted region of
a phenotype-neutral move to a single-point mutation neighgenotype space.
bor with an equal fitness to the current fitness. If this is not
possible either, then the walk ends.
Fitnesses are assigned to phenotypes randomly in the
range[0,1] with higher values denoting higher fitness. How-
ever, the fitness assignment is not uniform; instead a unifor
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Figure 5: Cellular automata mapping statistics: the grapl?:igure 6: Random boolean network statistics: the graph

shows the number of different phenotypes encountered, V3 ows the number of different phenotypes found, averaged

eraged across all neutral walks. The redundancy in this map- . : ;
. . . . . across all neutral walks. The redundancy in this mapping

ping permits a neutral walk which continues to discover new . . : :
ermits a neutral walk which continues to discover new phe-

phenotypesin its neighborhopd. The eventual number of phéraiotypes in its neighborhood. The eventual number of pheno-
potypes fqund over the wal_k IS I(?SS thaq for the standard VOtfypes found over the walks is an order of magnitude greater
g mapping, .bUt the_ gr_adu_ent (innovation rate) has nOt.deEhan for the other mappings considered, with a steep gradien
creased significantly |ndlcgt|ng that_ne\_/v phenotypes oot (innovation rate) showing little sign of decreasing. The-hi
teongguenr;;?;gireeg;(; rrlgi\rrt\(/)v%riihmilsngIggfsefrsag]gt arI(I) n;xogktogram shows that all neutral walks encountered a subatanti
A ; ' . . PTOPEIAY, & 1 \mber of different phenotypes, indicating the presence of
may indicate that a fitness-adaptive walk is less likely to beextensive neutral networks in genotype space
come “stuck” at a local optimum. 9 ype space.



random number in [0,1] is remapped in order to produce
many more low fitness values than high fitness values. The
fitness is given by

f — €100(T_1). (1)

The fitnesses are distributed in this way to generate a search

space in which there are few good solutions among many

poor solutions, which is a property of many search spaces Fitness during walk

of interest. It also allows greater distinction to be made be T T T T

tween the efficacy of the different mappings and the fitness REB:R 7777777

levels the evolutionary search is able to attain by seagchin 1.2 Standard Voting -------- -

the associated genotype spaces. Random -
The results of the adaptive walks are shown in Figure 7. Binary ----

The Direct Binary one-to-one mapping has no redundancy
and thus quickly becomes “trapped” in a local optimum, as
indicated by the curve which rapidly flattens out at a low fit-
ness level. The Trivial Voting mapping (not shown) performs
no better than the Direct Binary mapping, rising more slowly
to the same low fitness value.

The Static Random mapping behaves similarly to the Di-
rect Binary mapping, as we would expect given the neutral
walk performance reported earlier. No further fitness gains
are made after the first few adaptive steps. The fithess reache
a higher level than the Direct Binary mapping, but this sim- B
ply reflects the greater length of the genotype which results 0.2 . . . .
in more single point mutation neighbors and thus more phe- “o 100 200 300 400 500
notypes being sampled for higher fitness values in the few
adaptive steps taken.

The Standard Voting mapping and Cellular AUtomataFigure 7: Fitness-adaptive walks. The graph shows the fitnes

(CA) mapping do well over the entire walk and are still im- . .

i S . : levels achieved throughout adaptive walks through gereotyp
proving after 500 steps. The CA mapping in particular is CON-_ ' ce for each mapoina. averaged over all 1024 walks. The
tinuing to discover new phenotypes as can be seen by the no o ppINng, 9 '

zero gradient. The Random Boolean Network (RBN) ma _B'irect Binary one-to-one mapping clearly becomes trapped
ero g ) o . . pin local optima early in the adaptive walks, typically at a
ping does best of all, achieving highest fitness very early Ir]ow fitness value. The Static Random mapping also becomes

the run. The results from tht_—? neutral walk presented ear"e{rapped after only a few adaptive steps, attaining a sfightl
showed that the RBN mapping also had the greatest Ong.?{igher fithess as a result of sampling more neighbors due to

ing rate of phenotype discovery. The redundancy inherent i) . .
) : its longer genotype. The redundant mappings fare bettér wit
these mappings clearly helps prevent the adaptive seanch fr poth the CA and Standard Voting mappings still increasing

becoming “trapped" in local optima when compared againsm fitness. The Random Boolean Network mapping signifi-
:jh;n::nagf ;Eg V.I\flrticizf\rz ;ﬁdu:q(;anci:g, ogr:zethZnshggéullq;gzrr;cantly outperforms all other mappings, achieving a high fit-
ma yin This is what WS Wouplg eg ect. given the existencd €SS value early in the walk. The variance in this fitnessevalu

PpIng. pect, 9 Enot shown) is also very low, indicating consistency in lo-

of extensive neutral networks in genotype space, and the ney __. . . .
9 ypesp cating good fitness values. Each walk consists of a combi-

tpr;alnlgc;nft that was demonsrated in section 3 for these maphation of fitness-adaptive changes interspersed with ftnes

Although the degree of redundancy alone is not sufficien eutral dr_|ft in genotype space. The re(_jundancy mherent n
. he mappings clearly helps prevent the fithess-adaptivieswval
to guarantee neutral networks, a minimum level of redun-

dancy is likely to be helpful in the context of a population from becoming stuck in local optima. Eventual fithess valges
searching a space, in order to keep the population on th%(:h'e\./ed are: 0.99 (RBN)’ 0.86 (CA)’.O'77 (Standard_ Votmg
neutral network and avoid a situation where only a tiny frac_mapplng), .0'42 (Static Random mapping) and 0.31 (direct Bi-
tion of mutants maintain fithess. The fraction of single poin hary mapping).

mutation neighbors which are phenotypically neutral fa th

key mappings were found to be approximately: 0.2 (Standard

Voting mapping), 0.6 (CA), and 0.5 (RBN).

Fitness

Length of walk



5 Conclusions Bibliography

In this paper we have explored the properties of several [1]
genotype-phenotype mappings with varying types, and de-
grees, of redundancy. Three of the redundant mappings were
found to be beneficial for evolutionary search: the Standard
Voting, Cellular Automata (CA) and Random Boolean Net-
work (RBN) mappings.

These benefits were demonstrated in two ways. Firstly, 2]
random neutral walks were employed to show that neutral
drift allowed for the discovery of many more, potentiallyt-be
ter adapted, phenotypes than for a one-to-one mapping with
no redundancy. Secondly, adaptive walks on fitness land-
scapes showed that the discovery of more phenotypes allowed
for the attainment of higher fithess values. A mapping based
on a random boolean network was shown to perform particu-
larly well. [4]

Care needs to be taken in the construction of redundant
genotype-phenotype mappings. For redundancy to be of use
it must allow for mutations that do not change the currentphe
notype, thus maintaining fitness, but which allow for moves [5]
to areas of genotype space where new phenotypes are accessi-
ble. Useless addition of redundancy was evidenced by a Triv-
ial Voting mapping which had properties similar to a direct
one-to-one mapping. In this case, no extensive explorafion 6]
genotype space via neutral mutation was possible.

This work has illustrated the potential use of redun-
dant genotype-phenotype mappings to improve evolutionary
search and prevent the search becoming trapped in local op-[7]
tima. Further work is required to determine whether these
properties transfer to even larger phenotype spaces. rBette
measures are also needed to help characterise the natare of r
dundancy inherent in different genotype-phenotype magsin
and the effect of that redundancy on evolutionary search.
Such measures could be based on those developed to charac-
terise RNA sequence-structure space properties, sucbses th
discussed by Fontana et al. [3]. [9]
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