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Abstract

An evolutionary algorithm that layouts UML class diagrams
is developed and described. It evolves the layout by mutat-
ing the positions of class symbols, inheritance relations, and
associations. The process is controled by a fitness function
that is computed from several well-known and some new
layout metrics.
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1 The Algorithm

A neat and aesthetic drawing of a UML class diagram sup-
ports readabilty and usability. In this paper we investigate
a new lightweight evolutionary non-deterministic approach
for automatic layout of UML class diagrams.

1.1 Representation

We represent a diagram as a set of nodes and edges. Each
node has a fixed size that does not change during the course
of evolution and, hence, is not stored with each diagram. A
node is represented by the x and y coordinates of its upper
left corner point.

An edge connects two nodes, the coordinates of the junc-
tion points are stored relatively to the top left corner of the
node rectangle. Hierarchical edges are drawn directly from
point to point, whereas non-hierarchical edges are drawn or-
thogonally and may have (orthogonal) bends. Each bend is
determined by one point. Since we only attach these edges
to the left or right side of the rectangle, the number of bends
is always even. In our implementation we restrict the pos-
sible number of bends to two, hence it suffices to store the
common abscissa.

1.2 Mutation

The following mutations are possible, each with its own step-
size and probability:
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mutation probability
move node 0.54
move port of an edge 0.1
flip port of an edge 0.21
move bend 0.1
delete bend 0.05

An operator is chosen with the given probability in an evolu-
tion step, the move nodes operator, e.g., with a probability
of 0.54.

This operator works as follows:

1. Choose a random node.

2. Move position (x′, y′) = (x, y) + (dx, dy)
where dx and dy are normally distributed random num-
bers with standard deviation σx = 100, and σy = 50,
respectively.

3. Check for overcuts of edges with the node. If necessary
flip port.

4. According to its iteration probability p1 go to step 1.

The other operators work similarly, all iteration probabilities
are initialized with 0.7.

1.3 Fitness Function

We have considered layout metrics for UML class diagrams
in more detail in [Eichelberger 2005].

The fitness function or error measure is computed as a linear
combination of 9 metrics, each scaled to the range [0, 1].

1. NN Overlappings of nodes are counted and scaled re-
gressively. It was not helpful to compute the overlap-
ping area.

ρNN :=
|overlaps|

|overlaps|+1

2. EN Overcuts of edges and nodes are treated analo-
gously.

ρEN :=
|overcuts|

|overcuts|+1

3. EE Edge crossings are counted, the current number
is then divided by the upper bound of possible cross-
ings similar to the formula suggested in [Purchase 2002].
That bound depends on the number of edges and the
number of bends.

eb := |edges| + 2 · |bends|
ρEE :=

2·|crossings|
eb·(eb−1)

4. H Hierarchical edges should follow a common flow di-
rection, from bottom to top. In our simplified view of
UML class diagrams hierarchical edges means general-
izations. A linear scaling is sufficient.



ρH :=
|direction misses|
|generalizations|

5. GL Lengths of hierarchical edges can be preassigned,
for instance depending on the size of the arrow head.
This metric measures the difference to that prefered
length. Shortening the length is punished harder than
prolonging.

ρGL := 1 −
∑

g∈generalizations
mix(ḡ,lpref )

|generalizations|
where mix : R

+
0 × R

+ → [0, 1], mix(x, y) := min(x,y)
max(x,y)

und ḡ the length of g.

6. AL Associations, i.e. non-hierarchical edges are treated
similarly. We, indeed, define a prefered length for the
possibly 2 horizontal pieces, and compare the pieces and
the full horizontal length separately. With piece(a) :=
mix(āh1, lpref )+mix(āh2, lpref )+mix(āh1+āh2, 2·lpref )

we have ρAL := 1 −
∑

a∈associations
piece(a)

3·|associations|
7. A The angle between a hierarchical edge and the side

where it connects to a node is estimated by the ratio
of the horizontal distance to the sum of distances and
linearly scaled.

Let �x the horizontal and �y the vertical distance
between start and end position of a hierarchical edge
(x, y) → (x + �x, y + �y)

ρA :=

∑
generalizations

( �x
�x+�y

)2

|generalizations|
8. MP If multiple edges connect to the same side of

a node, a balanced distribution of the edge ports is
aspired. Therefore the area spanned by squares be-
tween the ports is calculated, its minimum equi(k) :=

nk ·
(

k̄
nk

)2

is achieved for an equidistant partition, its

maximum k̄2 for nk = 0 where k the side of a node
partioned by nk ports into nk + 1 pieces k0, k1, . . . , knk

with lengths k̄i, i = 0, . . . , nk.

The scaled error per side is accumulated: side(k) :=
nk∑
i=0

(k̄i)
2−equi(k)

(k̄)2− equi(k)
ρMP :=

∑
k∈nodesides

side(k)

|nodesides|
9. B The number of bends should be minimal as suggested

in many graph drawing publications or in [Purchase

2002]. ρB :=
|bends|

2·|associations|
Let x be a diagram with values ρm(x) for the metric m. The
fitness function is computed as a linear combination of these
values.

F (x) :=
∑9

m=1 ωm · ρm

m NN EN EE H GL AL A MP B
ω 1 1 5 10 2 1 1 0.5 0.5

2 Combination with SugiBib

The context of SugiBib[Eichelberger and von Gudenberg
2003a; Eichelberger 2005] is used to retrieve the structure

and the semantics of the input, and to transform the infor-
mation to a graph structure optimized for the evolutionary
algorithm. Then the evolutionary algorithm is executed and
finally the coordinates are handed to SugiBib. This allows
us to use real coordinates for the evolutionary algorithm,
and also enables the reuse of the SugiBib metrics.

3 Discussion

Overall, the approach was successful, we obtain acceptable
layouts of UML class diagrams in reasonable time. We have
developed a set of metrics that is capable of controlling the
evolutionary algorithm. The overall time, however, is slower
than SugiBib by a factor of about 20.

3.1 Fitness

Lots of experiments led us to the coefficients given in the
paper.

It turned out that the hierarchy should be emphasized. It
is much easier to fine-tune a diagram with some overlapping
nodes than one with a hierarchy mismatch. Therefore the
hierarchical metric got a high factor.

The regressive scaling of the overlapping metrics causes rel-
atively high values ( ≥ 0.5), hence these metrics are very
frequently reduced to 0.

With larger diagrams the weight for edge crossings should
be increased.

We have noticed that the consideration of subtle metrics
such as the angle A improves the overall layout of a dia-
gram a lot. So does the MP metric that is responsible for a
centered position of nodes in a hierarchy.
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