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Abstract- The neutral theory of evolution suggests that
most mutations do not cause a phenotypic change. In
this case the mapping from genotype to phenotype con-
tains redundancy such that many mutations do not have
an appreciable effect on the phenotype. This can result
in neutral networks; sets of genotypes connected by single
point mutations that map to the same phenotype. A pop-
ulation is able to drift along these networks, eventually
encountering phenotypes of higher fitness, thus reducing
the chance of becoming trapped in sub-optimal regions of
genotype space. In this paper we explore the use and ben-
efit of redundant mappings for evolutionary search. We
investigate the properties of several genotype-phenotype
mappings by performing random walks along the neutral
networks in their genotype spaces. The properties are ex-
plored further by performing adaptive walks in which a
concept of fitness is introduced. A mapping based on a
random boolean network was found to have particularly
interesting properties in both cases.

1 Introduction

Natural evolution differs in many respects from the evolution-
ary algorithms typically employed today. One such difference
is highlighted by the neutral theory of evolution. According
to this theory a considerable fraction of all mutations are phe-
notypically neutral with only a minute fraction of non-neutral
mutations being beneficial [7]. However, most evolutionary
algorithms use a fixed one-to-one mapping between genotype
and phenotype with each genotype corresponding to exactly
one phenotype. In this paper we explore the impact on evo-
lutionary search of redundant genotype-phenotype mappings
(in which each phenotype is represented by many genotypes).
Such mappings offer the potential of increasing the efficacy
of evolutionary search by allowing continued search on neu-
tral networks.

If one considers an evolutionary search in which the only
genetic operator available is single point mutation, then the
number of genotypes directly reachable from a given geno-
type is(A - 1)LwhereA is the number of alleles available and
L is the length of that genotype [6]. For binary string geno-
types the number of neighbors is simplyL, the length of the
genotype. Assuming a unique static fitness value is associated

with every possible genotype, an individual genotype which
represents a local optimum (with respect to these neighbors)
would by definition be “trapped”. That is, for the search to
reach better fitness values the individual genotype would have
to forego its current fitness value for a lesser fitness, in the
hope of eventually locating a better fitness value. This is the
case when there is no redundancy in the genotype-phenotype
mapping. (Note that for the purposes of this discussion it is
assumed that every distinct phenotype has a unique associated
fitness.)

When the genotype-phenotype mapping exhibits redun-
dancy there is the potential to continue the search by drift-
ing alongneutral networksin genotype space. If none of
the point mutation neighbors is fitter than the current geno-
type, yet there exists a neighboring genotype that maps to the
same phenotype, then it is possible to adopt that neighbor as
the current search solutionwithout loss of fitness. Provided
such phenotypically neutral neighbors exist and formexten-
sive networksthroughout genotype space, they may offer a
way of traversing genotype space without becoming “stuck”
at local optima. There would be no need to pass through re-
gions of lower fitness in order to reach regions of higher fit-
ness.

The possible role of “neutral evolution” is discussed by
Huynen [4] in the context of RNA sequence-structure map-
pings. This work showed that RNA folding algorithms pre-
dict the existence of extensive neutral networks in sequence
(genotype) space for which the constituent sequences all map
to an identical structure (phenotype). Further work by Huy-
nen [5] considered aspects of a population searching such a
genotype space. Fontana and Schuster [3] showed that the
statistical topology organising the set of RNA shapes explains
why neutral drift in sequence space is important in evolution-
ary search. Other work which has indicated the importance
of such properties of the search space includes that of Ebner
[1] and Shipman [8]. In this paper we consider redundant
genotype-phenotype mappings which are far simpler than the
RNA sequence-structure mapping but which might neverthe-
less exhibit extensive neutral networks which are helpful to
an evolutionary search process. For comparison we also ex-
amine mappings which exhibit redundancy of a type which is
nothelpful for evolutionary search.



2 Genotype-phenotype mappings

A number of genotype-phenotypemappings are discussed be-
low which exhibit varying degrees of redundancy, from none
through to a high level of redundancy i.e. with many geno-
types mapping to each possible phenotype. To allow the dif-
ferent aspects of each mapping to be explored, a single phe-
notypic representation is used consisting of 16 bits, resulting
in 216 = 65536 possible unique phenotypes. Other work (see
Ebner [2] and Shipman [9]) has investigated smaller pheno-
type spaces exhaustively; here we investigate whether useful
properties of redundancy extend to somewhat larger pheno-
type spaces.

2.1 Direct Binary Mapping

The Direct Binary one-to-one mapping maps a 16 bit geno-
type directly onto the 16 bit phenotype representation. As a
result there is no redundancy in this mapping - exactly one
genotype maps to each possible phenotype. This mapping
provides a baseline for comparison with the other mappings.

2.2 Static Random Mapping

The Static Random mapping does exhibit redundancy. The
genotype consists of a bit string of length 30, resulting in a
genotype space of230 genomes, each mapping to a specific
(16 bit) phenotype. The mapping is randomly initialised and
remains static, with the same genotype always mapping to
its corresponding phenotype. As the number of genomes is
too large to conveniently store in a look-up table, this is ac-
complished by hashing into a fixed random number generator
sequence. The degree of redundancy is quite high with on
average214 genomes mapping to each phenotype.

2.3 Trivial Voting Mapping

The Trivial Voting mapping is redundant, and is illustratedin
Figure 1 (top). The genotype has a total length of 48 bits. The
first 3 genotype bits determine the value of the first phenotype
bit, and consecutive sets of 3 genotype bits determine consec-
utive individual bits of the phenotype. Each phenotype bit is
thus uniquely determined by a set of 3 genotype bits, with
each of these sets being distinct (i.e. no two sets share any
bits). A phenotype bit is set to unity if themajority of the 3
corresponding genotype bits are set, otherwise it is cleared to
zero. Thus the genotype bitsvotefor the setting of the corre-
sponding phenotype bit. This mapping exhibits a redundancy
of 232:1.

2.4 Standard Voting Mapping

The Standard Voting mapping is again based on a voting ap-
proach where each bit of the phenotype is influenced by sev-
eral bits from the genotype. (See Figure 1, bottom.) Each
phenotype bit is determined by looking at all the bits of the
genotype to which it is linked. A bit of the phenotype is set if

Phenotype bits:

Phenotype ID in [0,216-1]

Genotype:
Majority vote (of 3)

48 bits

16 bits

Binary decode

Phenotype bits:

Phenotype ID in [0,216-1]

Genotype:

Majority vote (of 21)

32 bits

16 bits

Binary decode

Figure 1: Top: Trivial voting mapping - each phenotype bit
is uniquely determined by 3 genotype bits; if the majority of
these bits are set then the corresponding phenotype bit will
also be set. There is no overlap between the consecutive sets
of 3 bits. Bottom: Standard voting mapping - each pheno-
type bit depends on a constant odd number of genotype bits
which vote either for or against the corresponding phenotype
bit being set. For this mapping there is considerable overlap
between the sets of genotype bits.

the majority of connected bits in the genotype “vote” in favor
of this. Thus, depending on the values of the other relevant
bits, a point mutation may or may not have an effect on the
phenotype. It is important to note that for the Standard Vot-
ing Mapping the set of genotype bits linked to a particular
phenotype bitwill typically overlapwith the sets correspond-
ing to other phenotype bits. This is the key distinction be-
tween this mapping and theTrivial Votingmapping. It is this
aspect that permits multiple phenotype bits to potentiallybe
changed simultaneously by a single point mutation. Alterna-
tively, the redundant “majority voting” aspect of the mapping
can sometimes result in the phenotype remaining unchanged,
while still setting the scene for future transitions to different
phenotypes.

The links between the genotype bits and the phenotype
bits are determined in the following way. For each bit of the
phenotype we randomly select a constant number of bits of
the genotype which will vote for that phenotype bit. For each
of the voting bits, we randomly choose whether a set bit will
vote in favor of the corresponding phenotype bit being set, or
against it being set. Thus there are positive and negative votes
(links). The number of genotype bits which vote for each
phenotype bit is fixed at a constant odd number. In the results
reported later, a genotype of 32 bits was used with sets of 21
genotype bits being chosen for each of the 16 phenotype bits.
Clearly there is significant overlap among the sets of voting
bits.



2.5 Cellular Automaton Mapping

The Cellular Automaton mapping uses a developmental ap-
proach: the genotype encodes a set of cellular automaton
rules which map a fixed initial value into the resulting phe-
notype value. (See Wolfram [10] for example, for more in-
formation on cellular automata.) A one-dimensional, non-
uniform cellular automaton comprises an array of cells, each
with an associated rule table which specifies how the state of
that cell changes over time (see Figure 2). The cellular au-
tomaton consists of an array of 16 binary cells. For each cell,
a rule table specifies the subsequent state of that cell, uniquely
determined by its own state together with the state of its left
and right adjacent cells. (Left and right extremes of the ar-
ray are wrapped around.) The 3 input states result in23 = 8
possibilities, so each rule table has 8 entries, each of which
specifies the new binary state resulting for that configuration.
The genotype thus requires 8 bits to encode each rule table.
This results in a total genotype length of 128 bits.

To perform the mapping from genotype to phenotype, the
cellular automaton is first initialised with a fixed, arbitrary bit
string. The cellular automaton is then iterated for a constant
number of steps using the rule tables defined in the genotype.
(For the results reported later, 20 iterations were used, but ex-
periments suggested that increasing the number of iterations
further had little effect on overall behavior.)
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Transition table
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Figure 2: Cellular automata mapping: the phenotype consists
of the final state of a cellular automaton whose state transition
rules are encoded in the genotype. There is one cell for each
of the 16 phenotype bits, and every cell has an associated tran-
sition table mapping the current bit state and neighbor states
to a new state for that cell.

2.6 Random Boolean Network Mapping

The Random Boolean Network mapping is similar to the Cel-
lular Automata mapping, but is rather more complex. The
genotype again encodes rule tables describing how the state
of each cell (in an array of 16 cells) changes over time. These
rules are applied iteratively, as for the cellular automata, to
derive the final phenotype value. For the Random Boolean
Network used here the next state of each cell depends on 3

input bits, but these can beany 3 bits atdefined addresses
within the 16 bit cellular array. Thus in addition to the rule
table, these addresses must also be specified: each address
requires 4 bits to encode an address in the range[0, 15]. A
further distinction from the cellular automaton defined above
is that the initial state for each binary cell is directly encoded
in the genotype. To summarise, the details for each cell in-
clude:� initial state (1 bit);� addresses for each input cell (3 � 4 = 12 bits);� the rule table defining the cell’s next state (23 = 8 bits).
The above information is required for each of the 16 cells,
which results in a total genotype length of 336 bits. The map-
ping from genotype to phenotype thus exhibits a high degree
of redundancy.
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Figure 3: Random neutral walk through genotype space: the
walk starts at a given genotype (and associated phenotype,P7
in the figure above) and proceeds by randomly selecting suc-
cessive point mutation neighbors which map to the same phe-
notype. During this walk different phenotypes areencoun-
teredwhich arereachable by single mutationsof the geno-
types along the walk.



3 Evaluation of the mappings on a random neu-
tral walk

To evaluate various properties of the mappings we first per-
formed an analysis of each mapping in the context of a “ ran-
dom neutral walk” through genotype space, as we are partic-
ularly interested in the ability to continue to explore genotype
space without changing the current phenotype. (Later, in sec-
tion 4, we discuss a fitness-adaptive walk.)

In this paper we report only those results which bear most
strongly on later discussions of fitness-adaptive walks; for a
more detailed statistical examination of these (and other)re-
dundant mappings in the context of a random neutral walk
we refer the reader to Shipman et al. [9]. Ebner et al. [2]
considers the impact of redundant mappings on a population
searching a space in the context of a changing environment.
Here we consider a single point search to avoid the additional
complications resulting from a population-based search.

3.1 Random neutral walk through genotype space

The following statistics were calculated in the context of a
random neutral walk (Figure 3). Each random neutral walk
starts from a given genotype and randomly selects one of the
single mutation neighbors which maps to thesame pheno-
type. The process is repeated for a fixed number of steps,
each involving a transition in genotype space to a phenotype-
neutral, adjacent neighbor. (If no such neighbor exists the
walk will remain at the current position in genotype space.)
The statistics reported here were all calculated for a series of
1024 random neutral walks, each starting at a genotype which
was chosen randomly from the set of all possible genotypes.

3.2 Phenotypes reachable

The “phenotypes reachable” statistic measures the cumulative
number of phenotypes encountered, averaged across a series
of random neutral walks, and is plotted against walk length.
A new phenotype isencounteredwhen one of the single point
mutant neighbors of the current genotype is found to map to
that phenotype. (See Figure 3.)

The plotted value represents the mean over the entire se-
ries of random neutral walks. The number of phenotypes
reachable via a neutral walk is an important statistic, as the
slope gives an indication of the “innovation rate” i.e. the abil-
ity to find potentially better phenotypes while still maintain-
ing the current phenotype. When we later associate a fitness
value with each phenotype, the slope of this plot can indicate
whether the search for fitter phenotypes should be continued.

3.3 Histogram of number of phenotypes encountered

The histogram of the number of phenotypes encountered in-
dicates how many different phenotypes we can expect to en-
counter (as single point mutation neighbors) during a random
neutral walk. The previous statistic, “phenotypes reachable”,
captures the mean of this distribution at the end of the neutral

walk. In addition, this histogram indicates both the variance
in number of phenotypes found over all walks and can also
illustrate other biases (such as bimodality) in the distribution.

3.4 Results of neutral walks for each mapping

The above statistics were calculated for all of the mappings
described earlier. The statistics were calculated over 1024
walks of length 500, each walk starting from a randomly se-
lected genotype. The generated statistics are shown for the
Standard Voting mapping (Figure 4), the Cellular Automata
(CA) mapping (Figure 5), and the Random Boolean Network
(RBN) mapping (Figure 6). Results from the other mappings
are also discussed, but are not shown due to space limitations
and because they can be simply described.

The Direct Binary mapping contains no redundancy, and
every genotype maps to exactly one phenotype; consequently
the number of phenotypes encountered during all “neutral”
walks is equal to the number of single point mutation neigh-
bors, namely 16.

The Static Random mapping contains a degree of redun-
dancy, with the set of (approximately214) genotypes which
map to a given phenotype being scattered widely through
genotype space. However, once again the number of pheno-
types encountered is restricted to the number of single point
mutation neighbors; this is because the set of genotypes cor-
responding to a given phenotype are typicallynot connected
by a neutral networkof single point mutations i.e. they are
isolated in genotype space and cannot be reached one from
another without foregoing the current phenotype. At higher
levels of redundancy we might however expect neutral neigh-
bors to exist. A Static Random mapping with a genotype
length of 336 (equal to the largest genotype considered in this
paper) was also investigated, but no neutral networks were
observed.

The Trivial Voting mapping also exhibits redundancy, with
on average232 genotypes corresponding to each unique phe-
notype. The mapping produces results very close to those
of the Direct Binary mapping, encountering only 16 differ-
ent phenotypes, with the only difference being that it takes
several more steps to find these. In this case the redundancy
simply slows down the search process, without allowing ex-
tensive search of genotype space. (A Trivial Voting mapping
with a genotype of length 336 was also investigated and found
to slow down the search even further.) Consideration of how
the mapping is defined (Figure 1, top) indicates why this is
the case: each genotype bit can only ever affect a single bit
of the phenotype representation; thus the possible phenotype
transitions resulting from a mutation are the same as those
of the Direct Binary mapping. The Trivial Voting mapping
illustrates thatredundancy alone is not enoughto help evolu-
tionary search.

The Standard Voting mapping (Figure 1, bottom) was de-
signed such that a single point mutation in the genotype could
potentially affect multiple bits in the phenotypic representa-
tion simultaneously, or in some cases (due to the voting mech-



anism) may affect none of these bits. The results of the ran-
dom neutral walks using this mapping are shown in Figure 4.
The mean number of unique phenotypes encountered is 669,
after a walk of 500 steps. This indicates that the mapping
permits extensive phenotype-neutral walks through genotype
space. The histogram illustrates that the walk length distri-
bution is bimodal: the majority of walks encounter approx-
imately 750 phenotypes but some walks encounter very few
phenotypes. The latter observation indicates a weakness in
the properties of the mapping which could lead to fitness-
adaptive walks becoming “stuck” at locally fit phenotypes
which lack an associated extensive neutral network.

The results for the Cellular Automata mapping are shown
in Figure 5. The mean number of unique phenotypes encoun-
tered at the end of the neutral walk is 472. This is less than for
the Standard Voting mapping but the gradient of the “pheno-
types encountered” graph indicates that new phenotypes con-
tinue to be encountered and that extensive neutral networks
exist in genotype space. In this case the histogram is uni-
modal, indicating that all walks sampled resulted in similar
numbers of phenotypes being encountered. This property is
more promising than that of the Standard Voting mapping as
it implies that a fitness-adaptive walk is less likely to become
trapped at a local optimum, in a restricted region of genotype
space.

Results for the Random Boolean Network (RBN) mapping
are shown in Figure 6. These statistics are particularly en-
couraging: the final mean count of phenotypes encountered
over the random neutral walk is 4614, an order of magnitude
greater than the maximum across the other mappings consid-
ered here. The gradient of the associated graph is also high,
with little sign of an asymptote at the end of the walk. In ad-
dition, the histogram of number of phenotypes encountered
is unimodal with no low values, suggesting the presence of
many extensive neutral networks in genotype space.

4 Evaluation of the mappings on a fitness-
adaptive walk

In this section we present results of using the redundant map-
pings in the context of a fitness-adaptive walk in genotype
space. The statistics were calculated over 1024 walks of
length 500 starting at randomly selected genotypes, as be-
fore. The walk conditions are as for the neutral walk, but with
the key difference that a fitness value is randomly associated
with each phenotype. The walk then proceeds by adaptive
moves to the single-point mutation neighbor with the highest
fitness, provided this fitness is higher than the current fitness.
If such a neighbor does not exist, then the walk proceeds by
a phenotype-neutral move to a single-point mutation neigh-
bor with an equal fitness to the current fitness. If this is not
possible either, then the walk ends.

Fitnesses are assigned to phenotypes randomly in the
range[0,1] with higher values denoting higher fitness. How-
ever, the fitness assignment is not uniform; instead a uniform
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Figure 4: Standard voting mapping statistics: The graph
shows the number of phenotypes found, averaged across all
neutral walks. The redundancy in this mapping permits a
neutral walk which continues to discover new phenotypes in
its neighborhood. The eventual mean number of phenotypes
found over the walks (669) is greater than for the cellular au-
tomata mapping, but the gradient (innovation rate) is gradu-
ally decreasing. The central portion of the histogram shows
that most neutral walks encounter on average 750 different
phenotypes, corresponding to extensive neutral networks in
genotype space. The histogram also shows that some walks
encounter very few phenotypes; this indicates a potential
problem, as a fitness-adaptive walk could become “stuck” on
a neutral network which is limited to a restricted region of
genotype space.
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Figure 5: Cellular automata mapping statistics: the graph
shows the number of different phenotypes encountered, av-
eraged across all neutral walks. The redundancy in this map-
ping permits a neutral walk which continues to discover new
phenotypes in its neighborhood. The eventual number of phe-
notypes found over the walk is less than for the standard vot-
ing mapping, but the gradient (innovation rate) has not de-
creased significantly indicating that new phenotypes continue
to be encountered. The histogram indicates that all networks
encountered are extensive, which is a desirable property, and
may indicate that a fitness-adaptive walk is less likely to be-
come “stuck” at a local optimum.
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Figure 6: Random boolean network statistics: the graph
shows the number of different phenotypes found, averaged
across all neutral walks. The redundancy in this mapping
permits a neutral walk which continues to discover new phe-
notypes in its neighborhood. The eventual number of pheno-
types found over the walks is an order of magnitude greater
than for the other mappings considered, with a steep gradient
(innovation rate) showing little sign of decreasing. The his-
togram shows that all neutral walks encountered a substantial
number of different phenotypes, indicating the presence of
extensive neutral networks in genotype space.



random numberr in [0,1] is remapped in order to produce
many more low fitness values than high fitness values. The
fitness is given by f = e100(r�1): (1)

The fitnesses are distributed in this way to generate a search
space in which there are few good solutions among many
poor solutions, which is a property of many search spaces
of interest. It also allows greater distinction to be made be-
tween the efficacy of the different mappings and the fitness
levels the evolutionary search is able to attain by searching
the associated genotype spaces.

The results of the adaptive walks are shown in Figure 7.
The Direct Binary one-to-one mapping has no redundancy
and thus quickly becomes “trapped” in a local optimum, as
indicated by the curve which rapidly flattens out at a low fit-
ness level. The Trivial Voting mapping (not shown) performs
no better than the Direct Binary mapping, rising more slowly
to the same low fitness value.

The Static Random mapping behaves similarly to the Di-
rect Binary mapping, as we would expect given the neutral
walk performance reported earlier. No further fitness gains
are made after the first few adaptive steps. The fitness reaches
a higher level than the Direct Binary mapping, but this sim-
ply reflects the greater length of the genotype which results
in more single point mutation neighbors and thus more phe-
notypes being sampled for higher fitness values in the few
adaptive steps taken.

The Standard Voting mapping and Cellular Automata
(CA) mapping do well over the entire walk and are still im-
proving after 500 steps. The CA mapping in particular is con-
tinuing to discover new phenotypes as can be seen by the non-
zero gradient. The Random Boolean Network (RBN) map-
ping does best of all, achieving highest fitness very early in
the run. The results from the neutral walk presented earlier
showed that the RBN mapping also had the greatest ongo-
ing rate of phenotype discovery. The redundancy inherent in
these mappings clearly helps prevent the adaptive search from
becoming “trapped” in local optima when compared against
the mapping with zero redundancy, or the “unhelpful” redun-
dancy of the Trivial Voting mapping and the Static Random
mapping. This is what we would expect, given the existence
of extensive neutral networks in genotype space, and the neu-
tral drift that was demonstrated in section 3 for these map-
pings.

Although the degree of redundancy alone is not sufficient
to guarantee neutral networks, a minimum level of redun-
dancy is likely to be helpful in the context of a population
searching a space, in order to keep the population on the
neutral network and avoid a situation where only a tiny frac-
tion of mutants maintain fitness. The fraction of single point
mutation neighbors which are phenotypically neutral for the
key mappings were found to be approximately: 0.2 (Standard
Voting mapping), 0.6 (CA), and 0.5 (RBN).
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Figure 7: Fitness-adaptive walks. The graph shows the fitness
levels achieved throughout adaptive walks through genotype
space for each mapping, averaged over all 1024 walks. The
Direct Binary one-to-one mapping clearly becomes trapped
in local optima early in the adaptive walks, typically at a
low fitness value. The Static Random mapping also becomes
trapped after only a few adaptive steps, attaining a slightly
higher fitness as a result of sampling more neighbors due to
its longer genotype. The redundant mappings fare better with
both the CA and Standard Voting mappings still increasing
in fitness. The Random Boolean Network mapping signifi-
cantly outperforms all other mappings, achieving a high fit-
ness value early in the walk. The variance in this fitness value
(not shown) is also very low, indicating consistency in lo-
cating good fitness values. Each walk consists of a combi-
nation of fitness-adaptive changes interspersed with fitness-
neutral drift in genotype space. The redundancy inherent in
the mappings clearly helps prevent the fitness-adaptive walks
from becoming stuck in local optima. Eventual fitness values
achieved are: 0.99 (RBN), 0.86 (CA), 0.77 (Standard Voting
mapping), 0.42 (Static Random mapping) and 0.31 (direct Bi-
nary mapping).



5 Conclusions

In this paper we have explored the properties of several
genotype-phenotype mappings with varying types, and de-
grees, of redundancy. Three of the redundant mappings were
found to be beneficial for evolutionary search: the Standard
Voting, Cellular Automata (CA) and Random Boolean Net-
work (RBN) mappings.

These benefits were demonstrated in two ways. Firstly,
random neutral walks were employed to show that neutral
drift allowed for the discovery of many more, potentially bet-
ter adapted, phenotypes than for a one-to-one mapping with
no redundancy. Secondly, adaptive walks on fitness land-
scapes showed that the discovery of more phenotypes allowed
for the attainment of higher fitness values. A mapping based
on a random boolean network was shown to perform particu-
larly well.

Care needs to be taken in the construction of redundant
genotype-phenotype mappings. For redundancy to be of use
it must allow for mutations that do not change the current phe-
notype, thus maintaining fitness, but which allow for moves
to areas of genotype space where new phenotypes are accessi-
ble. Useless addition of redundancy was evidenced by a Triv-
ial Voting mapping which had properties similar to a direct
one-to-one mapping. In this case, no extensive explorationof
genotype space via neutral mutation was possible.

This work has illustrated the potential use of redun-
dant genotype-phenotype mappings to improve evolutionary
search and prevent the search becoming trapped in local op-
tima. Further work is required to determine whether these
properties transfer to even larger phenotype spaces. Better
measures are also needed to help characterise the nature of re-
dundancy inherent in different genotype-phenotypemappings
and the effect of that redundancy on evolutionary search.
Such measures could be based on those developed to charac-
terise RNA sequence-structure space properties, such as those
discussed by Fontana et al. [3].
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